Acute behavioral and biochemical responses of sheep to S/C ivermectin injection

Usama T. Mahmoud1*, Nasser S. Abou Khalil2, Marwa S. A. El-Sayed1
1Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, Egypt
2Department of Medical Physiology, Faculty of Medicine, Assiut University, Egypt

Article Details: Received: 2018-07-05 | Accepted: 2018-10-09 | Available online: 2019-01-31
https://doi.org/10.15414/afz.2019.22.01.1-6
Licensed under a Creative Commons Attribution 4.0 International License

This study was designed to compare between the effects of subcutaneous injection of ivermectin at the left neck region versus behind the left elbow on the acute behavioural and biochemical responses of sheep, with the aim of selecting the most suitable injection strategy causing the least adverse effects on the animal health and welfare. Twenty-five sheep were assigned to 5 groups: one control group (C, without injection), and two groups injected with 0.9% NaCl either at neck (SN) or elbow (SE), and two groups injected with ivermectin (IVM) at a dose of 0.2 mg kg⁻¹ BW either at neck (IN) or elbow (IE). Results reflected that head shaking and neck scratching showed significant increases in the IN group, while standing was significantly lower in the IE group compared to the C group. Pawing was significantly higher in both SE and IE groups compared to the C group. Plasma levels of cortisol, glucose and lactate were significantly increased in both IN and IE groups. There were no obvious changes in the levels of other stress markers among the different treated groups. In conclusions, the magnitude of acute stress reactivity was not significantly different between IVM injections behind the elbow and at the neck region.

Keywords: Ivermectin, sheep, behaviour, biochemical

1 Introduction
Ivermectin is a member of the macrocyclic lactones widely used as a broad-spectrum drug against a wide range of endo- and ectoparasites in ruminant animals (Gokbulut et al., 2008; Jameel et al., 2014). It is commercially available in different formulations including injections, oral, and rumino-recticular and cutaneous delivery systems (Mestorino et al., 2003). Although previous studies showed that subcutaneous (S/C) injection is a more efficient route for this drug in terms of drug bioavailability, efficacy, and persistency compared to other routes of administration (Lespine et al., 2005; Gokbulut et al., 2007), its irritability at the site of injection represents a major concern (Bokisch and Walker, 1986).

Given that much attention has been paid to animal welfare, selection of injection site depending on the satisfaction of this demand is of utmost significance. However, it is well established that the preferred site for S/C injections in sheep is the skin just behind the elbow; In Egypt, the preference of S/C injection at the neck region over that behind the elbow is a common trend among veterinarians without a well-established scientific basis. Therefore, this investigation sheds light on the potential difference between S/C injections at the neck region versus behind the elbow manifested by modulations in acute behavioural patterns and stress endpoints measured as a reflection of animal welfare.

2 Material and methods
2.1 Experimental groups
This experiment was conducted in the Hospital of Veterinary Medicine, Assiut University, Assiut, Egypt. Twenty multiparous, non-pregnant and non-lactating adult ewes and five native Egyptian breed rams (Ovis aries) weighing (35–45 kg) and aged 3–5 years, were used in this experiment. The sheep were randomly assigned to five groups: each had 4 ewes and one ram]; namely, a control group (C, without injection), two saline groups (SN and SE) (injected with 0.9% NaCl) and two IVM groups (IN and IE) [IVM at a dose of 0.2 mg kg⁻¹ BW, 1% solution (Ivomec® injection Merk & Co. Inc., Rahway, NJ, USA)]. The injection was at the left neck region or behind the left elbow. The animals were penned individually for all ethological observations and collection of all data and samples.

*Corresponding Author: Usama. T. Mahmoud, Assiut University, Faculty of Veterinary Medicine, Department of Animal Hygiene, 71526, Assiut, Egypt, e-mail: usamakomsan5@gmail.com
2.2 Behavioural pattern recording

Before the time of injection, the animals were housed in a single large room. However, directly after the injection, each individual animal was held inside a small separate pen with visual and auditory contact with other sheep. Each group had five animals which were housed in five different pens and each animals pen was used as statistical unite. The behavioural activities of individual sheep were observed continuously throughout the first thirty minutes post-injection. The frequency of sheep behavioural patterns including standing, walking, pawing, biting fleece, head shaking and neck shaking were recorded and quantified as the number of occurrences of these behaviours. The frequency of a particular behaviour in a 30-minute session was calculated. The sheep were considered to be in a normal standing position if animal in a straight-back posture with the head raised higher than the level of the back line. A hunched back posture with the head lower than the highest level of the back was considered abnormal. Locomotion was recorded as normal, stiff walking and running. Pawing was registered when the sheep pawed at the ground. Biting fleece was presented at biting the sides of the body, back line and sometimes the upper part of the legs. Head shaking was noted as the period of violent shaking and nodding of the head. Neck scratching was defined as sudden scratching to neck skin with the hind leg (occasionally including head), or rubbing the neck against solid surrounding objects.

2.3 Biochemical indicators of stress

Blood samples (20 mL) were collected from each sheep via the jugular vein immediately after 30 minutes behavioural observation. The blood samples were transferred to sterile test tubes with an anticoagulant and allowed to set for about 30 minutes in the refrigerator (4 °C). Then, all blood samples were centrifuged at 3000 × g for 25 minutes. The plasma samples were transferred to plastic Eppendorf tubes and stored frozen at -83 °C until the analysis. Cortisol measurements were determined by enzyme-linked immunosorbent assay (ELISA) using commercially available kits (Immunospec Corporation, USA) according to the manufacturer’s instructions and protocol previously published (Watts and Tindall, 1988). Total cholesterol, triglycerides and lactate were estimated based on the published enzymatic colorimetric methods (McGowan et al., 1983; Young et al., 1975; Field et al., 1966) using various commercially available reagent kits (Egyptian Company for Biotechnology, Cairo, Egypt). Total protein was assessed based on the reaction of copper with the peptide bonds of proteins in alkaline medium to form a pink to purple biuret complex in which colour intensity is directly proportional to the protein concentration in the sample (Gornall et al., 1949). Urea was measured according to modified urease berthlot method (Shephard and Mazzachi, 1983) and creatinine and was analyzed by the colorimetric method with deproteinization (Bowers and Wong, 1980).

2.4 Statistical analysis

The data were represented as means ± standard error of the mean. The differences between groups were statistically analyzed by one-way analysis (ANOVA) of variance followed by Duncan posthoc after testing the data for normality using Anderson Darling test and for variance homogeneity to be sure that the data are normally distributed and variances would be homogenous using SPSS program version 16 (SPSS, Richmond, VA, USA). Behavioural data was log transformed before analysis because it was not normally distributed. Differences were considered statistically significant at \(P < 0.05 \).

3 Results and discussion

3.1 Behavioural changes

3.1.1 Mobility behaviours

The overall relationships between the sites of S/C injections and mobility behaviors, including standing and walking were presented in Figure 1. The results show that S/C injection of saline or IVM at the neck region or

<table>
<thead>
<tr>
<th>Table 1</th>
<th>The animal numbers, average body weight, and age of different experimental groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Group C</td>
</tr>
<tr>
<td>Ewe numbers</td>
<td>4</td>
</tr>
<tr>
<td>Rams number</td>
<td>1</td>
</tr>
<tr>
<td>Number of pens</td>
<td>5</td>
</tr>
<tr>
<td>Average body weight/kg</td>
<td>40.20 ±1.16</td>
</tr>
<tr>
<td>Age/years</td>
<td>3.80 ±0.37</td>
</tr>
</tbody>
</table>

C – control group; SN – group injected saline at the neck region; SE – group injected saline behind the elbow; IN – group injected ivermectin at the neck region; IE – group injected ivermectin behind the elbow.
behind elbow joint did not significantly \((P > 0.05)\) affect the walking activities. However, the results of standing activities show that S/C injection of IVM behind the elbow joint significantly \((P \leq 0.05)\) reduced the frequency of standing activities in sheep compared to the C group (Figure 1 and Table 2).

3.1.2 Head shaking and scratching the neck with hind legs

The results of the present study indicated that the neck scratching in the IN group was significantly \((P = 0.015)\) higher than the rest of other groups, whereas head shaking in this group was significantly \((P = 0.002)\) higher than that of the C group only (Figure 2 and Table 2).

3.1.3 Pawing and biting fleece

Results show that S/C injection of IVM or saline behind the elbow joint significantly \((P = 0.025)\) increased the pawing activities in comparison with the C group. However, the biting fleece activities have not been affected by the different treatments (Figure 3 and Table 2).

3.2 Biochemical changes

As shown in Table 3, plasma cortisol and glucose levels were significantly increased in the IN and IE groups when compared to the SN, SE and C groups. The SN and SE

![Figure 1](image1.png)

Figure 1 The frequency of standing and walking activities in the different experimental groups.

Results are represented in logs of sheep activities frequency/30 minutes [of five sheep per group \((n = 5)\)]

Different letters indicate a significant difference at \(P < 0.05\) (one-way ANOVA by Duncan posthoc)

C – control group; SN – group injected saline at the neck region; SE – group injected saline behind the elbow; IN – group injected ivermectin at the neck region; IE – group injected ivermectin behind the elbow

Table 2 The frequency (Log) of different behavioural patterns in different experimental groups

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Group</th>
<th>C</th>
<th>SN</th>
<th>SE</th>
<th>IN</th>
<th>IE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking</td>
<td></td>
<td>1.134</td>
<td>1.655</td>
<td>1.639</td>
<td>1.642</td>
<td>1.601</td>
</tr>
<tr>
<td>Standing</td>
<td></td>
<td>1.736(^a)</td>
<td>1.404(^{ab})</td>
<td>1.425(^{ab})</td>
<td>1.274(^{ab})</td>
<td>1.105(^b)</td>
</tr>
<tr>
<td>Scratching the neck</td>
<td></td>
<td>0(^b)</td>
<td>0.467(^b)</td>
<td>0.472(^b)</td>
<td>1.143(^a)</td>
<td>0.192(^b)</td>
</tr>
<tr>
<td>Pawing</td>
<td></td>
<td>0.320(^b)</td>
<td>1.028(^{ab})</td>
<td>1.088(^b)</td>
<td>0.585(^{ab})</td>
<td>1.325(^a)</td>
</tr>
<tr>
<td>Biting fleece</td>
<td></td>
<td>0.320</td>
<td>0.492</td>
<td>0.219</td>
<td>0.184</td>
<td>0.524</td>
</tr>
<tr>
<td>Head shaking</td>
<td></td>
<td>0 (^b)</td>
<td>0.455(^{ab})</td>
<td>0.351(^{ab})</td>
<td>0.959(^a)</td>
<td>0.287(^{ab})</td>
</tr>
</tbody>
</table>

Results are represented as means (logs) of sheep activities frequency/30 minutes [of five sheep per group \((n = 5)\)]. Different letters indicate a significant difference at \(P < 0.05\) (one-way ANOVA by Duncan posthoc)

C – control group; SN – group injected saline at the neck region; SE – group injected saline behind the elbow; IN – group injected ivermectin at the neck region; IE – group injected ivermectin behind the elbow

© Slovak University of Agriculture in Nitra

Faculty of Agrobiology and Food Resources
The levels of biochemical stress indicators in the plasma of different experimental groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group</th>
<th>SN</th>
<th>SE</th>
<th>IN</th>
<th>IE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisol (nmol/l)</td>
<td>C</td>
<td>97.32±4.17a</td>
<td>64.14±2.02b</td>
<td>65.66±2.34d</td>
<td>180.83±9.24a</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>C</td>
<td>3.55 ±0.11b</td>
<td>3.41 ±0.32a</td>
<td>3.86 ±0.24c</td>
<td>5.84 ±0.35a</td>
</tr>
<tr>
<td>Lactate (mmol/l)</td>
<td>C</td>
<td>5.40 ±0.27a</td>
<td>1.67 ±0.10c</td>
<td>1.49 ±0.25c</td>
<td>2.70 ±0.20b</td>
</tr>
<tr>
<td>Total protein (g/dl)</td>
<td>C</td>
<td>3.50 ±0.12a</td>
<td>2.08 ±0.07a</td>
<td>2.15 ±0.06a</td>
<td>3.66 ±0.10a</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>C</td>
<td>3.02 ±0.17a</td>
<td>4.03 ±0.73a</td>
<td>2.78 ±0.72a</td>
<td>3.70 ±0.27a</td>
</tr>
<tr>
<td>Triglyceride (mmol/l)</td>
<td>C</td>
<td>2.99 ±0.71a</td>
<td>3.38 ±0.52a</td>
<td>2.48 ±0.48a</td>
<td>2.58 ±0.34a</td>
</tr>
<tr>
<td>Urea (mmol/l)</td>
<td>C</td>
<td>5.41 ±0.15a</td>
<td>3.93 ±0.09a</td>
<td>4.17 ±0.32a</td>
<td>4.40 ±0.72a</td>
</tr>
<tr>
<td>Creatinine (mmol/l)</td>
<td>C</td>
<td>0.13 ±0.01a</td>
<td>0.98 ±0.01a</td>
<td>0.09 ±0.01a</td>
<td>0.09 ±0.01a</td>
</tr>
</tbody>
</table>

Results are represented as means ± SEM of five sheep per group (n = 5). Different letters indicate a significant difference at P < 0.05 (one-way ANOVA by Duncan posthoc).

C – control group; SN – group injected saline at the neck region; SE – group injected saline behind the elbow; IN – group injected ivermectin at the neck region; IE – group injected ivermectin behind the elbow.
augment cortisol secretion is compatible with a previous finding recorded in cow (Sadek and Shaheen, 2015) and could be attributed to pain-induced stimulation of the hypothalamic-pituitary-adrenal axis (Embí and Scherlag, 2014).

The hyperglycemia-associated IVM injection may be secondary to increased cortisol secretion during stress (Lakshmi and Sudhakar, 2010; Al-Qarawi, 2004). It is well known that cortisol inhibits insulin secretion through a genomic action in β cells, activates the key enzymes involved in hepatic gluconeogenesis, inhibits glucose uptake in peripheral tissues, and increases the gluogenic precursors as amino acids through muscle proteolysis (Lambilotte et al., 1997; Shupilbert et al., 2012; Dungan et al., 2009; Yoshioka et al., 2005; Larsen and Kristensen, 2013). In addition, epinephrine and norepinephrine may also contribute to the hyperglycemic status by enhancing glycolysis and gluconeogenesis. Moreover, stimulation of lipolysis by norepinephrine supplies glycerol which channels towards the gluconeogenic pathway (Marík et al., 2015). Contrary to these findings, Jin et al. (2013) reported that IVM displays antidiabetic activities in mice by reducing blood glucose and cholesterol levels, and also by improving insulin sensitivity in FXR dependent manner.

In contrast to previous data in the literature (Min et al., 2016; Tian et al., 2015), the marked hypocalcemia following S/C injection of either saline or IVM represents a major surprise in this study and explanation of this outcome needs more investigation.

Hypoproteinemia in the saline-injected groups reflected the obvious debilitating action of stress (Khazadíhe et al., 2014). The increase in the stress response-related hormones has adverse impacts on protein kinetics by inducing proteolysis (Paddon-Jones et al., 2006; Bessey and Lowe et al., 1993; Brillon et al., 1995). Owing to the increased protein turnover rate, greater inclusion of gluconogenic amino acids could provide another metabolic building block for the gluconeogenic process in the liver (Chevalier et al., 2006).

4 Conclusions

The findings of the current study suggested that site of S/C injection of IVM significantly affected the behavioral activities of the sheep, while there were no differences in the biochemical indicators of stress between S/C injections of IVM at the neck region or behind the elbow joint. However, further investigation is still required to give information about the chronic effect of S/C injection at the neck region and behind the elbow comparing between the behavioural and biochemical indicators of stress before and after injection in the same animal.

Acknowledgments

The authors are grateful to Prof. Dr. Heng-Wei Cheng and Prof. Dr. Donald C. Lay Jr, Professors of Animal Sciences, USDA-ARS Livestock Behavior Research Unit, Purdue University, and Dr. Suzan Kamel ElSayed, Associate Professor of Biomedical Sciences, Biomedical Sciences Department, Oakland University, William Beaumont School of Medicine, for revising the manuscript.

References

