CLINICAL, HEMATOLOGICAL AND SOME BIOCHEMICAL ALTERATIONS IN CALVES DURING DIARRHEA

1 Galbat S. A., 2 A. El-Shemy, 3 HANY . G. K

1Department of Animal Medicine, Faculty of Vet. Med. Assiut University, Egypt
2Department of Parasitology and Animal Disease, National Research Center, Egypt
3Department of Animal Reproduction National Research Center, Giza, Egypt

Abstract
This study was planned to investigate the clinical, haematological and blood biochemical changes associated with diarrhea in crossbreed Egyptian calves in menofia governorate. Blood and serum samples were collected from 25 calves (3-6 month old), and 10 apparently healthy calves to be used as control. From different farms, with indoor feeding system, suffering from diarrhea showing signs of anorexia, depression, deprived appetite, hyperthermia, rough hair coat, weakness and loss of body weight, Vital signs (respiration, pulse, rumen function, reflexes) were manually recorded. Blood samples were taken. Careful clinical examination had been carried out in all animals. Faecal samples were screened for parasitic load using standard techniques (Coles, 1986). The estimated values of total RBCs, Hb, and MCH showed significant decrease in diarrhetic calves compared with that in healthy ones. Estimation of serum minerals revealed decrease in calcium, magnesium, sodium and potassium levels, with normal physiological phosphorus serum level. Serum, glucose, total protein and albumin were significantly decreased, while serum globulin’s were not changed in diarrhoeic animals compared to healthy ones. Also, significant increase was found in the activities of AST, ALT, in diarrhetic calves compared to normal ones.

Introduction
Diarrhea is one of the major problems facing animal production especially those are bred under intensive or semi-intensive system of breeding, it also cause significant mortalities of young, weight loss or even late growth. (Joshua, P.A., et al c 2011). Diarrhea defined as increased fecal water content or to increased volume of feces excreted or a combination of both and characterized clinically by excessive water, electrolyte discharge in the intestine [Goljan, E. 2010]. Neonatal diarrhea is a major cause of economic loss in cattle herds, as a result of retarded growth, cost of treatment, and deaths (Abubakar et al. 2007). Etiology of diarrhea is multiple, including
infectious agents, poor management, reproductive factors, nutritional factor and immune status [Diaz-Lee, A.2011]. The diarrheic animals loosed fluid, rapidly dehydrated and suffered from electrolyte loss, acidosis and infectious agents may cause initial damage to the intestine but death from scours usually result from dehydration, acidosis and loss of electrolytes [Radostits, O.M., et al. 2007]. Dehydration in calves that have diarrhea is accompanied by large decreases in the extracellular fluid volume along with small increases in intracellular fluid volume (Naylor 1987, Constable et al 1998, Smith 2009). Neonatal calf diarrhea is one of the most devastating diseases of the dairy industry worldwide (Elhassan et al., 2011; Pourjafar et al., 2011). Clinical symptoms observed in calves with diarrhea are manifested by lack of appetite, loose stools and abdominal pain. Longer diarrhea results in dehydration, weakness and loss of sucking reflex. Loss of fluids leads to hypovolaemia and circulation disorders, whereas disturbances in the acid-base balance and electrolytic balance are likely to induce neural symptoms with convulsion leading to death (Grove-White 2004). Although calf diarrhea has numerous infectious and non-infectious causes, dehydration, electrolyte imbalance and acidosis have been considered as the major systemic changes in diarrheic calves that often result in the death of calves in the absence of correction (Guzelbektes et al., 2007). Different studies have shown that administration of water and electrolytes to diarrheic calves improves survival (Naylor, 1989). During administration of water and electrolytes to diarrheic calves, it is essential to know what disturbance of serum electrolytes is more severe and its correction is more important (Groutides and Michell, 1990). Measurement of the serum electrolytes and evaluation of acid-based disturbance require laboratory tests and are not routinely measured in the field condition. The degree of dehydration can be estimated by physical examination of the calf, and has been introduced as a reliable method (Naylor, 1989). Electrolyte imbalance in diarrheic calves may cause death in some cases and estimation of the severity of electrolyte imbalance is necessary before administration of electrolytes to diarrheic calves. Although it is believed that serum concentrations of sodium (Na) and
potassium (K) are more important in relation to the composition of the fluids used for therapy (Groutides and Michell, 1990), there is little information about the changes of some other electrolytes such as calcium (Ca) and magnesium (Mg) and trace elements, and their relationships with clinical signs in diarrheic calves. Untreated changes in serum concentrations of Ca and Mg and some trace elements may be the cause of some death or post diarrhea complications such as growth retardation. Nutritional surveys carried out in different areas of Egypt have revealed pathological symptoms existing in many livestock due to deficiency of minerals and trace elements in the soil and consequently, in the fodder grazing on them, thus, deficiency symptoms due to subnormal intake of phosphorus copper, zinc, cobalt, selenium have been observed in certain areas (Naser, 1995). Diarrhea associated with heamatological changes such as marked increase in the values of Hb, PCV%, RBCs, WBCs count [Ghanem, M.M., et al. 2012], also diarrhea associated with biochemical changes such as decreased total protein, hypoglycemia, hyponatremia, hyperkalemia, hypocalcemia, increase AST, ALT activity [Ghanem, M.M and Abd El-Raof, Y.M. 2006], increase urea nitrogen and creatinine level [Ghanem, M.M., et al. 2012]. The present study was planned to study diarrhea in farm animals to secure the following information: Diagnostic procedures to determine the probable cause of dietary diarrhea in farm animals. Detection of the mean levels of some biochemical constituents and hematological profile of the blood during diarrhea. And detection of the mean levels of some minerals in diseased animals.

MATERIALS AND METHODS

Animals and study design.

This study was conducted on a total of 35 calf, 3-6 months of the ages (diarrheic sheep; n=25, apparently healthy; n=10) in menofia Governorate, All animals were subjected to detailed clinical examination including recording of temperature, pulse and respiratory rates, mucous membranes and ruminal movement investigation (Radostits, et al., 2007). The degree of dehydration had been estimated by capillary refill time and
other clinical parameters (Smith, B.P. 1996) Blood and/or fecal samples were collected from control and diarrheic calves at the onset of diarrhea.

Blood and serum analysis:

Five ml of blood samples were collected from the jugular vein of each animal at the onset of diarrhea each blood sample divided into two portions. The 1st portion (2ml) was anticoagulant by (EDTA) and was used for hemogram investigation (Feldman et al., 2000). The 2nd portion (3ml) were allowed to clot, then centrifuged at 3000 rpm for 10 minutes for serum separation and used for biochemical studies. The following serum biochemical parameters were determined: Serum total protein (henary el al., 1974), Serum albumin (Doumas et al., 1971), Serum globulin were determined by subtracting the value of serum albumin from the value of serum total proteins, A/G ratio, Serum glucose (Trincler., 1961), activities of AST, ALT (Reitman and Frankel., 1957), ALP (Tietz, 1986), urea (patton and crouch., 1977) and creatinine (Oliver, and Biochem. 1955), the reagents were supplied by biomerieux- France and randox-Co.

Statistical analyses

Statistical differences were calculated according to the Student t-test with significance level at P<0.05 All results were analyzed using the procedure of (SAS, 2004).

| Table 1. Heamogram and leukogram of calves suffering from diarrhea and control (means ± S.E) |
|---------------------------------|---------------------------------|-------------------------------|
| Diseased (n=25) | Normal (n=10) | |
| 8.76 ± 2.06 | 8.22 ± 1.32 | RBCs(10⁶/mm³) |
| 12.29 ± 1.25 | 13.36 ± 1.12 | Hb (g/dl) |
| 46.50 ± 3.12* | 35.21± 2.42 | PCV % |
| 53.71 ± 1.98* | 44.50 ± 2.60 | MCV (FL) |
| 3.50 ± 0.42 * | 4.87 ± 0.60 | Platelets (10³/ul) |
| 11.15 ± 3.06 | 14.52 ± 2.33 | TLC(10³/ul) |
| 5.57 ± 1.90 | 6.14 ± 1.86 | Neutrophile (10³/ul) |
| 4.86 ± 2.83* | 7.60 ± 2.51 | lymphocytes (10³/ul) |
| 0.72 ± 0.11 | 0.68 ± 0.03 | Monocytes (10³/ul) |

RESULTS
Clinical findings of a total of 25 yang calves 3-6 month old were suffering from diarrhea, inappetence, decreased feed intake and diarrhea. Internal body temperature, arterial pulse rate, lung auscultation and respiratory rate were within normal range while conjunctiva, oral, nasal and vaginal mucous membranes were slightly pale in colour with no lesions.

The obtained hematological pictures of apparently healthy and diarrheotic calves are described in Table (1). When the mean values of total red blood corpuscles, hemoglobin, mean corpuscular hemoglobin showed significant decrease in diarrhotic calves compared with corresponding values in healthy (control) ones while significant increase were seen in Packed cell volume. The mean values of total white blood cells and differential leucocytic count in apparently healthy and diarrhetic calves revealed significant leucopenia in diseased calves.

Biochemical Examination:

The mean values of activities of serum enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), in apparently healthy and diarrhetic calves before and post treatment are presented in table (2). The tabulated results showed significant increase of serum AST, ALT, activities in diarrhetic calves compared to healthy ones.
On the other hand, the mean values of blood serum total protein, albumin, glucose, showed significant decrease in diarrhetic calves occurred in table (2). Regarding the estimated levels of blood serum calcium, chloride, sodium and potassium shown in table (2), a highly significant decrease was noticed in serum, Ca , Sodium and concentrations were significantly decreased in diarrhetic calves than normal ones while there is significant increase in Potassium level in diarrhetic calves than in normal ones.

Discussion

Diarrhea constitutes one of the most serious problems among farm animals which lead to considerable economic loss. The main clinical features of the affected animals showed that calves was suffering from moderate to sever diarrhea, depression, dullness, loss of appetite and moderate degree of dehydration. The faeces was semi fluid to watery in consistency and grayish to yellowish green in color, contained mucous and sometimes blood. The perineum and tail were soiled with feces. Mucous membranes were pale in colour. These results come in agreement with those previously recorded Martin, W.B. and Aitken, I.D. (1991). The recorded anorexia, depression and dullness may be attributed to muscular weakness due to escape of intracellular potassium, hyperkalemia and hypoglycemia Radostits, O.M. et al., (2007). In our results haematological results observed is increase the total RBCs counts Hb values, PCV than those in healthy ones. Nonsignificant differences were detected with other selected hemogramic parameters (Table 1). Those Results, reveled generally Presence of clinical marginal anemia, The increase in hematological parameters may be attributed to haemoconcentration, excessive loss of body fluid and dehydration which lead to decrease plasma volume. These results were in agreement with that reported by [Radostits, O.M. et al., (2007), Tawfik, S.A.E. (2000). leukogram in diarrhetic calves found to be significantly depressed for total WBCs than the corresponding values in healthy ones. The decrease of total leucocytic count in diarrhetic calves may be attributed to the stress of malnutrition. This suggestion was supported by the result obtained by Mogongo et al. (1985). The degree of leucocytosis within different
individuals was influenced by the severity of the infectious agent and the susceptibility of the animal to the infection Coles, E.H. (1986). Serum analysis of diarrheic calves showed significant decrease in serum Na, Cl and Ca, while there was a significant increase in serum K in compared with control this result were in agreement with that reported by [Ghanem, M.M and Abd El-Raof, Y.M. (2006), Radostits, O.M. et al., (2007)]. The significant decrease in the serum calcium may be attributed to malabsorption and its loss in the gastrointestinal tract Ghanem, M.M and Abd El-Raof, Y.M. (2006). Hyperkalemia in diarrheic calves could be attributed to increase renal tubular reabsorption of potassium in response to acidosis. Also it could be attributed to oligouria or anuria in which kidney failed to eliminate excess potassium Wakwe, V. C. and Okon, K. O. (1995). Hyponatremia, hypochloriemia in diarrheic sheep were attributed to direct loss of sodium and chloride ions via feces as well as failure of intestinal absorption Michell, A.R. (1989) . The significant decrease in serum total protein and albumin levels shown in table (2) in diarrhetic calves was in agreement with Coles (1986). Also it could be attributed to stress of dietary diarrhea which may affect worsely the hepatic parenchyma resulting in the failure of protein synthesis. Data presented in table (2) showed significant increase in AST, and ALT, activities in the diarrhetic calves when compared with control ones. Similar results were previously reported by Fell (1981) . Serum liver function tests of diarrheic calves showed significant increase in ALT and AST. This result might be attributed to inflammation of gastrointestinal tract of diarrheic calves and cellular destruction of the liver and intestinal mucosa Ghanem, M.M and Abd El-Raof, Y.M. (2006). Serum kidney function tests of diarrheic calves showed significant increased in the mean values of creatinine and highly significant increase in serum level of urea nitrogen. The increased values of serum urea nitrogen and creatinine may be due to decrease renal function and reduction in glomerular filtration rate and decrease urine production resulting from hypovolemia, systemic arterial hypotension and vasopressin release El-Sangary (1999). It could be also due to excessive production of urea by catabolism of body proteins in
toxic conditions **Coles (1986)**. Serum analysis of diarrheic calves showed significant decrease in serum glucose level and in level of total serum protein, while there was non significant decrease in levels of albumin, globulin and A/G ratio in compared to control. These findings are in agreement with those reported by [Ghanem, et al., (2012), Jimenez et al., (1993)]. The decrease in serum glucose level in the diseased animal as reported in table (2) may be due to copper deficiency (**Duncan et al., 1994**). The occurrence of hypoglycemia in diarrheic calves may be due to bacterial infection and may be attributed to lack of glucose absorption from damaged intestine, while reduction in the levels of serum total protein and albumin in diarrheic sheep could be attributed to the destructive effect of bacteria or bacterial toxin on the liver cells resulting in impaired synthesis of albumin or malabsorption from the intestinal tract as recorded by **Coles (1986)**.

Conclusions
In severely dehydrated calves with diarrhea the most impotent action must be done firstly is to correct electrolyte imbalance due to diarrhea. One of the most important factors for decreasing mortality rates associated with diarrhea in calves is parenteral and oral administration of appropriately formulated electrolyte solutions, which can correct the dehydration, acidemia, strong ion (metabolic) acidosis, and electrolyte imbalances, particularly hyperkalemia and hyponatremia. Inclusion of an alkalinizing agent is required to correct systemic metabolic acidosis. Oral electrolyte solutions containing acetate or propionate are preferred over solutions containing bicarbonate. Oral electrolyte solutions are indicated in any diarrheic calf that has at least a partially functional gastrointestinal tract (especially suckle reflex). Sodium bicarbonate solutions are indicated for use in the treatment of severe acidosis

References

