

Faculty of Commerce Sta., Math., and Insurance Department

Exercises and Answers in Business Mathematics 1

1st Year English Section

Prepared By

Prof. Dr. Safia Ahmed Abo Bakr

Professor of Insurance Faculty of Commerce Assiut University

2020/2021

State whether each of the following is true or false:

1) If both sides of an equation are multiplied by any constant, the roots of equation remain unchanged.

- 2) A quadratic equation is an equation of the form ax²⁺ bx + c
 = 0, where a, b, and c are any constants.
 - (T) (F)
- 3) The solution of the equation x² = 4 is given x = 2.
 (T)
- 4) A linear equation always has only one root.
 - (T) (F)
- 5) A quadratic equation always has two different roots.
 - (T) (F)
- 6) It is possible for a linear equation to have no roots at all.
 - (T) (F)
- 7) It is possible for a quadratic equation to have no roots at all.
 (T) (F)

(8-18) Choose the Letter that represents the value of x:

8) 3(2 -	-x) + x = 5(2)	(2x-1)+2	
(A)	3/4	(B) 4/3	(C) 9/8
9) 4(3x	(-1) - 3(2x)	+1 = 1 - 7x	
(A)	12	(B) 1	(C) 7/13
10)	$(3x+1)^2$ –	$(3x-1)^2 = 12x + 7$	
(A)	0 (B) false statement	(C) 7
11)	$X^2 + 13x + 40 = 0$		
(A)	(5,8)	(B) (-5,8)	(C) (4,10)
12)	$(2x-1)^2 =$	$3x^2 + (x-1)(x-2)$	
(A)	(1)	(B) (-5)	(C) (5)
13)	$5x^2 = 13x -$	+ 6	
(A)	(3/5, 2)	(B) (6/5,1)	(C) (-2/5,3)
14)	x/p + x/q +	$+\mathbf{x}/\mathbf{r} = \mathbf{pq} + \mathbf{qr} + \mathbf{rp}$	

(A) p+q+r (B) pqr (C) 0

15)
$$2^{x^2} = 8/4^x$$

(A) (3,1) (B) (-3,1) (C) (3,-1)

- 16) $\sqrt{2x+5} = x+1$ (A) (2) (B) (± 2) (C) (4) 17) $\sqrt{x+5} = x-1$ (A) (-3,1) (B) (± 2) (C) (3,-1) 18) $4^{x} = 8^{3-x}$
 - (A) (5/9) (B) (9) (C) (9/5)
- (19-21) Choose the Letter that solves the following equations for the indicated variables:
 - **19)** If 1/x + 1/y = 1/z, then z =
 - (A) (x(1-x)) (B) (x+y) (C) (1)
 - 20) If 1/x + 1/y = 1/z, then x =
 - (A) (x(1-x)) (B) (1-y) (C) (1)
 - 21) If 1/x + 1/y = 1/z, then y =
 - (A) (x(1-x)) (B) (1-x) (C) (1)

(22-26) State whether each of the following is true or false:

- 22) A linear inequality in one variable has an infinite number of solutions.
 - (T) (F)
- 23) When two sides of an inequality are multiplied by nonzero constant, the direction of the inequality is preserved.
 - (T) (F)

24) If a negative number is subtracted from both sides of an inequality, the direction of inequality, must be reversed.

25) If |x| = a, then x = a or x = -a for all values of the constant a.

26) $|\mathbf{x} + \mathbf{y}| = |\mathbf{x}| + |\mathbf{y}|$ if and only if x and y are of the same sign.

(27-30) Choose the Letter that solves the following inequalities:

27)
$$3(-x) + 5 > x - 2(x - 2)$$
.
(A) $(x > 1/2)$ (B) $(x = 1/2)$ (C) $(x < 1/2)$

28)
$$(2x+1)(x+2) > 2(x+3)(x-1)$$
.
(A) $(x>4)$ (B) $(x=4)$ (C) $(x<-4)$

29) $(3x - \frac{1}{4})^2 < 9(x + \frac{1}{2})^2$

(A) (T statement) (B) (F statement) (C) (0)

30)
$$(3x - 1)(x + 2) > (3x + 2)(x + 1)$$

(A) $(x = 0)$ (B) $(x = 2)$ (C) (F statement)

$$\begin{array}{l} 31) \quad |3-4x| < 2 \\ (A) \ (x \ge 1/4, \ x < 5/4) \quad (B) \ (x \ge 4. \ x < -4) \quad (C) \ (x \le 1/4) \\ 32) \ |4x-7| \ge 3 \\ (A) \ (x \ge 5/2, \ x < 1) \quad (B) \ (x \ge 4. \ x < 1) \quad (C) \ (x \le 10/4) \\ 33) \ 9+|2x-7| \le 0 \\ (A) \ (x \ge 5/2, \ x < 1) \quad (B) \ (x \le -1, \ x \ge -8) \quad (C) \ (x \le -1) \\ 34) \ |2x-3| \ + | \ 7+3x| < 0 \\ (A) \ (x \ge 5, \ x < -5) \ (B) \ (x \le 4, \ x \ge -4) \ (C) \ (x < -5/4, \ x > -5/4) \\ 35) \ |3x-5| \ + | \ x-2| \ \ge 0 \end{array}$$

(A) $(x \ge 7/4, x \le 7/4)$ (B) $(x \le 7, x \ge -7)$ (C) (x < 4/7, x > -4/7)

- (36 42) Choose the Letter that solves the following equation: 36) | 2x – 3 | + 7 = 4
 - (A) (0.3) (B) (2,3) (C) (0,-3)
 - 37) |3x + 4| 2| x + 2| = 0(A) (0.3) (B) (8,4) (C) (0,-8)

 $38) \ 6x^2 + 7x + 1 = 0$

(A)
$$(-1/6, -1)$$
 (B) $(1/6, 1)$ (C) $(-6, -1)$

39) $2x^2 - x - 2 = 0$ (A) (1. -2) (B) (-1,2) (C) (1.261, -0.781)

40)
$$x^4 - 3x^2 - 7 = 0$$

(A) $((3 \pm \sqrt{37})/2)$ (B) (± 2.13) (C) $(x = -7)$
41) $x^2 - 1.5x + 0.5$
(A) (no solution) (B) 1.0.5) (C) (1)

42)
$$|x^2 + 2| = 3x$$

(A) (2.1) (B) (2,1 or -2, -1) (C) (-2, -1)

(43-52)Are the following statements true or false?

43) The following array of numbers represents a matrix:

$$\begin{pmatrix} 2 & 3 & 4 \\ 0 & 1 & 3 \\ 3 & 2 & \end{pmatrix}$$
 (A) (T) (B) (F)

44) If A $[a_1 \ a_2]$ and B = $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ then, A + B = $a_1 + a_2$ $b_1 + b_2$ (A) (T) (B) (F)

45) If A and B are two matrices of the same size, then.
A + B = B + A
(A) (T)
(B) (F)

- 46) The product AB is defined only if the number of rows in A is equal to the number of columns in B.
 - (A) (T) (B) (F)
 - 47) If A and B are two matrices of the same size, then AB and BA are both defined.

48) I A is a matrix of any size and I is the identity matrix, then AI = IA = A.

- 49) If A and B are two square matrices of the same size, then the size of AB or BA is the same as that of A or B.
 - (A) (T) (B) (F)
- 50) If A = A + B, then B is a zero matrix.
 - (A) (T) (B) (F)
- 51) If AB = 0, then either A or B is a zero matrix.
 - (A) (T) (B) (F)
- 52) If a system has the same number of equations as the number of variables, then the system has a unique solution.
 - $(\mathbf{A}) (\mathbf{T}) \tag{B} (\mathbf{F})$

- (53-55) From past experience it knows that if charges p dollars per dozen eggs, the number soled per week will be x million dozens, where p = 2 - x, its total weekly revenue then be R = xp = x(2 - x) million dollars. The cost to industry of producing x million dozen eggs per week is given by c = 0.25 + 0.5x million dollars. What price should the marketing board set for eggs to ensure a weekly profit of \$0.25 million?
 - 53) Profit is equal to:

```
(A) (Revenue–Cost)(B)(Selling Price per Unit)(C)(Price per Unit)
```

- 54) Profit function is: (A) (x(2-x))(B) (0.25 - 0.5x)(c) $(x^2 - 1.5x + 0.5 = 0)$
- 55) Roots for x are:

(A) (-1. -0.5) (B) (1. 0.5) (c) (2, 1.5)

- 56) If A = {2, 4, 6}, and B = {1, 2, 3, 4, 5, 6, 7, 8} define Aand B:
 - (A) (AUB) (B) (ACB) (C) (A \cap B)
- 57) If $A = \{ x | x^2 = 1 \}$ and $B = \{ -1, +1 \}$ then:
- (A) (AUB) (B) $(A \cap B)$ (c) (A=B)
- 58) $A = \{y | y^2 3y + 2 = 0\}$ and $B = 1, 2\}$, then:
 - (A) (AUB) (B) $(A \cap B)$ (c) (A=B)

59-) Use the symbol ∞ (infinity) and -∞ (negative infinity) to describe inbounded intervals:
59) (a, ∞)

(A)
$$\{x \mid x \ge a\}$$
 (B) $\{x \mid x \ge a\}$ (C) $\{x \mid x < a\}$

60) [**a**,∞]

(A)
$$\{x \mid x \ge a\}$$
 (B) $\{x \mid x \ge a\}$ (C) $\{x \mid x < a\}$

61) (-∞, **a**)

(A)
$$\{x \mid x \ge a\}$$
 (B) $\{x \mid x > a\}$ (C) $\{x \mid x < a\}$

(62-67) The following is a system equations:

$$3x - 2y = 4$$

$$\mathbf{x} + 3\mathbf{y} = -5$$

62) The augmented matrix in this case is:

$$\begin{array}{c|ccc}
(A) & 3 & -2 & | & 4 \\
1 & 3 & | & 5 \\
\end{array} \\
(B) & 3 & 1 & | & 4 \\
-2 & 3 & | & 5 \\
\end{array} \\
(C) & -2 & 3 & | & 5 \\
3 & 1 & | & 4 \\
\end{array}$$

63) Interchange the first and second rows, we find:

$$(A) \left(\begin{array}{ccc} 3 & 1 & | & 4 \\ 2 & 3 & | & 5 \end{array} \right)$$

$$(B) \left(\begin{array}{ccc} 1 & 3 & | & 5 \\ 3 & -2 & | & 4 \end{array} \right)$$

$$(C) \begin{bmatrix} -2 & 3 & | & 5 \\ 3 & 1 & | & 4 \end{bmatrix}$$

64) Add -3 times the first row to the second row, we find:

$$(A) \begin{pmatrix} 3 & 1 & | & 4 \\ 2 & 3 & | & 5 \end{pmatrix}$$
$$(B) \begin{pmatrix} 1 & 3 & | & 5 \\ 3 & -2 & | & 4 \end{pmatrix}$$
$$(C) \begin{pmatrix} 1 & 3 & | & 5 \\ 0 & -11 & | & -11 \end{pmatrix}$$

65) Divide the second row by -11, we finf:

$$(A) \left(\begin{array}{ccc|c} 3 & 1 & | & 4 \\ 2/-11 & 3/-11 & 5/-11 \end{array} \right)$$
$$(B) \left(\begin{array}{ccc|c} 1 & 3 & | & 5 \\ 3/-11 & 2/-11 & 4/-11 \end{array} \right)$$
$$(C) \left(\begin{array}{ccc|c} 1 & 3 & | & 5 \\ 0 & 1 & | & 1 \end{array} \right)$$

66) The value of x is:

67) The value of y is:

(68-77: The following function (z) is revenue function where:

Z = 4x + 8y

Subject to:

 $x + y \le 20$ (Let the line to be (a-b) from left to right).

 $2x + y \le 32$ (Let the line to be (c-d) from left to right).

(Let Point (h) is the intersection of a-b and c-d)

 $x \ge 0, y \ge 0$

(Let Point (h) is the intersection of a-b and c-d, and Point o (0, 0))

68) The problem is:

- (A) Revenue Min. problem
- (B) Revenue Max. problem
- (C) Cost Min. problem

69)The feasible area is:

(A) **(Oahd)** (B) dhb) (C) (ahc)

70)The feasible area according the first constraint is:

\

(A) (chb) (B) (oahd) (C) (oab)

71) The feasible area according the second constraint is:

(A) (chb) (B) (oahd (C) (ocd)

72) **Point (h) is:**

(A) (8, 12) (B) (12, 8) (C) (12, -8)

73) The optimal solution is:

(A) **(112)** (B) (128) (C) (64

- 74) If the first constraint becomes $x + y \ge 20$, the feasible area becomes:
 - (A) (ahc) (B) (dhb) (C) (chb)
- 75) If the second constraint becomes $2 x + y \ge 32$, the feasible area becomes:
 - (A) (ah) (B) (dhb) (C) (chb)
- 76) If z in the original problem is a cost function, the optimal solution will be:
 - (A) (64) (B) (112) (C) (0)
 - 77) If z in the original problem is a cost function and both the constrains inequalities become \geq , the optimal solution will be:
 - (A) (0, 32) (B) (12, 8) (C) (20, 0)

(78-87: Minimize T =5x + 3y

Subject to:

 $x + y \ge 60$ (Let the line to be (a-b) from left to right).

 $2x + y \le 90$ (Let the line to be (c-d) from left to right).

 $x \ge 0, y \ge 0$

(Let Point (h) is the intersection of a-b and c-d, and Point o (0, 0))

 $x \ge 0, y \ge 0$

Solve by graph method

(A) $(30, -30) \setminus (B) (30, 30)$ (C) (45, 0)

79) The feasible area is:

(A) (Ahb) (B) (cah) (C) (ocd)

80) The feasible area according the first constraint is:

- (A) (Ocd) (B) (dhb) (C) (oab
- 81) The feasible area according the second constraint is:

(A) (ocd) (B) (dhb) (C) (oab)

82) The optimal solution is:

(A) (d) (B) (h) (C) (o)

- 83) If the T function of original problem was profit function, the optimal solution will be:
 - (A) (d) (B) (h) (c) (b)
- 84) If the constraints become, $x + y \le 60$ and $2x + y \ge 90$, the optimal solution becomes:
 - (A) (Oahd) (B) (dhb) (C) (ach)
- 85) If both constraints inequalities become ≥, the optimal solution becomes:
 - (A) (Oahd) (B) (Dhb) (C) (chb)

- 86) If both constraints inequalities become ≤, the optimal solution becomes:
 - (A) (oahd) (B) (dhb) (c) (ach
- 87) If both constraints become equalities, the optimal solution becomes:
 - (A) (a) (B) (h) (C) (d)
- (88-100) Given a sample space for the rolling of a die, let E_1 be the event that an even number turns up, let E_2 be the event that an odd number turns up, so and let E_3 be the event that the number turns up is less than 4.

88) $E_1 U E_2 =$

(A) (A) (1, 2, 3) (B) (1.3, 5) (C) (1, 2, 3, 4, 5, 6)

89) $E_1 U E_3 =$

(A) (1, 2, 3) (B) (1, 2, 3, 4, 6) (C) (1, 2, 3, 4, 5, 6)

90) $E_2 U E_3 =$

(A) (1, 2, 3) (B) (1, 2, 3, 5) (C) (1, 2, 3, 5)

- 91) $E_1 \cap E_2 =$
 - (A) (ϕ) (B) (1, 2, 3) (C) (1, 2, 3, 5)
- 92) $E_1 \cap E_3 =$

(A) (2) (B) (1, 2, 3) (C) (2, 4)

- 93) $E_2 \cap E_3 =$
 - (A) (2) (B) (1, 2, 3) (C) (1, 3)

94) The probability of throwing a number greater than is:

- (A) (5, 6) (B) (4, 5, 6) (C) (1, 2, 3)
- 95)The probability of throwing at least two heads by tossing three fair coins is:
 - (A) (1/2) (B) (1/4) (C) (1/8)
- (96-) Throwing two dice find the following: 96)a sum of 9 is:

(A) (1/9) (B) (1/4) (c) (4/6)

97) a sum of mor than 9 is:

(A) (1/9) (B) (1/4) (c) (1/6)

98) a sum of less than 9 is:

(A) (1/9) (B) (8/9) (c) (1/6)

99) a sum of less than 12 is:

(A) (1/9) (B) (35/36) (C) (1/6)

100) a sum of more than 12 is:

(A) (1/9) (B) (1/4) (C) (0)

(101-) Among a population in a certain city, 25% (D) have a university degree (D), 15% earn more than \$25000 per year (E), and 65% have no degree and earn less than \$25000 per year.

101) P(D') equal:		
(A) (0.25)	(B) (0.65)	(C) (9.75)
102) P(E') equal:		
(A) (0.85)	(B) (0.10)	(C) (9.75)
103) P(E'∩D')		
(A) (0.25)	(B) (0.10)	(C) (9.75)
104) P(E ∩ D) equ	ıal:	
(A) (0.05)	(B) (0.10)	(C) (9.75)

105) P(E' \cap D) equal:

01) D(D()

1

(A) (0.25)	(B) (0.20)	(C) (9.75)
(A) (U.25)	(B) (0.20)	(U) (9.