Faculty of Commerce
Sta., Math., and Insurance Department

$1{ }^{\text {st }}$ Year English Section

Prepared By

Prof. Dr. Saiia Ahmed Abo Bakr
Professor of Insurance
Faculty of Commerce
Assiut University

2020/2021

State whether each of the following is true or false:

1) If both sides of an equation are multiplied by any constant, the roots of equation remain unchanged.
(F)
2) A quadratic equation is an equation of the form $a^{2+} b x+c$ $=0$, where a, b, and c are any constants.
(T)
3) The solution of the equation $x^{2}=4$ is given $x=2$. (T)
(F)
4) A linear equation always has only one root.
(F)
5) A quadratic equation always has two different roots.
(F)
6) It is possible for a linear equation to have no roots at all.
7) It is possible for a quadratic equation to have no roots at all.
(T)
(F)
(8-18) Choose the Letter that represents the value of x :
8) $3(2-x)+x=5(2 x-1)+2$
(A) $3 / 4$
(B) $4 / 3$
(C) $9 / 8$
9) $4(3 x-1)-3(2 x+1=1-7 x$
(A) 12
(B) 1
(C) $7 / 13$
10) $(3 x+1)^{2}-(3 x-1)^{2}=12 x+7$
(A) 0
(B) false statement
(C) 7
11) $\quad X^{2}+13 x+40=0$
(A) $(5,8)$
(B) $(-5,8)$
(C) $(4,10)$
12) $(2 x-1)^{2}=3 x^{2}+(x-1)(x-2)$
(A) (1)
(B) (-5)
(C) (5)
13) $\quad 5 x^{2}=13 x+6$
(A) $(3 / 5,2)$
(B) $(6 / 5,1)$
(C) $(-2 / 5,3)$
14) $\quad \mathbf{x} / \mathbf{p}+\mathbf{x} / \mathbf{q}+\mathbf{x} / \mathbf{r}=\mathbf{p q}+\mathbf{q r}+\mathbf{r p}$
(A) $\mathbf{p}+\mathbf{q}+\mathbf{r}$
(B) pqr
(C) 0
15)

$$
2^{x 2}=8 / 4^{x}
$$

(A) $(\mathbf{3}, \mathbf{1})$
(B) $(-3,1)$
(C) $(3,-1)$
16) $\sqrt{2 \mathrm{x}+5}=\mathrm{x}+1$
(A) (2)
(B) (± 2)
(C) (4)
17) $\sqrt{\mathrm{x}+5}=\mathrm{x}-1$
(A) $(-3,1)$
(B) (± 2)
(C) $(3,-1)$
18) $\quad 4^{x}=8^{3-x}$
(A) $(5 / 9)$
(B) (9)
(C) $(9 / 5)$
(19-21) Choose the Letter that solves the following equations for the indicated variables:
19) If $1 / x+1 / y=1 / z$, then $z=$
(A) $(x(1-x))$
(B) $(x \pm y)$
(C) (1)
20) If $1 / x+1 / y=1 / z$, then $x=$
(A) $(x(1-x))$
(B) $(1-y)$
(C) (1)
21) If $1 / x+1 / y=1 / z$, then $y=$
(A) $(x(1-x))$
(B) $(1-x)$
(C) (1)
(22-26) State whether each of the following is true or false:
22) A linear inequality in one variable has an infinite number of solutions.
(T)
23) When two sides of an inequality are multiplied by nonzero constant, the direction of the inequality is preserved.
(T)
24) If a negative number is subtracted from both sides of an inequality, the direction of inequality, must be reversed.
(T)
(F)
25) If $|x|=a$, then $x=a$ or $x=-a$ for all values of the constant a.
(F)
26) $\quad|x+y|=|x|+|y|$ if and only if x and y are of the same sign.
(27-30) Choose the Letter that solves the following inequalities:
27) $3(-x)+5>x-2(x-2)$.
(A) $(x>1 / 2)$
(B) $(x=1 / 2)$
(C) $(x<1 / 2)$
28) $(2 x+1)(x+2)>2(x+3)(x-1)$.
(A) $(x>4)$
(B) $(x=4)$
(C) $(x<-4)$
29) $(3 x-1 / 4)^{2}<9(x+1 / 2)^{2}$
(A) (T statement)
(B) (F statement)
(C) (0)
30) $(3 x-1)(x+2)>(3 x+2)(x+1)$
(A) $(x=0)$
(B) $(x=2)$
(C) (F statement)
31) $|3-4 x|<2$
(A) $(x>1 / 4, x<5 / 4)$
(B) $(x>4, x<-4)$
(C) $(x \leq 1 / 4)$
32) $|4 x-7| \geq 3$
(A) $(x \geq 5 / 2, x<1)$
(B) $(x>4, x<1)$
(C) $(x \leq 10 / 4)$
33) $9+|2 x-7| \leq 0$
(A) $(x \geq 5 / 2, x<1)$
(B) $(x \leq-1, x \geq-8)$
(C) $(x \leq-1)$
34) $|2 x-3|+|7+3 x|<0$
(A) $(x>5, x<-5)$
(B) $(x \leq 4, x \geq-4)$
(C) $(x<-5 / 4, x>-5 / 4)$
35) $|3 x-5|+|x-2| \geq 0$
(A) $(x \geq 7 / 4, x \leq 7 / 4)$
(B) $(x \leq 7, x \geq-7)$
(C) $(x<4 / 7, x>-4 / 7)$
(36-42) Choose the Letter that solves the following equation:
36) $|2 x-3|+7=4$
(A) (0.3)
(B) $(2,3)$
(C) $(0,-3)$
37) $|3 x+4|-2|x+2|=0$
(A) (0.3)
(B) $(8,4)$
(C) $(0,-8)$
38) $6 x^{2}+7 x+1=0$
(A) (-1/6. -1)
(B) $(\mathbf{1} / 6,1)$
(C) $(-6,-1)$
39) $2 x^{2}-x-2=0$
(A) (1. -2)
(B) $(-1,2)$
(C) $(1.261,-0.781)$
40) $\mathrm{x}^{4}-3 \mathrm{x}^{2}-7=0$
(A) $((3 \pm \sqrt{ }$
37)/2)
(B) (± 2.13)
(C) $(x=-7)$
41) $x^{2}-1.5 x+0.5$
(A) (no solution)
(B) 1.0.5)
(C) (1)
42) $\left|\mathrm{x}^{2}+2\right|=3 \mathrm{x}$
(A) (2.1)
(B) (2,1 or -2, -1)
(C) $(-2,-1)$
(43-52)Are the following statements true or false?
43) The following array of numbers represents a matrix:

$$
\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 1 & 3 \\
3 & 2 &
\end{array}\right)
$$

(A) (T)
(B) (F)
44) If $A\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$ and $B=\binom{b_{1}}{b_{2}}$
then, $A+B=a_{1}+a_{2} \quad b_{1}+b_{2}$
(A) (T)
(B) (F)
45) If A and B are two matrices of the same size, then.

$$
\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}
$$

(A) (T)
(B) (F)
46) The product $A B$ is defined only if the number of rows in A is equal to the number of columns in B.

$$
(\mathbf{A})(\mathbf{T})
$$

(B) (F)
47) If A and B are two matrices of the same size, then $A B$ and $B A$ are both defined.
(A) (T)
(B) (F)
48) I A is a matrix of any size and I is the identity matrix, then $\mathbf{A I}=\mathbf{I A}=\mathbf{A}$.
(A) (T)
(B) (F)
49) If A and B are two square matrices of the same size, then the size of $A B$ or $B A$ is the same as that of A or B.
(A) (T)
(B) (F)
50) If $A=A+B$, then B is a zero matrix.
(A) (T)
(B) (F)
51) If $A B=0$, then either A or B is a zero matrix.
(A) (T)
(B) (F)
52) If a system has the same number of equations as the number of variables, then the system has a unique solution.
(A) (T)
(B) (F)
(53-55) From past experience it knows that if charges p dollars per dozen eggs, the number soled per week will be x million dozens, where $p=2-x$, its total weekly revenue then be $R=x p=x(2-x)$ million dollars. The cost to industry of producing x million dozen eggs per week is given by $c=0.25+0.5 x$ million dollars. What price should the marketing board set for eggs to ensure a weekly profit of $\$ 0.25$ million?
53) Profit is equal to:
(A) (Revenue-Cost)
(B)(Selling Price per Unit)(C)
(Price per Unit)
54) Profit function is:
(A) $(x(2-x))$
(B) $(0.25-0.5 x)$
(c) $\left(x^{2}-1.5 x+0.5=0\right)$
55) Roots for x are:
(A) (-1. -0.5)
(B) (1. 0.5)
(c) $(2,1.5)$
56) If $A=\{2,4,6\}$, and $B=\{1,2,3,4,5,6,7,8\}$ define Aand B:
(A) (AUB)
(B) $(A \subset B)$
(C) $(A \cap B)$
57) If $A=\left\{x \mid x^{2}=1\right\}$ and $B=\{-1,+1\}$ then:
(A) (AUB)
(B) $(A \cap B)$
(c) $(A=B)$
58) $A=\left\{y \mid y^{2}-3 y+2=0\right\}$ and $\left.B=1,2\right\}$, then:
(A) (AuB)
(B) $(A \cap B)$
(c) $(A=B)$

59-) Use the symbol ∞ (infinity) and - ∞ (negative infinity) to describe inbounded intervals:
59) (a, ∞)
(A) $\{x \mid x \geq a\}$
(B) $\{\mathbf{x} \mid x>a\}$
(C) $\{\mathbf{x} \mid \mathrm{x}<\mathrm{a}\}$
60) $[a, \infty]$
(A) $\{x \mid x \geq a\}$
(B) $\{x \mid x>a\}$
(C) $\{\mathbf{x} \mid \mathrm{x}<\mathrm{a}\}$
61) $(-\infty, a)$
(A) $\{x \mid x \geq a\}$
(B) $\{\mathbf{x} \mid x>a\}$
(C) $\{\mathbf{x} \mid \mathrm{x}<\mathrm{a}\}$
(62-67) The following is a system equations:

$$
\begin{aligned}
& 3 x-2 y=4 \\
& x+3 y=5
\end{aligned}
$$

62) The augmented matrix in this case is:
(A) $\left(\begin{array}{ll|l}3 & -2 & 4 \\ 1 & 3 & 5\end{array}\right)$
(B) $\left(\begin{array}{cc|c}3 & 1 & 4 \\ -2 & 3 & 5\end{array}\right)$
(C) $\left(\begin{array}{cc|c}-2 & 3 & 5 \\ 3 & 1 & 4\end{array}\right)$
63) Interchange the first and second rows, we find:

$$
\begin{aligned}
& \text { (A) }\left(\begin{array}{ll|l}
3 & 1 & 4 \\
2 & 3 & 5
\end{array}\right) \\
& \text { (B) }\left(\begin{array}{ll|l}
1 & 3 & 5 \\
3 & -2 & 4
\end{array}\right)
\end{aligned}
$$

(C) $\left(\left.\begin{array}{rr}-2 & 3 \\ 3 & 1\end{array} \right\rvert\,\right.$ $\left.\begin{array}{l}5 \\ 4\end{array}\right)$
64) Add - $\mathbf{3}$ times the first row to the second row, we find:
(A) $\left(\begin{array}{ll|l}3 & 1 & 4 \\ 2 & 3 & 5\end{array}\right)$
(B) $\left(\begin{array}{cc|c}1 & 3 & 5 \\ 3 & -2 & 4\end{array}\right)$
(C) $\left(\begin{array}{rr|r}1 & 3 & 5 \\ 0 & -11 & -11\end{array}\right)$
65) Divide the second row by -11 , we finf:
(A) $\left[\begin{array}{lc|l}3 & 1 & 4 \\ 2 /-11 & 3 /-11 & 5 /-11\end{array}\right]$
(B) $\left(\begin{array}{ll|l}1 & 3 & 5 \\ 3 /-11 & 2 /-11 & 4 /-11\end{array}\right)$
(C) $\left(\begin{array}{ll|l}1 & 3 & 5 \\ 0 & 1 & 1\end{array}\right)$
66) The value of x is:
(A) (2)
(B) (1)
(C) (-2)
67) The value of y is:
(A) (2)
(B) (1)
(C) (-2)
(68-77: The following function (z) is revenue function where:
$Z=4 x+8 y$
Subject to:
$x+y \leq 20 \quad$ (Let the line to be (a-b) from left to right).
$2 x+y \leq 32 \quad$ (Let the line to be (c-d) from left to right).
(Let Point (h) is the intersection of a-b and c-d)

$$
x \geq 0, y \geq 0
$$

(Let Point (h) is the intersection of a-b and c-d, and Point 0 (0, 0))
68) The problem is:
(A) Revenue Min. problem
(B) Revenue Max. problem
(C) Cost Min. problem
69)The feasible area is:
(A) (Oahd)
(B) dhb)
(C) (ahc)
70)The feasible area according the first constraint is: 1
(A) (chb)
(B) (oahd)
(C) (oab)
71) The feasible area according the second constraint is:
(A) (chb)
(B) (oahd
(C) (ocd)
72) Point (h) is:
(A) $(8,12)$
(B) $(12,8)$
(C) $(12,-8)$
73) The optimal solution is:
(A) (112)
(B) (128)
(C) $(64$
74) If the first constraint becomes $x+y \geq 20$, the feasible area becomes:
(A) (ahc)
(B) (dhb)
(C) (chb)
75) If the second constraint becomes $2 x+y \geq 32$, the feasible area becomes:
(A) (ah)
(B) (dhb)
(C) (chb)
76) If z in the original problem is a cost function, the optimal solution will be:
(A) (64)
(B) (112)
(C) (0)
77) If z in the original problem is a cost function and both the constrains inequalities become \geq, the optimal solution will be:
(A) $(0,32)$
(B) $(12,8)$
(C) $(20,0)$
(78-87: Minimize $T=5 x+3 y$
Subject to:

$$
\begin{aligned}
& x+y \geq 60 \text { (Let the line to be (a-b) from left to right). } \\
& 2 x+y \leq 90 \text { (Let the line to be (c-d) from left to right). } \\
& x \geq 0, y \geq 0
\end{aligned}
$$

(Let Point (h) is the intersection of a-b and c-d, and Point $0(0,0)$)

$$
\mathbf{x} \geq 0, \mathrm{y} \geq 0
$$

Solve by graph method
78) Point (h) is:
(A) $(\mathbf{3 0},-30) \backslash$
(B) $(\mathbf{3 0}, \mathbf{3 0)}$
(C) $(45,0)$
79) The feasible area is:
(A) (Ahb)
(B) (cah)
(C) (ocd)
80) The feasible area according the first constraint is:
(A) (Ocd)
(B) (dhb)
(C) (oab
81) The feasible area according the second constraint is:
(A) (ocd)
(B) (dhb)
(C) (oab)
82) The optimal solution is:
(A) (d)
(B) (h)
(C) (o)
83) If the T function of original problem was profit function, the optimal solution will be:
(A) (d)
(B) (h)
(c) (b)
84) If the constraints become, $x+y \leq 60$ and $2 x+y \geq 90$, the optimal solution becomes:
(A) (Oahd)
(B) (dhb)
(C) (ach)
85) If both constraints inequalities become \geq, the optimal solution becomes:
(A) (Oahd)
(B) (Dhb)
(C) (chb)
86) If both constraints inequalities become \leq, the optimal solution becomes:
(A) (oahd)
(B) (dhb)
(c) (ach
87) If both constraints become equalities, the optimal solution becomes:
(A) (a)
(B) (h)
(C) (d)
(88-100) Given a sample space for the rolling of a die, let \mathbf{E}_{1} be the event that an even number turns up, let E_{2} be the event that an odd number turns up, so and let E_{3} be the event that the number turns up is less than 4.
88) $\mathbf{E}_{1} \mathbf{U} \mathbf{E}_{2}=$
(A) (A) $(\mathbf{1}, \mathbf{2}, \mathbf{3})$
(B) $(1.3,5)$
(C) $(1,2,3,4,5,6)$
89) $\mathbf{E}_{1} \mathbf{U} E_{3}=$
(A) $(1,2,3)$
(B) $(1,2.3,4,6)$
(C) $(1,2,3,4,5,6)$
90) $\mathbf{E}_{2} \mathbf{U} \mathbf{E}_{3}=$
(A) $(1,2,3)$
(B) $(\mathbf{1}, \mathbf{2} .3,5)$
(C) (1, 2, 3, 5,)
91) $\quad \mathbf{E}_{1} \cap \mathbf{E}_{2}=$
(A) (ϕ)
(B) $(1,2,3)$
(C) $(1,2.3,5)$
92) $\mathbf{E}_{1} \cap \mathbf{E}_{3}=$
(A) (2)
(B) $(1,2,3)$
(C) $(2,4)$
93) $\mathbf{E}_{2} \cap \mathbf{E}_{3}=$
(A) (2)
(B) $(1,2,3)$
(C) $(1,3)$
94)The probability of throwing a number greater than is:
(A) $(5,6)$
(B) $(4,5,6)$
(C) $(1,2.3)$
95)The probability of throwing at least two heads by tossing three fair coins is:
(A) (1/2)
(B) $(1 / 4)$
(C) (1/8)
(96-) Throwing two dice find the following: 96)a sum of 9 is:
(A) (1/9)
(B) $(1 / 4)$
(c) $(4 / 6)$
97)a sum of mor than 9 is:
(A) (1/9)
(B) $(1 / 4)$
(c) (1/6)
98)a sum of less than 9 is:
(A) $(1 / 9)$
(B) $(8 / 9)$
(c) $(1 / 6)$
99)a sum of less than 12 is:
(A) (1/9)
(B) $(35 / 36)$
(C) $(1 / 6)$
100) a sum of more than 12 is:
(A) $(1 / 9)$
(B) $(1 / 4)$
(C) (0)
(101-) Among a population in a certain city, $\mathbf{2 5 \%}$ (D) have a university degree (D), $\mathbf{1 5 \%}$ earn more than $\$ 25000$ per year (E), and 65% have no degree and earn less than $\$ 25000$ per year.
101) $P\left(D^{\prime}\right)$ equal:
(A) (0.25)
(B) (0.65)
(C) (9.75)
102) $P\left(E^{\prime}\right)$ equal:
(A) (0.85)
(B) (0.10)
(C) (9.75)
103) $P\left(E^{\prime} \cap D^{\prime}\right)$
(A) (0.25)
(B) (0.10)
(C) (9.75)
104) $P(E \cap D)$ equal:
(A) (0.05)
(B) (0.10)
(C) (9.75)
105) $P\left(E^{\prime} \cap D\right)$ equal:
(A) (0.25)
(B) (0.20)
(C) (9.75)

