Efrain M. Zaki*, Adel M. Kamal El-Dean, Shaban M. Radwan and Ahmed F. Saber


https://doi.org/10.1515/hc-2019-0004
Received July 11, 2018; accepted October 24, 2018.

Abstract: New pyrazolothienopyrimidines were synthesized. The key intermediate 4-aminothieno[2,3-c]pyrazole-5-carbonitrile 1 was converted to the chloroacetyl amino derivative 2 followed by nucleophilic substitution and Dimorth rearrangement upon treatment with nitrogen nucleophiles to give the pyrimidinones 3a-c. Treatment of 3a with formaldehyde and with triethyl orthoformate afforded the respective tetracyclic derivatives 4 and 5. Condensation of the amino group in the o-aminocarbonitrile 1 with triethyl orthoformate followed by cycloadition reaction with hydrazine led to the formation of pyrazolothienopyrimidine 8. Compound 8 was used as a synthetic precursor to heterocyclic compounds comprised of pyrazole, triazole, triazine, and triazepine derivatives.

Keywords: imidazolyl; pyrazolothienopyrimidine; triazine; triazolo; synthesis.

Introduction

Pyrazoles and their derivatives are an important class of heterocyclic compounds that exhibit a broad spectrum of biological activities [1-22]. Many thienopyrazoles [23-27] and thienopyrimidines [38, 39] also exhibit exceptional bioactivity [23-27]. In continuation of our work on synthesis of new bioactive compounds containing thienopyrazole moiety [40-44], several thienopyrazolopyrimidine derivatives not known previously were synthesized.

Results and Discussion

The synthetic work was initiated by chloroacetylation reaction of 4-amino-3-methyl-1-phenyl-1H-thieno[2,3-c]pyrazole-5-carbonitrile (1), which afforded the chloroacetamido derivative 2 (Scheme 1). Reaction of 2 with various primary aromatic amines furnished the unexpected pyrimidinones 3a-c in good yields. This reaction apparently proceeds by nucleophilic substitution of the chloride ion with the primary amino group followed by Dimorth rearrangement in the presence of excess of the amine [45]. IR spectrum of 3a reveals disappearance of absorption band for the CN group present in compound 2 and appearance of absorption bands at 3440 and 3188 cm⁻¹ that are characteristic for NH groups and absorption band at 1660 cm⁻¹ for the amidic CONH group of pyrimidine.

Treatment of the 5-(phenylaminomethyl)pyrimidinone 3a with formaldehyde in dioxane (Scheme 2) and the reaction with triethyl orthoformate afforded the respective tetracyclic pyrimidinones 4 and 5. Moreover, chlorination of the pyrimidinone 3a with phosphorus oxychloride furnished the chloropyrimidine 6. Both elemental and spectral analyses of compound 4-6 fully supported the assigned structures.

Condensation of o-aminocarbonitrile 1 with triethyl orthoformate in the presence of a catalytic amount of acetic anhydride produced compound 7 (Scheme 3). Stirring of 7 with an equivalent amount of hydrazine hydrate yielded iminopyrimidine derivative 8. This transformation is characterized by disappearance of absorption band at 2199 cm⁻¹ for CN group in compound 7 and appearance of absorption bands at 3439, 3286 and 3131 cm⁻¹ due to NH and NH₂ groups in product 8. ¹H NMR spectra show disappearance of triplet and quartet signals for the ethyl group in compound 7 and appearance of singlet signals at δ 5.80 and 8.19 characteristic of NHPh and NH pyrimidine groups.

Condensation of the amino-imino compound 8 with triethyl orthoformate produced the corresponding...
triazolopyrimidine 9 in an excellent yield, and dihydropyrazolopyrimidine 10 was obtained in low yield upon treatment of 8 with benzaldehyde.

An additional series of novel tetracyclic pyrimidines 11-14 were synthesized by condensation of the aminoimino derivative 8 with different 1,3-dicarbonyl compounds (Schemes 3 and 4). Thus, condensation of compound 8 with diethyl malonate afforded the ethyl triazolopyrimidinyl acetate 11, while condensation with acetyl acetone produced triazolopyrimidine 12 instead of the expected diazepine product. Assignments of compounds 9-12 were elucidated by analysis of TLC, FT-IR, ¹H NMR and ¹³C NMR data. IR spectrum of 11 lacks absorption bands of NH₂ and NH groups and shows a sharp absorption band at 1740 cm⁻¹ due to the ester. ¹H NMR spectrum exhibits triplet and quartet signals at δ 1.25 and 4.20 with a J value of 7 Hz attributed to the ethyl ester group. ¹³C NMR shows signals at 14.5 and 61.4 ppm for the ethyl group, in addition to the signal at 168.9 ppm for the ester carbonyl carbon as shown in Scheme 3.

Apparently, the mechanism of condensation of compound 8 with acetylacetone proceeds via cyclization of the imine with a retro-aldol type elimination of acetone. In a similar manner, condensation of 8 with ethyl acetoacetate and ethyl benzoylacetae afforded the corresponding
triazipinones 13 and 14 (Scheme 4). Surprisingly, the treatment of 8 with phenacyl bromide in refluxing ethanol in the presence of triethylamine yielded the 3,8-diphenyltriazine 15 rather than its 2,8-diphenyl isomer. Formation of 15 can be explained by condensation between NH₂ of the amino-imino 8 and carbonyl group of phenacyl bromide. The structure of compound 15 was confirmed on the basis of IR and ¹H NMR spectra.

Fusion of compound 8 with diethyl oxalate in the presence of acetic acid produced the corresponding triazinedione 17 in good yield. Triazolethione 18 was obtained upon heating of 8 with carbon disulfide in pyridine at 100°C. Both elemental and spectral analyses of the newly synthesized compounds 13-18 are in a full agreement with the postulated structures (Scheme 4).

Conclusions

Convenient and efficient methods for synthesis of novel pyrazolothienopyrimidines 3, 6 and 8 were described. These products were used as versatile starting materials for synthesis of new heterocyclic ring systems with imidazole, triazole, triazine and triazepine rings fused to a pyrazolothienopyrimidine moiety.

Experimental

All melting points are uncorrected. Elemental analyses were carried out at the Micro Analytical Center of Chemistry Department, Assiut University. The analysis for chlorine in compounds 2 and 6 was carried out by titration of chloride ion with mercuric nitrate solutions using a diphenylcarbazide indicator as reported [46, 47]. The FT-IR spectra were recorded using potassium bromide disks on a FT-IR 8201 PC Shimadzu instrument. ¹H NMR (300 MHz) and ¹³C NMR (75MHz) spectra were obtained on a Bruker spectrometer in CDCl₃ and DMSO-d₆ using Me₄Si as internal standard. All reactions were monitored by thin layer chromatography (TLC) on silica gel coated aluminum sheets. Compound 1 was synthesized according to the literature procedure [40, 41], mp 198-200°C.

2-Chloro-N-(5-cyano-3-methyl-1-phenyl-1H-thieno[2,3-c]pyrazol-4-yl)acetamide (2)

To a solution of o-amino-carbonitrile 1 (1.60 g, 6.29 mmol) in dioxane (25 mL), chloroacetyl chloride (0.80 mL, 10.0 mmol) was added, and the mixture was heated at 60-70°C for 2 h. After cooling and addition of diluted sodium
carbonate solution, the resultant precipitate was filtered, dried and crystallized from ethanol; pale yellow crystals; yield 1.50 g (72%); mp > 360 °C; IR: ν 3360, 2185, 1655 cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.61 (s, 3H, CH₃), 4.64 (s, 2H), 7.58-7.76 (m, 5H) and 8.96 (s, 1H). Anal. Calcd for C_{15}H_{11}ClN₄OS (330.79): C, 54.46; H, 3.35; Cl, 10.72; N, 16.94; S, 9.69. Found: C, 54.56; H, 3.41; Cl, 10.77; N, 16.86; S, 9.63.

3-Methyl-1-phenyl-5((alkylarylamino)methyl)-1H-pyrazolo[4',3':4,5]thieno[3,2-d]pyrimidin-7(6H)-ones 3a-c

A mixture of chloroacetamide 2 (0.50 g, 1.5 mmol) and the corresponding amine (2 mmol) was gently heated without solvent for 10 min and then treated with ethanol (10 mL). The mixture was heated under reflux for 3 h. The resultant precipitate was filtered off, dried and crystallized from the proper solvent.

4.2.1. 3-Methyl-1-phenyl-5((phenylamino)methyl)-1H-pyrazolo[4',3':4,5]thieno[3,2-d]pyrimidin-7(6H)-one (3a)

Obtained by the reaction with aniline; crystallized from dioxane as yellow needles; yield 0.47 g (80%); mp 250-252°C; IR: ν 3440, 3188 (NH), 1660 (CO) cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.61 (s, 3H, CH₃), 4.34 (s, 2H), 6.10 (s, 1H), 6.58-7.76 (m, 5H) and 8.96 (s, 1H). Anal. Calcd for C_{21}H_{17}N₅OS (330.79): C, 54.46; H, 3.35; Cl, 10.72; N, 16.94; S, 9.69. Found: C, 54.56; H, 3.41; Cl, 10.77; N, 16.86; S, 9.63.
(38746): C, 65.10; H, 4.42; N, 18.08; S, 8.27. Found: C, 65.22; H, 4.53; N, 17.96; S, 8.42.

3-Methyl-1-phenyl-5-[(p-tolylamino)methyl]-1H-pyrazolo[4',3'-4,5]thieno[3,2-d] pyrimidin-7(6H)-one (3b)

Obtained by the reaction with p-toluidine; crystallized from dioxane as brown crystals; yield 0.30 g (50%); mp 220-222°C; IR: v 3423, 3370, 1664 cm⁻¹; ¹H NMR (CDCl₃-d): δ 2.18 (s, 3H), 2.22 (s, 3H), 3.50 (s, 2H), 6.32 (s, 1H), 6.58-7.72 (m, 9H), 12.74 (s, 1H). Anal. Calcd for C₂₀H₁₈N₂OS (401.13): C, 65.82; H, 4.77; N, 17.44; S, 7.99. Found: C, 65.73; H, 4.83; N, 17.43; S, 7.88.

5-[(4-Methoxyphenyl)amino]methyl-3-methyl-1-phenyl-1H-pyrazolo[4',3'-4,5] thieno[3,2-d]pyrimidin-7(6H)-one (3c)

Obtained by the reaction with p-anisidine; crystallized from ethanol as brown crystals; yield 0.40 g (64%); mp 230-232°C; IR: v 3425, 3210, 1676 cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.60 (s, 3H), 3.61 (s, 3H, CH₃), 4.27 (s, 2H), 5.70 (s, 1H), 6.63-7.75 (m, 9H) and 12.69 (s, 1H). Anal. Calcd for C₁₉H₁₅N₂OS (417.49): C, 63.29; H, 4.59; N, 16.78; S, 7.68. Found: C, 63.33; H, 4.43; N, 16.73; S, 7.58.

3-Methyl-1,6-diphenyl-6,7-dihydro-1H-imidazo[1,5-a] pyrazolo[4',3'-4,5] thieno[3,2-d]pyrimidin-9(5H)-one (4)

Formaldehyde was added to a stirred solution of pyrimidinone 3a (3.00 g, 7.74 mmol) in dioxane (30 mL). Stirring of the mixture was continued for 2 h. The resultant solid product was filtered off, dried and crystallized from dioxane to afford white crystals; yield 2.23 g (65%); mp 298-300°C; IR: v 1670 cm⁻¹; ¹H NMR (CDCl₃): δ 1.48 (t, J = 7 Hz, 3H), 2.54 (s, 3H), 4.50 (q, J = 7 Hz, 2H), 5.00 (s, 2H), 6.71 (s, 1H), 7.33-8.10 (m, 10H); ¹C NMR (CDCl₃): δ 13.0, 57.4, 60.6, 109.5, 109.7, 113.6, 117.4, 118.0, 123.9, 126.7, 129.7, 130.4, 141.8, 157.4, 158.1, 158.6, 159.1, 159.6, 169.5. Anal. Calcd for C₂₅H₁₈N₂OS (443.53): C, 64.99; H, 4.77; N, 15.79; S, 7.23. Found: C, 64.88; H, 4.74; N, 15.72; S, 7.13.


A solution of pyrimidinone 3a (3.00 g, 7.74 mmol) in phosphorus oxychloride (30 mL) was heated under reflux for 2 h, then cooled and poured into an ice-water. The precipitate was filtered off, dried and crystallized from ethanol to give pale yellow crystals; yield 2.89 g (79%); mp 288-290°C; IR: ν 3423, 3370, 1664 cm⁻¹; ¹H NMR (CDCl₃-d): δ 2.81 (s, 3H), 4.73 (s, 2H), 6.90-7.80 (m, 10H) and 8.58 (s, 1H). Anal. Calcd for C₂₅H₁₈ClN₂OS (405.90): C, 62.14; H, 3.97; Cl, 8.73; N, 17.25; S, 7.90. Found: C, 62.18; H, 3.84; Cl, 8.70; N, 17.32; S, 7.83.

Ethyl N-[5-cyano-3-methyl-1-phenyl-1H-thieno[2,3-c] pyrazol-4-yl]formimidate (7)

A mixture of o-amino-carbonitrile 1 (3.00 g, 11.8 mmol), and triethyl orthoformate (6.00 mL, 361 mmol) in acetic acid (30 mL) was heated under reflux for 2 h. The resultant solid product was collected, dried and crystallized from ethanol as brown crystals; yield 2.80 g (79%); mp 80-82°C; IR: v 2199 cm⁻¹; ¹H NMR (CDCl₃): δ 1.50 (t, J = 7 Hz, 3H), 2.54 (s, 3H), 4.46 (q, J = 7 Hz, 2H), 7.33-7.70 (m, 5H) and 8.10 (s, 1H). Anal. Calcd for C₁₉H₁₄ClN₂O (310.38): C, 61.92; H, 4.55; N, 18.05; S, 10.33. Found: C, 61.88; H, 4.64; N, 18.12; S, 10.28.

6-Amino-7-imino-3-methyl-1-phenyl-1H-pyrazolo[4',3'-4,5]thieno[3,2-d]pyrimidine (8)

To a stirred solution of the formimidate 7 (2.96 g, 9.54 mmol) in warm dioxane (30 mL), hydrazine hydrate (0.80 mL, 16 mmol) was added dropwise during 5 min. Stirring of the mixture was continued for an additional 1h. The solid precipitate was filtered off, dried and crystallized from ethanol as white crystals; yield 2.40 g (85%); mp 220-222°C; IR: v 3439, 3286, 3131 cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.57 (s, 3H), 5.80 (s, 2H), 7.00 (s, 1H), 7.33-7.76 (m, 5H) and 8.19 (s, 1H). Anal. Calcd for C₂₅H₁₈N₂OS (296.35): C, 56.74; H, 4.08; N, 28.36; S, 10.82. Found: C, 56.70; H, 4.22; N, 28.42; S, 10.76.

A mixture of the aminomino pyrimidine 8 (0.70 g, 2.4 mmol) and triethyl orthoformate (5.00 mL, 30.1 mmol) and a catalytic amount of acetic acid (0.30 mL) was heated under reflux for 3 h at 120°C. The separated solid product was filtered off, dried and crystallized from dioxane as white crystals; yield 0.67 g (92%); mp 266-268°C; IR: ν 1740 cm⁻¹; H NMR (DMSO-d₆): δ 2.74 (s, 3H), 7.40-7.85 (m, 5H), 8.75 (s, 1H) and 9.91 (s, 1H). Anal. Calcd for C₅₈H₅₈N₅S (424.48): C, 58.15; H, 4.11; N, 21.36; S, 8.27.


A solution of pyrimidine 8 (0.70 g, 2.4 mmol), benzaldehyde (2.10 mL, 20.6 mmol) and a catalytic amount of piperidine (0.25 mL) was heated at 180°C for 10 min, then cooled, treated with absolute ethanol (20 mL) and heated under reflux for an additional 2h. The solid precipitate was filtered off and crystallized from acetic acid as white crystals; yield 0.29 g (38%); mp 300-302°C; IR: ν 3302 cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.67 (s, 3H), 4.13 (s, 1H), 5.24 (s, 1H), 7.38-7.86 (m, 10H) and 8.63 (s, 1H); ¹³C NMR (DMSO-d₆): δ 13.3, 85.9, 108.8, 119.7, 124.1, 125.7, 127.1, 128.9, 130.7, 131.4, 134.2, 138.1, 143.3, 143.4, 146.9, 160.3. Anal. Calcd for C₆₁H₅₈N₇S (384.12): C, 65.61; H, 4.19; N, 21.86; S, 8.34. Found: C, 65.76; H, 4.25; N, 21.92; S, 8.33.


A mixture of pyrimidine 8 (0.70 g, 2.4 mmol) and diethyl malonate (5.00 mL, 32.8 mmol) was heated at 120°C for 10 min, then treated with ethanol (20 mL) and heated under reflux for an additional 2h. The solid product that formed on cooling was collected, dried and crystallized from ethanol as pale brown crystals; yield 0.45 g (49%); mp 195°C; IR: ν 1715 cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.28 (s, 3H), 2.99 (s, 3H), 2.71 (s, 3H), 4.80 (s, 1H), 7.41-7.85 (m, 5H), 9.80 (s, 1H); ¹³C NMR (DMSO-d₆): δ 13.3, 14.5, 35.1, 61.4, 116.8, 117.0, 124.9, 129.6, 130.4, 138.5, 140.9, 141.5, 144.0, 148.7, 165.8, 168.9; Anal. Calcd for C₆₇H₅₉N₇OS (392.44): C, 58.15; H, 4.11; N, 21.42; S, 8.17. Found: C, 58.20; H, 4.07; N, 21.36; S, 8.27.


A mixture of pyrimidine 8 (0.70 g, 2.4 mmol) and acetylacetone (3.00 mL, 29.4 mmol) was gently heated for 15 min, then treated with ethanol (20 mL) and heated under reflux for an additional 3h. The solid product formed after cooling was filtered off and crystallized from dioxane as brown crystals; yield 0.38 g (50%); mp 180-182°C; IR: ν 1598 cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.57 (s, 3H), 2.99 (s, 3H), 7.40-7.85 (m, 5H) and 9.92 (s, 1H); MS (EI, 70 eV): m/z 320 (M⁺, 100%). Anal. Calcd for C₆₅H₅₈N₇S (320.37): C, 59.98; H, 3.78; N, 26.23; S, 10.01. Found: C, 59.95; H, 3.74; N, 26.11; S, 10.11.

4,9-Dimethyl-11-phenyl-11H-pyrazolo[4'',3'';4',5']thieno [3',2';4,5]pyrimido[1,6-b][1,2,4]triazepin-2(3H)-one (13)

A mixture of pyrimidine 8 (0.70 g, 2.4 mmol) and ethyl acetoacetate (2.00 mL, 15.7 mmol) was gently heated for 15 min, then treated with ethanol (20 mL) and heated under reflux for an additional 2h. The solid product which separated during reflux was collected, dried and crystallized from ethanol as brown crystals; yield 0.63 g (86%); mp 202°C; IR: ν 1715 cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.28 (s, 3H), 2.70 (s, 3H), 4.16 (s, 2H), 7.39-7.85 (m, 5H), 9.80 (s, 1H). Anal. Calcd for C₆₁H₅₈N₇OS (362.41): C, 59.66; H, 3.89; N, 23.19; S, 8.85. Found: C, 59.55; H, 3.75; N, 23.22; S, 8.77.

9-Methyl-2,11-diphenyl-11H-pyrazolo[4'',3'';4',5']thieno [3',2';4,5]pyrimido[1,6-b][1,2,4]triazepin-4(5H)-one (14)

A solution of pyrimidine 8 (0.74 g, 2.5 mmol), ethyl benzoylecetate (2.00 mL, 11.5 mmol) and a catalytic amount of piperidine (0.25 mL) was gently heated for 15 min, then treated with ethanol (20 mL) and heated under reflux for an additional 2h. The solid product that formed during reflux was filtered off and crystallized from ethanol as brown crystals; yield 0.36 g (42%); mp 190°C; IR: ν 3462 (NH), 1685 cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.71 (s, 3H), 4.80 (s, 1H), 7.41 (s, 1H), 7.56-8.13 (m, 10H) and 9.82 (s, 1H); ¹³C NMR (DMSO-d₆): δ 13.3, 98.3, 103.7, 110.2, 117.9, 126.8, 129.1, 129.3, 130.5, 134.1, 136.4, 137.2, 141.0, 145.0, 152.5, 160.1, 162.3, 167.5, 170.7; MS (EI, 70 eV): m/z 424 (M⁺, 100%). Anal. Calcd for C₆₅H₅₈N₇OS (424.48): C, 65.08; H, 3.80; N, 19.80; S, 7.55. Found: C, 65.20; H, 4.00; N, 19.62; S, 7.37.
8-Methyl-3,10-diphenyl-2,10-dihydropyrazolo[4'',3'':4',5']thieno[3',2'':4,5']pyrimido[1,6-b][1,2,4]triazine (15)

A mixture of compound 8 (0.74 g, 2.5 mmol) and phenacyl bromide (0.50 g, 2.5 mmol) and triethylamine (0.30 mL) in ethanol (20 mL) was heated under reflux for 6 h. The solid product that formed on cooling was filtered off, dried and crystallized from ethanol as white crystals; yield 0.68 g (33%); mp 286-288°C; IR: δ 2.60 (s, 2H), 2.79 (s, 3H), 7.53-8.21 (m, 10H) and 8.64 (s, 1H). Anal. Calcd for C_{26}H_{12}N_{2}S (396.47): C, 56.65; H, 4.07; N, 21.20; S, 8.09. Found: C, 56.58; H, 4.17; N, 21.22; S, 8.18.

8-Methyl-10-phenylpyrazolo[4'',3'':4',5']pyrimido[1,6-b][1,2,4]triazine-2,3(4H,10H)-dione (17)

A mixture of compound 8 (0.74 g, 2.5 mmol) and diethyl oxalate (0.40 mL, 2.9 mmol) in acetic acid (20 mL) was heated under reflux for 6 h. The solid product that formed on cooling was filtered off, dried and crystallized from ethanol as pale yellow crystals; yield 0.68 g (33%); mp 175-177°C; IR: δ 3375 (NH), 1700, 1661 cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.61 (s, 3H), 7.35-7.76 (m, 5H), 8.31 (s, 1H) and 12.83 (s, 1H); ¹³C NMR (DMSO-d₆): δ 13.3, 107.5, 117.9, 121.2, 125.6, 126.7, 130.5, 138.9, 142.8, 144.7, 148.7, 157.9, 160.1, 170.2. Anal. Calcd for C₁₈H₁₃N₂O₂S (350.36): C, 54.85; H, 2.88; N, 23.99; S, 9.15. Found: C, 54.98; H, 2.95; N, 24.20; S, 9.05.

7-Methyl-9-phenyl-9H-pyrazolo[4'',3'':4',5']thieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidine-2(3H)-thione (18)

A solution of compound 8 (0.74 g, 2.5 mmol) and carbon disulfide (2.00 mL, 33.1 mmol) in pyridine (10 mL) was heated under reflux for 8h. The solid product that separated out during reflux was filtered off, dried and crystallized from ethanol as yellow crystals; yield 0.28 g, (35%); mp 286-288°C; IR: δ 3447 , 1239 cm⁻¹; ¹H NMR (DMSO-d₆): δ 2.73 (s, 3H), 7.44-7.84 (m, 5H), 8.44 (s, 1H) and 9.88 (s, 1H). Anal. Calcd for C₁₈H₁₃N₂S₂ (338.41): C, 53.24; H, 2.98; N, 24.83; S, 18.95. Found: C, 53.27; H, 2.94; N, 24.75; S, 18.83.

Acknowledgements: The authors are grateful to Professor Kamal I. Aly, Chairman of Chemistry Department, for providing the chemistry facilities.

References

Efficient synthesis of antifungal pyrimidines via palladium derivatives.

Some novel pyrazol-3-ol derivatives as new inhibitors of bacterial cell wall biosynthesis.

2-Phenyl-5,6-dihydro-2H-pyrrol-1-yl)benzoic acid: synthesis, spectral characterization and biological applications.

Design and synthesis of some new 6-(2,5-dioxo-2,5-dihydro-1H-pyrryl-1-yl)benzoic Acid: synthesis, spectral characterization and biological applications.

Some new thiophene, thienopyrimidine and thienothiadiazine derivatives.

Biological activity and antipyrine-based heterocycles.

Antiparasitic activity of some synthesized benzodiazepine, triazolopyrimidine and bis-imide derivatives.

Synthesis, characterization and biological evaluation of dihydropyrimidine derivatives.

Some new thiophene, thienopyrimidine and thienothiadiazine derivatives.

Antimicrobial screening and free-radical scavenging activity of some novel substituted pyrazoles.

Synthesis, reactions and spectral characterization of novel pyrimidine-carbonitriles.

Antitumor activity of pyrazole-fused 23-hydroxybetulinic acid complexes of 4-(2,5-dioxo-2,5-dihydro-1H-pyrryl-1-yl)benzoic Acid: synthesis, spectral characterization and biological applications.

Antioxidant and antimicrobial activity.

Antipyrine-based heterocycles.

Antimicrobial and anti-inflammatory activities of some synthesized benzodiazepine, triazolopyrimidine and bis-imide derivatives.

Antimicrobial activity.

Biological evaluation of the newly synthesized agents.

Utility of bi-functional thiophene derivatives and antimicrobial evaluation of the newly synthesized agents.

Antimicrobial activity of some new 6-(2,5-dioxo-2,5-dihydro-1H-pyrryl-1-yl)benzoic Acid: synthesis, spectral characterization and biological applications.

Biological activity and antipyrine-based heterocycles.

Utility of bi-functional thiophene derivatives and antimicrobial evaluation of the newly synthesized agents.

Some new thiadiazole derivatives.

Antifungal screening of novel pyrimidine-carbonitriles.

Anticancer activity of some fused pyrimidines and related heterocycles.

Characterization and anti-breast cancer activity of new 4-amino antipyrine-based heterocycles.

Biological activity and antipyrine-based heterocycles.

Antimicrobial activity of some new 6-(2,5-dioxo-2,5-dihydro-1H-pyrryl-1-yl)benzoic Acid: synthesis, spectral characterization and biological applications.