Title: NF-κB Decoy Polyplexes Decrease P-Glycoprotein-Mediated Multidrug Resistance in Colorectal Cancer Cells

Authors: N.H. Abd Ellah1,2, L. Taylor3, N. Ayres3, M.M. Elmahdy2, G.N. Fetih2, H.N. Jones4, E.A. Ibrahim2, G.M. Pauletti1

Source: Cancer Gene Therapy, 23 (5), 149-155 (2016), doi:10.1038/cgt.2016.17

Address: 1James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA,
2Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Arab Republic of Egypt,
3Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA,
4Division of General and Thoracic Surgery and Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA

Multidrug resistance (MDR), a major cause for chemotherapy failure, has been linked to upregulation of ATP-dependent membrane efflux systems that limit intracellular accumulation of cytotoxic anticancer agents. P-glycoprotein (P-gp) encoded by the human ABCB1 gene was the first efflux transporter identified to contribute to MDR. ABCB1 gene expression is correlated with constitutive activation of the NF-κB signaling pathway in tumor cells. The objective of this research is to modulate P-gp activity in colon cancer cells using NF-κB decoy oligodeoxynucleotides (ODNs) that are effectively delivered into the nucleus of colorectal cancer cells by self-assembling nonviral nanoparticles comprising the
novel poly[N-(2-hydroxypropyl)methacrylamide]-poly(N,N-dimethylaminoethylmethacrylate) diblock copolymer (pHPMA-b-pDMAEMA). Ethidium bromide intercalation and gel retardation assays demonstrated high DNA condensation capacity of pHPMA-b-pDMAEMA. Nanoparticles prepared with and without decoy ODNs did not significantly compromise cellular safety at N/P ratios ≤ 4. Transfection efficiency of pHPMA-b-pDMAEMA polyplexes (N/P = 4) in Caco-2 cells was comparable to TurboFect transfection standard, resulting in a 98% reduction in P-gp protein levels. As a pharmacodynamic consequence, intracellular accumulation of the P-gp substrate Rhodamine123 significantly increased by almost twofold. In conclusion, NF-κB ODN polyplexes fabricated with pHPMA-b-pDMAEMA polymer effectively reduced P-gp-mediated efflux activity in Caco-2 cells, suggesting successful interference with NF-κB-binding sites in the promoter region of the ABCB1 gene.