Choose the best answer from a, b, c, d

The following worksheet gives the result for using the solver in Excel to solve a Linear Programming problem and the Solver box which was used to solve this problem. The following cells are computed by the formulas

\[

\]

The objective function aim (maximize or minimize) was unknown but the equation for the objective function was given by

$$
225 X+200 Y
$$

The optimal decision variables solution was 125 and 25 respectively. Unfortunately, we lost some cells values in the EXCEL sheet result. We replaced it with (?).

-	A	B	C	D
1		X	Y	RHS
2	1st cons	0	1	25
3	2nd con	1	0	40
4	3rd con	1	1	150
5	PROFI		?	
6				
7		?	?	
8		?		
9		?		?
10		?		?
11		?		?

Use the above information to answer questions $\mathrm{q} 1: \mathrm{q} 17$

1) The objective function will be
a) maximize
b) minimize
c) equals
d) none of the above
2) The value in $B 5$ is
a) 200
b) 225
c) 0
d) None of the above
3) The value in C 7 is
a) 25
150
b) 125
c) None of the above
4) The objective function value will be in the cell
a) B 7
b) B 8
c) C 7
d) None of the above
5) The value in cell B 8 is
a) 14000
b) 33125
c) 31000
d) None of the above
6) The value in cell B10 is
a) 40
b) 125
c) 85
d) None of the above
7) The value in cell D11 is
a) 25
b) 40
c) 0
d) 150
8) The value in B 7 is
a) 0
b) 25
c) 125
d) None of the above
9) 150 is the value in cell
a) D 4
c) D 11
b) B11
d) All of the above
10) The value in cell D 2 is
a) 1
c) 0
b) 25
d) None of the above
11) The total profit for Y only is
a) 33125
b) 5000
c) 200
d) Cannot determine
12) The name of the excel file is
a) Solver Parameters
b) ABC
c) MAX
d) Cannot determine
13) The inequality in the first constrain is
a) \geq
b) \leq
c) \neq
d) $=$
14) The inequality in the second constrain is
a) \geq
b) \leq
c) \neq
d) $=$
15) The inequality in the third constrain is
a) \geq
b) \leq
c) $=$
d) We don't have a third constrain
16) This linear Programming problem has number of constraints equals
a) 1
b) 2
c) 3
d) 7
17) The inequality $X, Y \geq 0$ is
a) A component of thisLP
b) Not a component of this LP
c) Not applicable for this LP
d) Nonlinear constrain

18) The table name in this database is
a) Table
b) CLIENTS FOR ASSC
c) MS Access
d) None of the above
19) The primary key field is
a) Serial
b) Number
c) CLIENT NUMBER
d) NAME
20) The data type of the field INVESTMENT is
a) Number
b) Text
c) Currency
d) All of the above
21) The data type of the field TOTAL SALES is
a) Currency
b) Text
c) Number
d) None of the above
22) The number of the fields is
a) 7
b) 8
c) 14
d) None of the above
23) The number of records is
a) 7
b) 8
c) 14
d) None of the above
24) The company with serial 5 have an investment
a) 1677
b) 69744
c) 124616
d) None of the above

Consider the following query for q25: q29

25) This query result will contain number of fields equals
a) 3
b) 14
c) 1
d) None of the above
26) The first field in this query is
a) SERIAL
b) TOTAL SALES
c) NAME
d) None of the above
27) The result of this query will contain number of records
a) 1
b) 3
c) 2
d) None of the above
28) One of the names in this query result is
a) TILEGRAM
b) AIS
c) SAMA
d) None of the above
29) One of the fields of this query result will contains
a) TILEGRAM
b) $124616 \$$
c) 8
d) All of the above

Consider the following query for q30:q32

30) The result of this query will containnumber of fields
a) 3
b) 1
c) 4
d) None of the above
31) One of theresults of this query contains a serial variable value
a) 1
b) 5
c) 10
d) None of the above
32) The result of this query will contain number of records
a) 3
b) 5
c) 8
d) None of the above
33) For spread sheet columns identified with
a) numbers
b) alphabetic
c) mixture between alphabetic and numbers

Consider the following function for q34: q37
$=\underline{\operatorname{IF}}(\mathrm{A} 2<60, " \mathrm{~F}$ ", IF $(\mathrm{A} 2<65$, "D", $\underline{\operatorname{IF}(\mathrm{A} 2<80, " \mathrm{C} ", \underline{\mathrm{IF}}(\mathrm{A} 2<95, " \mathrm{~B} ", " \mathrm{~A} ")))) ~}$
34) For $A 2=60$ the result of the function is
a) F
b) D
c) C
d) None of the above
35) For $A 2=85$ the result of the function is
a) F
b) 85
c) B
d) A
36) For $\mathrm{A} 2=99$ the result of the function is
a) A
b) B
c) C
d) 99
37) For $\mathrm{A} 1=80$ the result of the function is
a) B
b) C
c) F
d) None of the above
38) The result ofthe function $=\operatorname{IF}(9 / 3<>3,4,5)$ is
a) 3
b) 4
c) 5
d) None of the above
39) Use the sum-of-years' digits depreciation method to calculate the depreciation of an asset in the second year given that it costs $\$ 10,000$ at the start of year 1 and has a salvage
value of $\$ 1,000$ after 5 years.
a) $=\operatorname{SYD}(10000,1000,5,2)$
b) $=\operatorname{SYD}(10000,1000,5,3)$
c) $=\operatorname{SLN}(10000,1000,5 * 12,2)$
d) $=\operatorname{SLN}\left(10000,1000,5^{*} 12,3\right)$
40) calculate the yearly depreciation of assets with initial cost $=\$ 10,000$; salvage $=\$ 1,000$; lifetime $=10$ years using straight line method.
a) $\operatorname{DDB}(10000,1000,5)$
b) $=\operatorname{SLN}(10000,1000,10)$
c) $\operatorname{DDB}(1000,10000,5)$
d) $=\operatorname{SLN}(10000,1000,5)$
41) How much do you have after you put 1000 pounds for two years in a savings account that pays compound interest at a rate of 9% per annum?
a) $=\mathrm{FV}(9 \% / 2,4,0,1000)$
b) $=\mathrm{FV}(9 \%, 2,0,1000)$
c) $=\mathrm{PV}(9 \% / 2,4,0,1000)$
d) None of the above
42) Suppose that a capital of 500 dollars earns 150 dollars of interest in 6 years. What was the interest rate?
a) $=$ RATE $(6,0,500,150)$
b) $=$ RATE $(6,0,500,-150)$
c) $=\operatorname{RATE}(6,0,500,-650)$
d) $=$ RATE $(6,0,500,650)$
43) How long does it take to double your capital if you put it in an account paying compound interest at a rate of 7.5% ?
a) $=\operatorname{NPER}(7.5 \%, 0,-1,2)$
b) $=\operatorname{NPER}(7.5 \%, 0,1,2)$
c) $=\operatorname{NPER}(7.5 \%, 0,-1,20)$
d) None of the above
44) How much do you need to invest now to get $£ 2000$ after five years if the rate of interest is 4.25% ?
a) $=P V(4.25,5,0,2000)$
b) $=F V(4.25,5,0,2000)$
c) $=P V(4.25 \%, 5,0,2000)$
d) $=\mathrm{FV}(4.25 \%, 5,0,2000)$
45) Suppose that you save $\$ 1000$ in an account that pays 2% interest every quarter. How much do you have in one year, if the interest is paid in the same account?
a) $=\mathrm{PV}(2 \%, 4,0,1000)$
b) $=F V(2 \%, 4,0,1000)$
c) $=P V(2 \%, 1,0,1000)$
d) $=\mathrm{FV}(2 \%, 1,0,1000)$
46) At the end of every year, you put $\$ 100$ in a savings account which pays 5% interest. You do this for eight years. How much do you have at the end?
a) $=\mathrm{FV}(5 \%, 8,100)$
b) $=\mathrm{PV}(5 \%, 8,100)$
c) $=\mathrm{FV}(5 \%, 1,800)$
d) $=P V(5 \%, 1,800)$
47) A loan of $\$ 2500$ at a rate of 6.5% is paid o \square in ten years, by paying ten equal installments at the end of every year. How much is each installment?
a) $=$ PMT $(6.5 \% / 4,10,2500)$
b) $=$ PMT $(6.5 \%, 10,2500)$
c) $=\operatorname{PPMT}(6.5 \% / 4,10,2500)$
d) $=$ PPMT $(6.5 \%, 10,2500)$
48) A loan of $£ 5000$ is repaid by 15 annual payments of $£ 500$, with the first payment due
in a year. What is the interest rate?
a) $=\operatorname{RATE}(15,500,-5000,0)$
b) $=$ RATE $(15,500,-5000,1)$
c) $=\operatorname{RATE}(15,500,-5000,0)$
d) $=$ RATE $(15,500,5000,1)$
49) Consider an annuity of payments of $£ 1000$ at the end of every second year. What is the present value of this annuity if it runs for ten years and the interest rate is 7% ?
a) $=P V(7 \% * 2,5,1000,0,0)$
b) $=P V(7 \% * 2,10,1000,0,0)$
c) $=P V(7 \%, 5,1000,0,0)$
d) $=P V(7 \%, 10,1000,0,0)$
50) A mortgage of $£ 120,000$ is repaid over 20 years by equal monthly payments. How much is every payment on the basis of an e \square ective interest rate of 5.89% p.a.?
a) $=$ PMT $(5.89 \%, 20,120000)$
b) =PMT ($5.89 \% / 12,20 * 12,120000)$
c) $=\mathrm{PV}(5.8 \% / 12,20 * 12,120000)$
d) None of the above
51) Suppose that it takes the contractor nine months to build the house. When it is finished, he sells it for $£ 75,000$. The net cash flow is as given in the following table.

time	payments
At the beginning	-15000
First month	-30000
A quarter of a year	-25000
At the end	+75000

What is the function to compute the present value of this project. Use interest rate 6%
a) $=\operatorname{NPV}(6 \%,-15000,-30000,0,-25000,0,0,0,0,0,75000)$
b) $=\operatorname{NPV}(6 \%,-15000,-30000,-25000,75000)$
c) $=\operatorname{NPV}(6 \% / 12,-15000,-30000,0,-25000,0,0,0,0,0,75000)$
d) $=\operatorname{NPV}(6 \% / 12,-15000,-30000,-25000,75000)$
52) To find the quarterly payments into an investment with current value $\$ 0$, which is required to reach $\$ 5,000$ over 2 yrs . The interest rate is 3.5% per year (payment made at start of each quarter):
a) $=\operatorname{PPMT}\left(3.5 \% / 4,2^{*} 12,0,5000\right)$
b) $=\operatorname{IPMT}\left(3.5 \% / 12,2^{*} 12,0,5000,1\right)$
c) $=\operatorname{PMT}(3.5 \% / 4,2 * 4,0,5000,1)$
d) $=\operatorname{PMT}(3.5 \% / 12,2 * 12,0,5000,1)$
53) The sum of the values in the range B1:E1 is given by
a) $=\mathrm{B} 1+\mathrm{C} 1+\mathrm{D} 1+\mathrm{E} 1$
b) $=\operatorname{SUM}(\mathrm{B} 1: E 1)$
c) $=\operatorname{SUM}(\mathrm{B} 1: \mathrm{C} 1)+\mathrm{SUM}(\mathrm{D} 1: \mathrm{E} 1)$
d) All of the above
54) The formula $=$ ROUNDDOWN $(9.9999,-2)$ equals
a) 10
b) 0
c) 9.99
d) None of the above
55) The result for the formula $=\operatorname{ROUNDUP}(-11.111,1)$
a) -11.0
b) -11.1
c) -11.2
d) None of the above
56) The formula $=\operatorname{POWER}(8,(1 / 3))$ is
a) $=\operatorname{SQRT}(4)$
b) $=2$
c) $=4^{\wedge} 0.5$
d) All of the above
57) The range A5:D7 contains number of cells equal ...
a) 9
b) 12
c) 6
d) None of the above
58) The cell $\mathrm{C} 5=\mathrm{A} 3 / \mathrm{B} 5 \$$ was copied to cell D 7 . The cell D 7 formula will be as
a) $=\mathrm{A} 3 / \mathrm{B} \$ 5$
b) $=\mathrm{B} 5 / \mathrm{C} \$ 5$
c) $=\mathrm{B} 5 / \mathrm{C} \$ 6$
d) None of the above
59) The formula= $\operatorname{ABS}(-1 *(2-4.5))$ result is
a) -2.5
b) 2.5
c) -1
d) 1
60) $=$ PRODUCT $(5,6)$ gives the following result
a) 11
b) 56
c) 30
d) 15625

