Faculty of Commerce
Sta., Math., and Insurance Department

Questions and Answers

$4^{\text {th }}$ Year English Section
Prepared By

Prof. Dr. Safia Ahmed Abo Bakr
Professor of Insurance
Faculty of Commerce
Assiut University

1- Linear Programming

A-Graph Solution

Questions 1-10: The following function (z) is revenue function where:

$$
Z=4 x+8 y
$$

Subject to:

$$
\begin{array}{rr}
x+y \leq 20 & \text { (Let the line to be (a-b) from left to right). } \\
2 x+y \leq 32 & \text { (Let the line to be (c-d) from left to right). } \\
& \text { (Let Point (h) is the intersection of a-b and c-d) } \\
x \geq 0, y \geq 0
\end{array}
$$

(Let Point (h) is the intersection of a-b and c-d, and Point $\mathbf{o}(\mathbf{0}, \mathbf{0})$)
1- The problem is:
A- Revenue Min. problem
B- Revenue Max. problem
C- Cost Min. problem
D- Cost Max. problem
2- The feasible area is:
A- oahd
B- dhb
C- ahc
D- ocd
3- The feasible area according the first constraint is:
A- chb
B- oahd
C- oab
D- ocd
4- The feasible area according the second constraint is:
A- chb
B- oahd
C- oab
D- ocd

5- Point (h) is:
A- $(8,12)$
B- $(12,8)$
C- $(12,-8)$
D- $(-12,-8)$

6- The optimal solution is:
A- 112
B- 128
C- 64
D- 160

7- If the first constraint becomes $x+y \geq 20$, the feasible area becomes:
A-ahe
B- dhb
C- chb
D- oahd

8- If the second constraint becomes $2 x+y \geq 32$, the feasible area Becomes:
A- ahc
B- dhb
C- chb
D- oahd

9- If z in the original problem is a cost function, the optimal solution will be:
A- 64
B- 112
C- 128
D- 0

10- If z in the original problem is a cost function and both the constrains inequalities become \geq, the optimal solution will be:
A- $(0,32)$
B- $(12,8)$
C- $(20,0)$
D- $(0,20)$

Questions 11-20: Minimize $T=5 x+3 y$

Subject to:
$x+y \geq 60 \quad$ (Let the line to be (a-b) from left to right).
$2 \mathrm{x}+\mathrm{y} \leq \mathbf{9 0} \quad$ (Let the line to be (c-d) from left to right).
$\mathrm{x} \geq 0, \mathrm{y} \geq 0$
(Let Point (h) is the intersection of a-b and c-d, and Point $0(0,0)$)
$\mathrm{x} \geq 0, \mathrm{y} \geq 0$
Solve by graph method
11- Point (h) is:
A- $(\mathbf{3 0}, \mathbf{- 3 0})$
B- $(\mathbf{3 0 , 3 0})$
C- $(45,0)$
D- 0, 45)

12- The feasible area is:
A- ahb
B- cah
C- ocd
D- oab

13- The feasible area according the first constraint is:
A- ocd
B- dhb
C- oab
D- ahc

14- The feasible area according the second constraint is:
A- ocd
B- dhb
C- oab
D- ahc

15- The optimal solution is:
A-d
B-h
C-b
D- 0

16- If the T function of original problem was profit function, the optimal solution will be:

A-d
B- h
C-b
D- 0

17- If the constraints become, $x+y \leq 60$ and $2 x+y \geq 90$, the optimal solution becomes:

A- oahd
B- dhb
C- ach
D- ahb

18- If both constraints inequalities become \geq, the optimal solution becomes:

A- Oahd
B- Dhb
C- Ach
D- chb

19- If both constraints inequalities become \leq, the optimal solution becomes:

A- oahd
B- dhb
C- ach
D- chb

20- If both constraints become equalities, the optimal solution becomes:

A-a
B- h
C- d
D-b

B-Semplix

Questions 21-30: El Amal Company produces two products A and B, suppose that the size units of A are x units and the size units of B are y units the following table represents the industrial resources:

Department	Time required per unit		Available Time
	A	B	
1	4	6	3000
2	6	4	3000
3	2	2	6000
Profit per unit	40	10	

21- The solution of the above problem is:
I. To find the value of \mathbf{x}.
II. To find the value of y.
III. To find the values of both x and y.
IV. To find the values of x and y and determine the optimal value of profit.

22- The above problem is:
A- Cost minimization.
B- Profit maximization.
C- Units x maximization.
D- Units y minimization.

23- The objective function is:
A- $40 x+10 y$
B- $\mathbf{4 x}+6 y$
C- $6 x+4 y$
D- $2 x+2 y$

24- The first constraint is:
A- $40 x+10 y \geq 0$
B- $4 x+6 y \leq 3000$
C- $6 x+4 y \geq 3000$
D- $4 x+6 y \geq 3000$

25- The second constraint is:
A- $40 x+10 y \geq 0$
B- $4 x+6 y \leq 3000$
C- $\mathbf{6 x}+4 \mathrm{y} \leq 3000$
D- $4 x+6 y \geq 3000$

26- The third constrain is:
A- $2 x+2 y \geq 6000$
B- $\mathbf{4 x}+\mathbf{6 y} \leq 3000$
C- $6 x+4 y \geq 3000$
D- $2 x+2 y \leq 6000$

27- According to the initial (first) table the pivot column is:
A-x Column,
B- y column.
C-1, 0,0 .
D- 0, 1, 0 .

28- According to the initial (first) table the pivot row is:
A-4, 6, 2
B-2, 2, 0, 0.1 .
C-6, 4, 0, 1, 0 .
D- 0, 1, 0 .

29- According to the initial (first) table the pivot number is: A- 6

B- 4
C- 1
D- 0

30- According to the second table, the value of the profit is: A- 40

B- 0
C- 20000
D- 80/3

C-Dual Problem

Questions 31-35 El Amal Company produces two products A and B, suppose that the size units of A are x and the size units of B are y the following table represents the industrial resources:

Department	Material required per unit		Minimum row material required
	x	y	30
1	4	6	60
2	6	4	
Cost per unit	40	10	

31- The objective function of the dual problem of the above problem is:

A- Max. 30x +60 y
B- Max. 30m +60 n
C- Min. 30x +60 y
D- Max. 30m + 60 n
32- The first constraint of the dual problem is:
A- $4 x+6 y \geq 30$
B- $4 \mathrm{~m}+6 \mathrm{n} \leq 40$
C- $4 \mathrm{x}+6 \mathrm{y} \leq 40$
D- $\mathbf{4 m}+\mathbf{6 n} \geq \mathbf{4 0}$
33- The second constraint of the dual problem is:
A- $4 x+6 y \geq 30$
B- $\mathbf{4 m}+\mathbf{6 n} \leq 40$
C- $4 \mathrm{x}+6 \mathrm{y} \leq 40$
D- $\mathbf{6 m + 4 n} \leq 10$
34- The non negative variables
A- $\mathbf{x}, \mathrm{y} \geq 0$
B- $\mathrm{m}, \mathrm{n} \geq 0$
C- $\mathbf{x}, \mathrm{y} \leq 0$
D- $\mathbf{x}, \mathrm{y}, \mathrm{m}, \mathrm{n} \geq 0$

35- The optimal solution of the original problem and the dual will be:

A-Same values.
B- Original optimal value is $>$ the dual optimal value. C - Original optimal value is $<$ the dual optimal value. D- Deferent values.

1- Game Theory
Questions 36- 40: The following is the pay off matrix of game between player M and player N :

$$
M \quad\left(\begin{array}{crrr}
9 & 12 & 15 & 4 \\
13 & 8 & 17 & 16 \\
1511 & & 14 & 18
\end{array}\right)
$$

36- The Min. Max. for player M is:
A- 4
B- 8
C- 12
D- 15

37- The Max. Min. for player \mathbf{N} is:
A- 4
B- 8
C- 12
D- 18
38- The result of the game is:
A- M will gain 12
B- N will gain 12
C- M will lose 12
D- Both M and \mathbf{N} will win
39- The payoff matrix represents:
A- negative numbers win for M
B- positive numbers win for \mathbf{M}
C- positive numbers win for \mathbf{N}
D- Positive numbers win for both M and N
40- The best strategy for \mathbf{N} is:
A- The first strategy
B- The second strategy
C- The third strategy
D- The fourth strategy

Questions 41- 50: The following is the pay off matrix of game between player L and player S :
$L \quad\left(\begin{array}{lll}4 & \mathbf{S} & 0 \\ 2 & 0 & 8\end{array}\right)$

41- The Min. Max. for player L is:
A- 4
B- 8
C- 0
D- 2
42- The Max. Min. for player S is:
A- 4
B- 8
C- 0
D- 2
43- The game is:
A- Zero game
B- Player L will play by his first strategy
C- Player L will play by his second strategy
D- Both L will play with mixed strategies.
44- Player L will play:
A- Half time by his first strategy and the second half time by his second strategy.
B- 0.4 time by his one strategy and 0.6 by the other strategy.
C- All the time by his first strategy.
D- All the time by his second strategy
45- The result of the game is:
A- Player L will gain 3.2
B- Player L will gain 3.2 and Player S will lose 3.2
C- Player L will lose 3.2 and Player S will gain 3.2
D- Both Players L and S will win

2- Network and Transportation Problem

Questions 51-60 The following table represents 3 plants and 3 distribution centers, sizes of supply and demand, and the cost of transportation from every plant to every distribution center:

	\mathbf{B}_{1}	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	Supply
$\mathbf{A}_{\mathbf{1}}$	$\mathbf{1 2 0}$	$\mathbf{1 5 0}$	$\mathbf{4 0}$	$\mathbf{4 0 0}$
$\mathbf{A}_{\mathbf{2}}$	$\mathbf{1 0 0}$	$\mathbf{8 0}$	$\mathbf{5 0}$	$\mathbf{6 0 0}$
$\mathbf{A 3}$	$\mathbf{5 0}$	$\mathbf{2 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
Demand	$\mathbf{2 0 0}$	$\mathbf{7 0 0}$	$\mathbf{3 0 0}$	$\mathbf{1 2 0 0}$

51-According to North West Method (NWM) the cell $A_{2} B_{3}$ occupied by:
A- 500
B- 100
C- 0
D- 200
52-According to North West Method (NWM) the cell $\mathbf{A}_{3} \mathbf{B}_{3}$ occupied by:
A- 500
B- 100
C- 0
D- 200
53-According to Least Cost Method (LCM) the cell $\mathbf{A}_{1} \mathbf{B}_{3}$ occupied by:
A- 300
B- 500
C- 0
D- 100

54-According to Least Cost Method (LCM) the cell $\mathbf{A}_{3} \mathbf{B}_{2}$ occupied by:
A- 300
B- 200
C- 50
D- 100
55-According to Vogal Approximation Method (VAM) the cell \mathbf{A}_{3} B_{2} occupied by:
A- 100
B- 200
C- 300
D- 500

56-According to Vogal Approximation Method (VAM) the cell \mathbf{A}_{1} B_{2} occupied by:
A- 200
B- 300
C- 0
D- 500
57-The total cost of transportation according to Vogal Approximation Method (VAM) is:
A- 78000
B- 87000
C- 76800
D- 67000
58-The total cost of transportation according to Least Cost Method (LCM) is:
A- 87000
B- 67000
C- 78000
D- 76000
59-The total cost of transportation according to North West Method (NWM) is:
A- 87000
B- 78000
C- 76000
D- 119000
60-In general the total cost of transportation:
A- North West Method always is the best methods among the three methods.
B- Vogal Approximation Method always is the best methods among the three methods.
C-Least Cost Method always is the best methods among the three methods.
D- The best method depends upon the case.

3- PERT

Questions 61-74 The following is details of A project:

Activities	Path	Time (week)		
		O	M	P
A	$1-2$	2	6	10
B	$1-3$	1	3	5
C	$2-4$	4	7	10
D	$3-4$	3	4	5
E	$1-5$	6	8	10
F	$5-6$	5	8	17
G	$6-7$	7	9	17
H	$4-7$	10	16	34
I	$3-7$	10	12	26

61- T_{e} of activity C is equal:
A- 10 weeks
B- 7 weeks
C- 12 weeks
D- 21 weeks
62- T_{e} of activity H is equal:
A- 18 weeks
B- 17 weeks
C- 44 weeks
D- 10 weeks

63-CP is:
A-B I
B- B D H
C- А С H
D- A C I
64-ES of Event 4 isequal:
A- 13
B- 7
C- 17
D- 8

65-ES of Event 5 is equal:
A- 21
B- 8
C- 17
D- 0

66-LS of Event 3 is equal:
A- 6
B- 9
C- 31
D- 21
67-LS of Event 4 is equal:
A- 12
B- 11
C- 13
D- 14
68-The time to finish the project is equal:
A- 31
B- 30
C- 17
D- 6
69-The standard deviation of the project is equal:
A- 18.78
B- 2.78
C- 16
D- 4.33
70-The standard deviation of the activity \mathbf{C} is equal:
A- 1.78
B- $\sqrt{1.78}$
C- 1
D- 16
$71-Z_{\text {calculated }}$ (The Radom variable on standard normal distribution) using to calculate the probability of finishing the project within 34 weeks equal:
A- $Z=(\mathbf{O}+4 M+P) / 6$
B- $\mathbf{Z}=\{(\mathbf{P}-\mathbf{O}) / 6)\}^{2}$
$C-Z=\{($ required time $-\mathbf{C P}$ time $) /($ variance of the activities on the CP) $\}$
$\mathbf{D}-\mathbf{Z}=\{($ required time $-\mathbf{C P} \mathbf{t i m e}) /($ Standard deviation of the activities on the $\mathbf{C P}$) $\}$

72- $\mathbf{Z}_{\text {calculated }}$ (The Radom variable on standard normal distribution) using to calculate the probability of finishing the project within 34 weeks equal:
A- 0.50
B- 0.16
C- 0.70
D- 0.8

73- The probability of finishing the project within 34 weeks equal:
A- 0.5
B->0.5
C $-<0.5$
D- 1
74- The probability of finishing the project within 28 weeks equal:
A- 0.5
B->0.5
C $-<0.5$
D- 1
Questions 75-80 the following table represents information about a project:

Activity	Path	Time (week)		Cost (\$)	
		Normal	Crash	Normal	Crash
A	$1-2$	5	3	10000	14000
B	$1-3$	10	7	18000	24000
C	$2-5$	11	8	15000	18000
D	$3-4$	6	5	5000	6500
E	$3-5$	8	4	3000	7000
F	$4-6$	9	8	12000	15000
G	$5-6$	12	8	6000	9000
Total					

75- How many weeks can be minimized?
A- 12 weeks
B- 10 weeks
C- 8 weeks
D- 6 weeks
76- The normal $C P$ is:
A- ACG
B-BEG
C-B D F
D- ABG

77- The crashed CP is equal:
A- 28 weeks
B- 30 weeks
C- 26 weeks
D- 20 weeks
78- The first time minimization equal:
A- 4 weeks
B- 6 weeks
C- 8 weeks
D- 10 weeks
79-The additional cost according to the first time minimization is:
A- \$ 69750
B- \$ 70500
C- \$ 71250
D- $\$ 72000$
80- $\Delta_{\text {cost }} / \Delta_{\text {time }}$ of activity D is equal:
A- 3000
B- 2000
C- 1500
D- 1000

