

Faculty of Commerce Sta., Math., and Insurance Department

Questions and Answers M Operation Research

4th Year English Section

Prepared By

Prof. Dr. Safia Ahmed Abo Bakr

Professor of Insurance Faculty of Commerce Assiut University

1- Linear Programming

A-Graph Solution

Questions 1-10: The following function (z) is revenue function where:

Z = 4x + 8y

Subject to:

 $x + y \le 20$ (Let the line to be (a-b) from left to right). $2x + y \le 32$ (Let the line to be (c-d) from left to right).(Let Point (h) is the intersection of a-b and c-d)

 $x \ge 0, y \ge 0$

(Let Point (h) is the intersection of a-b and c-d, and Point o (0, 0))

- 1- The problem is: A- Revenue Min. problem B- Revenue Max. problem C- Cost Min. problem D- Cost Max. problem
- 2- The feasible area is:

A- oahd

- B- dhb
- C- ahc
- D- ocd
- 3- The feasible area according the first constraint is:
 - A- chb
 - B- oahd
 - C- oab
 - D- ocd
- 4- The feasible area according the second constraint is:
 - A- chb
 - B- oahd
 - C- oab
 - **D- ocd**

- 5- Point (h) is: A- (8, 12) B- (12, 8) C- (12, -8) D- (-12, -8)
- 6- The optimal solution is:
 - A- 112 B- 128 C- 64
 - **D-160**
- 7- If the first constraint becomes $x + y \ge 20$, the feasible area becomes:
 - A- ahc B- dhb
 - C- chb
 - D- oahd
- 8- If the second constraint becomes 2 x + y ≥ 32, the feasible area Becomes:
 - A- ahc
 - B- dhb
 - C- chb
 - D- oahd
- 9- If z in the original problem is a cost function, the optimal solution will be:
 - A- 64 B- 112 C- 128 D- 0
- 10- If z in the original problem is a cost function and both the constrains inequalities become \geq , the optimal solution will be:
 - A- (0, 32) B- (12, 8)
 - C-(20, 0)
 - D- (0, 20)

Questions 11-20: Minimize T = 5x + 3y

Subject to:

 $x + y \ge 60$ (Let the line to be (a-b) from left to right). $2x + y \le 90$ (Let the line to be (c-d) from left to right). $x \ge 0, y \ge 0$

(Let Point (h) is the intersection of a-b and c-d, and Point o (0, 0))

 $x \ge 0, y \ge 0$

Solve by graph method

11- Point (h) is: A- (30, -30) B- (30, 30) C- (45, 0) D- 0, 45)

12- The feasible area is:

A- ahb B- cah C- ocd D- oab

13- The feasible area according the first constraint is:

A- ocd B- dhb C- oab

D- ahc

14- The feasible area according the second constraint is:

- A- ocd B- dhb C- oab D- ahc
- **15-** The optimal solution is:
 - A- d B- h C- b D- o
- 16- If the T function of original problem was profit function, the optimal solution will be:
 - A- d B- h C- b D- o
- 17- If the constraints become, $x + y \le 60$ and $2x + y \ge 90$, the optimal solution becomes:

A- oahd

- B- dhb
- C-ach
- D- ahb

- 18- If both constraints inequalities become \geq , the optimal solution becomes:
 - A- Oahd
 - B- Dhb
 - C-Ach
 - D- chb
- 19- If both constraints inequalities become \leq , the optimal solution becomes:
 - A- oahd B- dhb C- ach
 - D- chb
- 20- If both constraints become equalities, the optimal solution becomes:
 - A- a B- h C- d D- b

B-Semplix

Questions 21-30: El Amal Company produces two products A and B, suppose that the size units of A are x units and the size units of B are y units the following table represents the industrial resources:

Department	Time requir	Available Time	
	Α	В	
1	4	6	3000
2	6	4	3000
3	2	2	6000
Profit per unit	40	10	

21- The solution of the above problem is:

- I. To find the value of x.
- II. To find the value of y.
- III. To find the values of both x and y.
- IV. To find the values of x and y and determine the optimal value of profit.
- 22- The above problem is:
 - A- Cost minimization.
 - **B- Profit maximization.**
 - **C-** Units x maximization.
 - **D-** Units y minimization.
- 23- The objective function is:

 $\mathbf{A-40x+10y}$

- B-4x+6y
- C- 6x + 4y
- **D-** 2x + 2y

24- The first constraint is: $A-40x + 10y \ge 0$ B- $4x + 6y \le 3000$

C- $6x + 4y \ge 3000$

- D- $4x + 6y \ge 3000$
- 25- The second constraint is: A- $40x + 10y \ge 0$ B- $4x + 6y \le 3000$ C- $6x + 4y \le 3000$ D- $4x + 6y \ge 3000$
- 26- The third constrain is: A- $2x + 2y \ge 6000$ B- $4x + 6y \le 3000$ C- $6x + 4y \ge 3000$ D- $2x + 2y \le 6000$
- 27- According to the initial (first) table the pivot column is:
 A- x Column,
 B- y column.
 C- 1, 0, 0.
 D- 0, 1, 0.
- 28- According to the initial (first) table the pivot row is:
 A- 4, 6, 2
 B- 2, 2, 0, 0. 1.
 C- 6, 4, 0, 1, 0.
 D- 0, 1, 0.

- 29- According to the initial (first) table the pivot number is: A- 6
 - B- 4 C- 1
 - **D- 0**
- **30-** According to the second table, the value of the profit is:
 - A- 40 B- 0
 - **C- 20000**
 - **D- 80/3**

C-Dual Problem

Questions 31-35 El Amal Company produces two products A and B, suppose that the size units of A are x and the size units of B are y the following table represents the industrial resources:

Department	Material req	uired per unit	Minimum row material
	X	У	required
1	4	6	30
2	6	4	60
Cost per unit	40	10	

31- The objective function of the dual problem of the above problem is:

A- Max. 30x + 60 y B- Max. 30m + 60 n C- Min. 30x + 60 y D- Max. 30m + 60 n

- 32- The first constraint of the dual problem is: A- $4x + 6y \ge 30$ B- $4m + 6n \le 40$ C- $4x + 6y \le 40$ D- $4m + 6n \ge 40$
- 33- The second constraint of the dual problem is: A- $4x + 6y \ge 30$ B- $4m + 6n \le 40$ C- $4x + 6y \le 40$ D- $6m + 4n \le 10$
- 34- The non negative variables A- x, $y \ge 0$ B- m, $n \ge 0$ C- x, $y \le 0$ D- x, y, m, $n \ge 0$

35- The optimal solution of the original problem and the dual will be:

A- Same values.

- **B-** Original optimal value is > the dual optimal value.
- C- Original optimal value is < the dual optimal value.

D- Deferent values.

1- Game Theory

Questions 36- 40: The following is the pay off matrix of game between player M and player N:

	-	Γ		_	
	(9	12	15	4)	
Μ	13	8	17	16	
	15 1	1	14	18	
				ノ	

36- The Min. Max. for player M is: A-4 B-8 C-12

37- The Max. Min. for player N is: A- 4 B- 8 C- 12 D- 18

38- The result of the game is:

A- M will gain 12

D-15

- B- N will gain 12
- C- M will lose 12
- **D-** Both M and N will win

39- The payoff matrix represents:

A- negative numbers win for M

B- positive numbers win for **M**

C- positive numbers win for N

D-Positive numbers win for both M and N

- 40- The best strategy for N is:
 - A- The first strategy
 - **B-** The second strategy
 - **C-** The third strategy

D- The fourth strategy

Questions 41- 50: The following is the pay off matrix of game between player L and player S:

Ŧ	ſ	4	S 8	0	-
L		2	0	8	

41- The Min. Max. for player L is:

- A- 4 B- 8 C- 0
- **D- 2**

42- The Max. Min. for player S is:

- A- 4
- **B- 8**
- C- 0
- **D- 2**

43- The game is:

A- Zero game

B- Player L will play by his first strategy

C- Player L will play by his second strategy

D- Both L will play with mixed strategies.

44- Player L will play:

A- Half time by his first strategy and the second half time by his second strategy.

B- 0.4 time by his one strategy and 0.6 by the other strategy.

C- All the time by his first strategy.

D- All the time by his second strategy

45- The result of the game is:

A- Player L will gain 3.2

B- Player L will gain 3.2 and Player S will lose 3.2

C- Player L will lose 3.2 and Player S will gain 3.2

D- Both Players L and S will win

2- Network and Transportation Problem

Questions 51-60 The following table represents 3 plants and 3 distribution centers, sizes of supply and demand, and the cost of transportation from every plant to every distribution center:

	Ĭ	V	/		
	B ₁	B ₂	B ₃	Supply	
A_1	120	150	40	400	
A_2	100	80	50	600	
A3	50	20	100	200	
Demand	200	700	300	1200	

51-According to North West Method (NWM) the cell A₂ B₃ occupied by:

A- 500

B-100

C-0

D- 200

52-According to North West Method (NWM) the cell A₃ B₃ occupied by:

A- 500

B- 100

C- 0

D- 200

53-According to Least Cost Method (LCM) the cell A₁ B₃ occupied by:

A- 300 B- 500 C- 0 D- 100

54-According to Least Cost Method (LCM) the cell A₃ B₂ occupied by:

A- 300

B- 200

C- 50

D- 100

55-According to Vogal Approximation Method (VAM) the cell A₃ B₂ occupied by:

- A-100
- B- 200
- C- **300**
- D- 500

56-According to Vogal Approximation Method (VAM) the cell A₁ B₂ occupied by:

- A- 200
- **B-300**
- **C-0**
- **D- 500**
- 57-The total cost of transportation according to Vogal Approximation Method (VAM) is:
 - A- 78000
 - **B- 87000**
 - C- 76800
 - **D- 67000**
- 58-The total cost of transportation according to Least Cost Method (LCM) is:
 - A- 87000
 - **B- 67000**
 - **C-78000**
 - **D-76000**
- 59-The total cost of transportation according to North West Method (NWM) is:
 - A- 87000
 - **B-78000**
 - **C-76000**
 - **D-119000**

60-In general the total cost of transportation:

- A-North West Method always is the best methods among the three methods.
- **B-**Vogal Approximation Method always is the best methods among the three methods.
- C-Least Cost Method always is the best methods among the three methods.
- **D-** The best method depends upon the case.

Questions 61-74 The following is details of A project:					
Activities	Path	Time (week)			
		0	Μ	Р	
Α	1-2	2	6	10	
В	1-3	1	3	5	
С	2-4	4	7	10	
D	3-4	3	4	5	
Ε	1-5	6	8	10	
F	5-6	5	8	17	
G	6-7	7	9	17	
Н	4-7	10	16	34	
Ι	3-7	10	12	26	

3- PERT

61-T_e of activity C is equal:

A-10 weeks

B-7 weeks

C-12 weeks

D-21 weeks

62-T_e of activity H is equal:

A-18 weeks

B-17 weeks

C-44 weeks

D-10 weeks

63-CP is:

A-B I

B-BDH

C-ACH

D-ACI

64-ES of Event 4 isequal:

- A- 13 B- 7 C- 17
- **D- 8**

65-ES of Event 5 is equal:

A- 21 B- 8 C- 17

D- 0

66-LS of Event 3 is equal:

- A- 6
- **B- 9**
- **C-31**
- **D- 21**

67-LS of Event 4 is equal:

- A- 12
- **B- 11**
- **C-13**
- **D-14**

68-The time to finish the project is equal:

- A- 31
- **B- 30**
- C-17
- **D- 6**

69-The standard deviation of the project is equal:

A- 18.78 B- 2.78 C- 16 D- 4.33

70-The standard deviation of the activity C is equal:

- A- 1.78 B- √1.78 C- 1 D- 16
- 71-Z_{calculated} (The Radom variable on standard normal distribution) using to calculate the probability of finishing the project within 34 weeks equal:
 - A- Z = (O + 4M + P)/6
 - **B-** $Z = \{(P O)/6)\}^2$
 - C- Z = {(required time CP_{time})/(variance of the activities on the CP)}
 - $D-Z = \{(required time CP_{time})/(Standard deviation of the activities on the CP)\}$

- 72- Z_{calculated} (The Radom variable on standard normal distribution) using to calculate the probability of finishing the project within 34 weeks equal:
 A- 0.50
 B- 0.16
 - C- 0.70
 - **D- 0.8**
- 73- The probability of finishing the project within 34 weeks equal:A- 0.5
 - **B-** > 0.5 C- < 0.5
 - **D-** 1
- 74- The probability of finishing the project within 28 weeks equal:
 - A- 0.5 B- > 0.5 C- < 0.5 D- 1

Questions 75-80 the following table represents information about a project:

Activity	Path	Time (week)		Cost (\$)	
		Normal	Crash	Normal	Crash
Α	1 – 2	5	3	10000	14000
В	1 - 3	10	7	18000	24000
С	2 - 5	11	8	15000	18000
D	3 - 4	6	5	5000	6500
Ε	3 - 5	8	4	3000	7000
F	4 – 6	9	8	12000	15000
G	5 - 6	12	8	6000	9000
Total				69000	93500

75- How many weeks can be minimized?

A-12 weeks

- B-10 weeks
- C-8 weeks
- D-6 weeks

76- The normal CP is:

- A-ACG
- B-BEG
- C-BDF
- D-ABG

- 77- The crashed CP is equal:
 - A-28 weeks
 - B- 30 weeks
 - C-26 weeks
 - **D-20 weeks**

78- The first time minimization equal:

- A-4 weeks
- B-6 weeks
- C-8 weeks
- D-10 weeks

79-The additional cost according to the first time minimization is:

- A- \$69750
- B- \$70500
- C- \$71250
- **D- \$72000**

80- Δ_{cost} / Δ_{time} of activity D is equal:

- A- 3000
- **B- 2000**
- **C-1500**
- **D-1000**