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Abstract

Environmental health studies are of great interest in research to evaluate the mortality-tem-

perature relationship by adjusting spatially correlated random effects as well as identifying

significant change points in temperature. However, this relationship is often not expressed

using parametric models, which makes identifying change points an even more challenging

problem. This paper proposes a unified semiparametric approach to simultaneously identify

the nonlinear mortality-temperature relationship and detect spatially-dependent change

points. A unified method is proposed for the model estimation, spatially dependent change

points detection, and testing whether they are significant simultaneously by a permutation-

based test. We operate under the assumption that change points remain constant, yet

acknowledge the uncertainty regarding their precise number. These change points are influ-

enced by the smoothing of an unknown function, which in turn relies on a smoothing variable

and spatial random effects. Consequently, the detection of change points may be influenced

by spatial effects. In this paper, several simulation studies are conducted to evaluate the

performance of our proposed approach. The advantages of this unified approach are dem-

onstrated using epidemiological data on mortality and temperature.

Introduction

For centuries, the effects of weather and global warming on people have been a public health

concern. Previous studies [1–3] have indicated that the temperature-mortality relationship can

be depicted as a U, J, or V curve; that is, episodes of extremely hot or cold temperatures

increase mortality. The lowest end of the curve was defined as the minimum mortality temper-

ature or the change point—that is, the temperature of the lowest mortality. Extreme tempera-

tures increase the heart rate because of the increase of blood flow from the body to the skin,

which can lead to shaking in cold temperatures or sweating in high temperatures. The human

body has multiple thermoregulatory mechanisms to counter extreme heat and cold conditions

to keep temperature homeostasis within normal values. When temperature change occurs

within certain ranges, the human body can adapt and allow individuals to follow some physical

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0315413 December 12, 2024 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mahmoud HFF, Kim I (2024)

Semiparametric change points detection using

single index spatial random effects model in

environmental epidemiology study. PLoS ONE

19(12): e0315413. https://doi.org/10.1371/journal.

pone.0315413

Editor: Laleh Tafakori, RMIT University,

AUSTRALIA

Received: February 22, 2024

Accepted: November 25, 2024

Published: December 12, 2024

Copyright: © 2024 Mahmoud, Kim. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-8378-2965
https://doi.org/10.1371/journal.pone.0315413
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315413&domain=pdf&date_stamp=2024-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315413&domain=pdf&date_stamp=2024-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315413&domain=pdf&date_stamp=2024-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315413&domain=pdf&date_stamp=2024-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315413&domain=pdf&date_stamp=2024-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315413&domain=pdf&date_stamp=2024-12-12
https://doi.org/10.1371/journal.pone.0315413
https://doi.org/10.1371/journal.pone.0315413
http://creativecommons.org/licenses/by/4.0/


and mental activities, but exposure to temperature extremes outside these ranges for a long

period is a risk to human health and can result in mortality. According to [4], elevated mortal-

ity rates correlate with high temperatures, primarily attributed to illnesses such as cerebrovas-

cular, cardiovascular, and respiratory diseases. This phenomenon is attributed to the effect of

hot temperatures on raising blood cholesterol and viscosity levels.

Climate change is a serious public health issue, and specific policies to reduce the effects of

heat waves would be appropriate for public policy. These policies need to target successful

interventions and populations that are vulnerable. One of the possible mitigation strategies for

this is using air conditioning. Because climate change will likely increase the mean tempera-

ture, as well as the frequency of heat events, it is very important to evaluate the links between

human health and climate, to better identify populations at risk and take preventive measures.

As mean temperatures continue to rise in the future, the issue of heat-related mortality is

poised to escalate. By delving into the connection between temperature and mortality rates, as

well as identifying change points within cities, we can enhance awareness surrounding hot

weather as a significant environmental hazard.

One city

Many articles have studied the mortality-temperature relationship in a specific area or city [5–

10]. In these studies, the nonlinear mortality function is first estimated by the generalized lin-

ear model and then the change point is detected by observing the temperature degree that is

associated with the minimum risk. No testing of whether the change point is statistically signif-

icant is considered. [11] studied the mortality-temperature function in a single city, Seoul City,

South Korea, using the single index model and tested the significance of the change point by a

permutation-based test.

Multiple cities

Some articles [12, 13] have studied multiple cities and have found that change points were

associated with temperature and they varied by location, especially with latitude, people who

live in cities at higher latitudes have lower thresholds for ambient temperature, whereas people

who live in cities at lower latitudes have higher thresholds for ambient temperature [4, 14–16].

In these studies, the generalized additive model is used to estimate the temperature-mortality

relationship for each city separately, and the minimum mortality risk or AIC criterion is used

to find the change point. Other studies have used a distributed lag nonlinear model to estimate

the relationship in each city. [17–20] studied 15 European cities, 63 cities in five East-Asian

Countries, 47 Japanese cities, and 31 Chinese cities, respectively. After estimating the relation-

ship in each city separately, the change point is estimated as the temperature that is associated

with minimum mortality or maximum likelihood.

However, these studies have not fully addressed (1) whether the change points are accu-

rately detected and tested in multiple cities cases, (2) whether spatial random effect plays an

important role in the model, and (3) whether the model assumption is flexible in terms of the

link function compared to the single index model when multiple cities considered.

Problem and objectives

This paper introduces a unified semiparametric approach to simultaneously identify the non-

linear mortality-temperature relationship, and detect and test spatially-dependent change

points. This approach includes a proposed model and a permutation test. To the best of our

knowledge, no such model has been introduced in the statistical literature. We refer to this
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model as the “semiparametric change points single index spatial random effects model”

(CP-SISM). The proposed approach has the following four characteristics:

1. Spatial random effects are incorporated into the model not only because ignoring random

effects may mask the true form of the mortality-temperature relationship due to aggregating

the data of all cities, but also to make the proposed model able to predict mortality at new

locations. The six cities in our motivating data are located close to each other due to the size

of South Korea, so we assume that the correlation between spatial effects exists. Hence, the

detection of change points can be affected by spatial effects. Previous work studied each city

separately without including the spatial effect.

2. The model is flexible in terms of the link between the response variable and the mean func-

tion. A semiparametric approach, based on the single index model, is employed to simulta-

neously estimate the nonlinear mortality-temperature relationship while adjusting for

weather variables. The single index model is chosen because it combines parametric and

nonparametric components, offering a flexible representation of real data and enabling the

proposed model to effectively describe nonlinear relationships. This approach also helps

avoid misleading results that can arise from selecting an incorrect link function. Previous

studies often utilized generalized linear models or additive models to estimate the tempera-

ture-mortality relationship.

3. The change points are included in the nonparametric function to ensure accurate detection.

In the proposed model, change-point parameters are incorporated into the single index

function because smoothing the unknown mean function may impact change-point detec-

tion. In previous studies, the change point was typically selected based on certain criteria

after estimating the temperature-mortality relationship. However, the change point

detected using this method is influenced by the smoothing of the function.

4. The permutation-based change-points detection procedure is introduced to test the signifi-

cance of the detected change points under the CP-SISM. The previous work smoothed the

nonparametric function and selected the change point that has minimum mortality or is

based on some criteria, such as AIC or BIC. The permutation test is more powerful and

robust compared to other tests/criteria-based analyses.

The remainder of this paper is organized as follows. In Section, the motivating data of this

study is introduced. In Section, the proposed model is presented. A simultaneous procedure

for estimating the proposed model while detecting and testing the significance of spatially

dependent change points based on a permutation test is introduced in Section. In Section, sev-

eral simulation studies are conducted. Section considers applying our unified method to South

Korea’s real data. Section includes discussion and conclusion.

Data and motivation

In our motivating data, non-accident mortality and weather variables, such as mean pressure,

mean temperature, mean humidity, and time, were recorded daily from January 2000 to

December 2007 for six major cities in South Korea (Seoul, Busan, Daegu, Incheon, Gwangju,

and Daejeon). In total, the data comprise 2922 observations for each city. In addition, weekly

data are obtained where daily weather variables were averaged such that each city has 417

observations. Because those cities are different in population size, the weekly non-accident

mortality of each city is divided by the population size and multiplied by 1 million to obtain

weekly nonaccident mortality per 1 million persons for each city. The numerical summary
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statistics of the weather variables of each city are presented in S1 Table of the supporting

information.

Fig 1(a) shows a common change point of aggregated data of the six cities. Fig 1(b) reveals

that the smoothed functions of non-accident mortality and temperature are similar in shape

and show change points of all cities compared to each other. It shows there are possible change

points in four cities (Seoul, Busan, Daegu, and Gwangju) and for the other two cities, it is not

clear. That is because detecting a change point is affected by smoothing the unknown function,

and change points commonly close to the boundaries where the smoothed function is located

are not accurate. By focusing only on the interval that has a possible change point, Fig 2 shows

that each city has a possible change point at some degree of temperature. These change points

need to be studied simultaneously to see whether they are spatially dependent after adjusting

the relationship by the weather variables. One important question here is whether these change

points are statistically significant and/or significantly different from each other (i.e., spatially

dependent). Hence, we study two cases by introducing a semiparametric model: a common

change point (change points are not spatially dependent) and different change points over

locations (spatially dependent).

Semiparametric change points single index spatial random effects

model

Let Yis be the ith observation at the sth city (location/region), and let xjis be the ith value of the

jth explanatory variable at city s, where i = 1, . . ., n, s = 1, . . ., r, and j = 1, . . ., p. Here, n, r, and

p denote the total number of observations, the number of locations, and the number of explan-

atory variables, respectively. Let ðy
1

s ; . . . ; y
L
s Þ denote the possible multiple L change points at

city s and ½x1is � y
l
s�þ ¼ maxð0; x1is � y

l
sÞ and l = 1, . . ., L. We denote f(�) as the unknown mean

Fig 1. The aggregated smoothed mortality-temperature function of all cities along with scatter plot (a), and smoothed mortality-temperature

functions of the six major areas in Korea (b).

https://doi.org/10.1371/journal.pone.0315413.g001
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function of the response variable. Let us be the spatial random effect associated with the sth
city that follows a Gaussian process (GP) with covariance matrix O, and let �is be the random

error associated with the ith observation at city s. We further denote a probability density/

mass function of ys as pd(ys|μs, us). The CP-SISM can be written as

yisjms; us � pdðysjms; usÞ;

msjus ¼ f ðb1x1is þ b11½x1is � y
1

s �þ þ . . .þ b1L½x1is � y
L
s �þ

þb2x2is þ b3x3is þ . . .þ bpxpisÞ þ us;

us � GPð0; s2
uOÞ;

ð1Þ

where

• the spatial effect, us (s 2 R2), follows a Gaussian stationary process with mean 0 for all s and a

variance-covariance matrix depends only on the distance between any two locations s and s
+ a; covðus; usþaÞ ¼ CðaÞ for all s, a 2 R2, where C(�) is a parametric covariance function,

and a is the distance between two cities;

• β = (β1, β11, . . ., βp) represents the vector of the single index coefficient parameter and θs ¼

ðy
1

s ; . . . ; y
L
s Þ denotes the unknown parameters for multiple change points at city s;

Fig 2. Spline smoothed mortality-temperature function of each city along with the smoothed derivative function. The black line represents the smoothed

temperature-mortality function (the x-axis is the mean temperature and the y-axis is the smoothed mean temperature) and the red line is the derivative

function of the temperature-mortality function (the x-axis is the mean temperature and the y-axis is the derivative of the mean temperature-mortality).

https://doi.org/10.1371/journal.pone.0315413.g002
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• Given us and θs, ys follows the Poisson distribution (Pois) with mean Eðysjus; θsÞ.

In matrix form, this model (1) can be written as

yjμ; u � Poisðμju;αÞ;

μju;α ¼ f ðXðθÞβÞ þ Zu;
ð2Þ

where X ¼ ½x1; ðx1 � ZθÞ
þ
; x2; x3; . . . ; xp� � XðθÞ is a rn × (p + L) matrix of regressors’ values,

α = (θ, β)T is a (p + L) × 1 vector of parameters, Z is a nr × r matrix of 1s, u is a vector of unob-

servable spatial correlated random effects, u � MNð0;s2
uOÞ, where s2

u is the variance of spatial

effects and O is a known parametric covariance function that depends on the distance between

two cities. The random process is assumed to be stationary and isotropic, and the covariance

between two cities depends on the distance between them.

Spatial Gaussian Processes provide a robust, flexible, and interpretable approach for spatial

modeling, especially when dealing with continuous spatial variation and complex dependen-

cies. Their adaptability, particularly in terms of covariance functions and Bayesian compatibil-

ity, makes them a superior choice in many contexts compared to SAR, CAR, or traditional

kriging methods, which may impose more restrictive assumptions on the spatial data, [21–24].

More specifically, for our motivating real data, which has non-accident mortality as the

response variable, we can write CP-SISM as the following:

ysjμs � Poisðμsjus; β; θsÞ;

μsjus; β; θs ¼ f ðb1x1s þ b11½x1s � y
1

s �þ þ . . .þ b1L½x1is � y
L
s �þ

þb2x2s þ b3x3s þ . . .þ bpxpsÞ þ us:

ð3Þ

The unknown function, f(�), spatial effect, us, single index coefficients parameters, β, and

the vector of change points, θ, need to be estimated simultaneously and to be tested as to

whether the change points are significant. The model parameters estimation needs a restriction

on the single index coefficient parameters to fix the identifiability problem. A possible restric-

tion is to set one of the parameters of β to be equal to 1 [25, 26] or to use kβk = 1 [27–29].

This restriction prevents parameters from taking values that lead to indistinguishable out-

comes, enabling the model to have a unique solution and thus be identifiable. Additionally, it

reduces the model’s complexity, preventing it from overfitting to noise in the data. This is par-

ticularly important in high-dimensional settings, as it stabilizes the estimation process by nar-

rowing the parameter space. It also produces a simpler model, making it easier to interpret the

impact of each coefficient, and helps the optimization algorithm converge more quickly and

accurately, avoiding issues like local minima or divergence during estimation.

This model has several advantages: (1) It enables us to incorporate spatial effects into the

model, (2) it enables us to detect multiple change points for each city, (3) it avoids the curse of

the dimensionality problem by using the single index function, and (4) it is more flexible com-

pared to the parametric models.

Change-point detection and testing

In this section, we propose a testing procedure to identify the significant spatially dependent

change points. This procedure consists of an estimation step and a test step. These two steps

are iterated until significant change points are detected if they exist. The estimation step for

CP-SISM is based on an adjusted Monte Carlo Expectation Maximization (MCEM) algorithm.

The EM algorithm consists of two steps: expectation (E-step) in which the spatial effects are

estimated (u ¼ u1; u2; . . . ; ur) and maximization (M-step) in which the variance of the spatial
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effects (s2
u) is estimated. The vector of the coefficient parameters (β = β1, . . ., βp) is estimated

using the Ichimora method, and the f(index) function is estimated using a smoothing method,

such as the kernel method.

The estimation of f(�) using the Ichimura method is performed as follows:

Step 0: For a given estimate of the index coefficient vector β, we compute the single-index val-

ues Zi = Xiβ, where i = 1, . . ., n.

Step 1: The unknown function f(�) is estimated using kernel smoothing. Specifically, for any

value z, f(z) is estimated as:

f̂ ðzÞ ¼
Pn

i¼1
Khðz � ZiÞyiPn

i¼1
Khðz � ZiÞ

;

where:Kh(�) is a kernel function with a bandwidth h, yi are the observed responses, and

Zi = β>Xi are the single-index values. This approach smooths the observed y values as a

function of the single-index Z, providing an estimate of f(�).

Step 2: The estimation of f(�) and β is performed iteratively. After updating β using optimiza-

tion techniques, f(�) is re-estimated based on the updated single-index values until conver-

gence is achieved.

To estimate a change point, a grid search is used. At each possible change point, the EM

algorithm is run to estimate the spatial effects and model parameters, and the test procedure is

used to see whether it is a significant change point. So the order of the estimation is as follows:

at each possible change point, the EM algorithm is used to estimate the spatial effects and vari-

ance of spatial effects, and then model parameters and the unknown function are estimated

using the Ichimura method. For each possible change point, the sum of the squared residuals

is calculated and the change point associated with the minimum sum of squared residuals is

selected and is then tested to determine whether it is significant based on the calculated p-

value of the permutation test.

Estimation step

The estimation step of CP-SISM is based on an adjusted MCEM algorithm. The EM algorithm

consists of an expectation (E-step) and a maximization (M-step). Incorporating the Monte

Carlo step into the EM algorithm gives the MCEM algorithm, which is commonly used in the

generalized linear mixed models estimation [30–35].

Our proposed model, CP-SISM, has the following complete-data log-likelihood form:

logfys ;usðys; usjμs; s
2
u;OÞ ¼ logfysðysjμs; usÞ þ logfusðusjs

2
uOÞ; ð4Þ

where ys � PoisðμsjusÞ, us � GPð0; s2
uOÞ, μs|us = f(Xs β) + us, O ¼ Covðus; usþaÞ ¼

expðjjajj2=ruÞ for all s, a 2 R2, a is the distance between two cities s and s + a, and ρu is the

dependence range.

In the E-step of the MCEM algorithm for our model estimation, there is no closed form

available. Hence, random samples are generated from the full conditional distribution of u

using Bayesian MCMC. The single-component Metropolis-Hastings (M-H) algorithm is used,

i.e., a single component is updated at each iteration, say the sth component, us. Selecting a pro-

posal function is essential in the M-H algorithm. Because the spatial random effects are corre-

lated, we propose generating candidate values from the conditional normal distribution

Nð�g; s2
0
�OÞ. The following illustrates the derivation of the conditional normal distribution. Let
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v ¼ ðv1; v2; . . . ; vnÞ¼ ðv1; v2Þ
T

have multivariate normal distribution with mean γ = (γ1 γ2)T

and variance-covariance matrix s2
0
O, where

O ¼
s11 S12

S21 S22

 !

:

The distribution of v1, given that v2 ¼ a, is a multivariate normal distribution

ðv1jv2 ¼ aÞ � Nð�g; s2
0
�SÞ, where �g ¼ g1 þ S12S

� 1

22
ða � g2Þ and variance-covariance matrix

�S ¼ s11 � S12S
� 1

22
S21. So the conditional normal distribution, Nð�g; s2

0
�SÞ, is our proposal dis-

tribution, where s2
0

is the proposal variance of the correlated spatial random effects.

Similarly, given the other spatial random effects, we obtain the conditional normal distribu-

tion of us as Nð�g; s2
u
�OÞ, where �g ¼ O12O

� 1

22
ðaÞ and �O ¼ s11 � O12O

� 1

22
O21. As a result, the

acceptance probability, in E-step, can be written as

min
f ðysju∗s ;μsÞfuðu∗s j�g; s

2
u
�OÞ

f ðysjus;μsÞfuðusj�g; s
2
u
�OÞ
; 1

� �

; ð5Þ

where fusðusj�g; s
2
u
�OÞ is the conditional distribution of us that is given all the other spatial ran-

dom effects.

In M-step, given spatial effects and candidate spatial change points,
P

logf ðujs2
uOÞ is maxi-

mized to obtain ŝ2
u, estimate β, β̂, and smooth the function f(�) to obtain f̂ ð�Þ. Then E-step and

M-step are iterated until the convergence is achieved.

Testing step

In this section, we explain how to conduct the testing procedure by connecting a nonparamet-

ric Poisson regression with a single index nonparametric function f(�) that can estimate the

link function as well. In Poisson regression with an unknown function m(�) and a link function

g(�), we can express the model as

gfEðyjmÞg ¼ m X θð Þβf g þ Zu;

EðyjmÞ ¼ g � 1 m X θð Þbf g þ Zu½ �;

¼ g � 1 m X θð Þbf g½ � � g � 1 Zuð Þ;

¼ f X θð Þbf g � g � 1 Zuð Þ;

� f X θð Þbf g þ c½ � � ½g � 1 0ð Þ þ g � 1 0ð Þf g
0Zuþ O kZukð Þ�;

¼ f X θð Þβf gg � 1 0ð Þ þ c g � 1 0ð Þf g
0Zuþ O kZukð Þ:

ð6Þ

Because g−1(0) and c{g−1(0)}0 are both constants, they can be merged to the unknown func-

tion f(�) and random variable u. Hence, we can develop the testing procedure under the follow-

ing approximated model,

y � f ðXðθÞβÞ þ Zuþ � ð7Þ

where � = y − μ. Hence, our permutation testing procedure is developed under this

approximation.

The multiple spatially dependent change-point candidates in cities, θ ¼ ðy1

s ; y
2

s ; . . . ; y
L
s Þ,

s = 1, . . ., r, are tested to determine whether they are significant based on our permutation-

based testing approach described as follows.
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Under the null hypothesis of no change points, CP-SISM can be written as

yjμð0Þ e Poisðμð0Þjβ;uÞ;

μð0Þ ¼ f ðb1x1 þ b2x2 þ b3x3 þ . . .þ bpxpÞ þ u;

�ð0Þ ¼ y � μð0Þ:

ð8Þ

Under the alternative hypothesis with θ vector of change points, SCP-SIM takes the follow-

ing form:

yjμð1Þ e Poisðμð1Þjβ; θ;uÞ;

μð1Þ ¼ f ðb1x1 þ b11½x1 � Zθ1
�
þ
þ . . .þ b1L½x1 � ZθL

�
þ
þ b2x2 þ b3x3 þ . . .

þbpxpÞ þ u;

�ð1Þ ¼ y � μð1Þ:

ð9Þ

The test statistic is based on the ratio of the residuals of the original data,

Tyð0Þ
¼
½�̂ð0Þyð0Þ
�
0
½�̂ð0Þyð0Þ
�

½�̂
ð1Þ
yð0Þ �

0
½�̂
ð1Þ
yð0Þ �

; ð10Þ

where �̂ð0Þyð0Þ
and �̂ð1Þyð0Þ

denote the residuals under the null and alternative hypotheses of the actual

data y0. Permutation-based p-value can be calculated and the candidate spatially dependent

change points are declared significant if p-value <α, where α is the significant level.

When multiple change points are considered, L> 1, H0: L0 = 0 versus H1: L1 = L, where L is

the possible number of change points, is tested. If H0 is rejected, we then test H0: L0 = 1 versus

H1: L1 = L; otherwise, we test H0: L0 = 0 versus H1: L1 = L − 1 until we reach testing H0: L0 = l
versus H1: L1 = l + 1. For the last two hypotheses, if H0, is rejected, then the number of signifi-

cant change points declared is l + 1, otherwise, it is l.

Simulation studies

Three simulation studies are conducted to evaluate the performance of our approach in detect-

ing and testing change points. We assume that the number of change points is unknown and

fixed. We first determine the potential maximum number of change points, Kmax, and then

conduct the permutation test to identify the number of significant change points. We consider

the following three cases: (1) when there are no change points, (2) when there is only one

change point, and (3) when there are two change points. Using the likelihood ratio test pro-

posed by [11], we determined Kmax. We can treat the first case with zero significant changes

out of Kmax as a type I estimated error. The second case is considered to have occurred when

one change point is significant out of Kmax and the other change points are not significant. The

third case is considered to have occurred when the two change points are significant and the

other change points are not significant.
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Simulation Study 1: No change points—Type I error

Type I error is studied by simulating 100 data sets from the CP-SISM with no change points

(the model under the null hypothesis) that takes the form:

yis � Poisðmisjβ; usÞ;

mis ¼ f ðb1x1is þ b2x2is þ b3x3isÞ þ us;
ð11Þ

i ¼ 1; 2; . . . ; n and s ¼ 1; 2; . . . ; r;

with six locations (r = 6) and 100 observations at each location (n = 100). We set the true

parameters as β = (β1, β2, β3) = (−0.5, 1, 1), σu = 1, so the mean function is equal to μs = f(X β)

+ us = (−0.5x1 + x2 + x3)2 + us. In this setting, there is no change point. The permutation test is

used to detect any significant change point and it is found that the null hypothesis is rejected 6

times out of the 100. This means that the Type I error of the test is maintained approximately

at 5%.

Simulation Study 2: A single change point at each city

In this section, two cases are considered: (1) there is one common change point for all cities,

and (2) there are different change points for cities.

One common change point for all cities. One hundred data sets are simulated from the

proposed model (CP-SISM), in which

yis � Poisðmisjβ; y; usÞ;

mis ¼ f ðb1x1is þ b11½x1is � y�þ þ b2x2is þ b3x3isÞ þ us;
ð12Þ

i ¼ 1; 2; . . . ; n and s ¼ 1; 2; . . . ; r;

with six locations (r = 6) and 100 observations at each location (n = 100). Three explanatory

variables (x1, x2, and x3) are generated from Uniform(π, 2π). We set true parameters β = (β1,

β2, β3, β11) = (−0.5, 1, 1, 1), (θ, σu) = (4.7, 1), and the mean function μs = f(X(θ)β) + us =

(−0.5x1 + [x1 − 4.7]+ + x2 + x3)2 + us. In this setting, there is a common change point at θs = θ =

4.7 for all s (s = 1, 2, . . ., r). Here, β2 is set to 1 to fix the identifiability problem. Based on the

mean squared error (MSE), and mean, median and inter-quartile range (IQR) of the estimates,

the estimation would be evaluated. In addition, the proportion of the significant detected

change points is calculated.

We set the dependence range ρu = 2, and the variance of the spatial effects σu = 1. The

domain of [0, 3] × [0, 3] is used in this simulation study because the range of the distance

between spatial locations of latitude and longitude in the motivating data set is found to be

about 2. ysjμs is generated from Poisson distribution with mean μs|us. The reason for not using

a large value of σu in the simulation is to ensure we do not obtain a negative mean value, where

the response variable has the Poisson distribution.

Table 1 shows that the mean estimates of all the parameters are close to the true values for

all the parameters and change points.

To obtain the empirical coverage probability for the model parameters and the change

point, 500 data sets are simulated based on the setting that is described above, and the model

parameters and the change point are estimated for each simulated data set. Then, 10,000 ran-

dom samples of size 30, with replacement, are selected from each parameter estimate (the

model parameters and change point) and a 95% confidence interval is calculated for each

parameter, for each sample. The coverage probability of each parameter is estimated by
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calculating the proportion of the confidence intervals that contain the true parameters. The

results are reported in Table 1, which shows the confidence intervals achieve the near nominal

coverage probability.

Different change points for cities. Similar to the simulation in Study 1, 100 data sets are

simulated from the following model:

yis � Poisðmisjβ; ys; usÞ;

mis ¼ f ðb1x1is þ b11½x1is � ys�þ þ b2x2is þ b3x3isÞ þ us;
ð13Þ

i ¼ 1; 2; . . . ; n and s ¼ 1; 2; . . . ; r;

with six locations (r = 6), 100 observations at each location (n = 100). Three explanatory vari-

ables (x1, x2, x3) are generated from Uniform(3, 4). We set true parameters β = (β1, β2, β3, β11)

= (1, 0.3, 0.3, 3), and the mean function μs = f(X(θ)β) + us = (x1 + 3[x1 − θs]+ + 0.3x2 + 0.3x3)2

+ us. The data are generated such that every two locations share the same change point, three

different spatial change points in total. The first two locations have a change point at 3.2 (θ1 =

θ2 = 3.2), the second two locations have change points at 3.5 (θ3 = θ4 = 3.5), and the last two

locations each have a change point at 3.8 (θ5 = θ6 = 3.8). The variance of the spatial effects is 1,

σu = 1. The [0, 3] × [0, 3] domain is used in this simulation study. Three cases are considered

for the dependence range (ρu = 0.5, 1, and 2). Here, ρu = 0.5 means there is not much depen-

dence, and ρu = 2 means a high dependence range. y s|μs is generated from the Poisson distri-

bution with mean μs|us. Fig 3(a) shows a random simulated data set based on this setting.

Under this setting, it is found that the spatial variance estimate is over-estimated, so a penalty

value is used, λ, in the M-step of the proposed estimation algorithm.

Fig 3(b) shows the average of AIC at each value of λ. It reveals that the optimal value is

about 1.9. One hundred data sets are generated from this setting, and using the optimal value

of λ, the MSE, mean, median, and IQR of the estimates are calculated to evaluate the estimat-

ing approach. The permutation-based test is used to test the significance of the detected change

points and the proportion of the significant detected change points is calculated as well.

Table 2 shows the results of the 100 simulated data sets. It shows that the performance of the

proposed model in detecting change points works well. The model parameter estimates are

close to the true values and have quite small standard error and MSE. The model parameter

estimates and detection of change points under different values of dependence range, ρu, are

comparable. The proportions of significant detected change points for the different values of

the dependent range are 98% for ρu = 0.5, 97% for ρu = 1, and 97% for ρu = 2.

Table 1. Results for 500 simulated data sets from CP-SISM with one common change point; the mean, median, MSE, 95% confidence interval, and empirical cover-

age probability of the model parameters and change point.

True Mean Median MSE 95% CI Coverage probability

β1 -0.5 -0.5174 -0.4984 0.024 (-0.547, -0.488) 94.27%

β3 1 1.0056 1.0026 0.003 (0.9949, 1.0103) 94.07%

β11 1 1.0300 1.0172 0.029 (0.9925, 1.0419) 91.02%

θ 4.7 4.693 4.7000 0.054 (4.6731, 4.7137) 95.51%

σu 1 0.9964 0.9620 0.159 (0.9614, 1.0314) 94.53%

https://doi.org/10.1371/journal.pone.0315413.t001
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Fig 3. Simulated data set of six locations, every two locations has equal change points (a), and average AIC versus the penalty value, λ (b).

https://doi.org/10.1371/journal.pone.0315413.g003

Table 2. Results of 100 simulated data sets: MSE, mean, median, and standard error of the model parameters and change points estimates for different values at dif-

ferent dependence range, ρu = 0.5, 1, 2.

True Mean ± SE MSE Median IQR

ρ = 0.5 β2 0.3 0.31 ± 0.021 0.033 0.27 0.08

β3 0.3 0.30 ± 0.043 0.042 0.30 0.10

β11 3 3.09 ± 0.067 0.130 2.75 0.15

θ1 3.2 3.21 ± 0.001 0.002 3.20 0.05

θ2 3.5 3.51 ± 0.007 0.004 3.55 0.10

θ3 3.8 3.78 ± 0.005 0.007 3.80 0.05

σu 1 1.03 ± 0.051 0.122 0.93 0.15

ρ = 1 β2 0.3 0.29 ± 0.020 0.032 0.26 0.09

β3 0.3 0.30 ± 0.046 0.042 0.27 0.08

β11 3 2.89 ± 0.065 0.130 2.67 0.13

θ1 3.2 3.23 ± 0.001 0.002 3.20 0.05

θ2 3.5 3.49 ± 0.002 0.004 3.45 0.10

θ3 3.8 3.73 ± 0.002 0.007 3.75 0.05

σu 1 0.97 ± 0.041 0.124 0.92 0.15

ρ = 2 β2 0.3 0.26 ± 0.027 0.033 0.24 0.10

β3 0.3 0.25 ± 0.095 0.046 0.24 0.11

β11 3 2.66 ± 0.105 0.134 2.33 0.14

θ1 3.2 3.16 ± 0.015 0.005 3.15 0.10

θ2 3.5 3.45 ± 0.012 0.006 3.40 0.10

θ3 3.8 3.74 ± 0.008 0.010 3.70 0.05

σu 1 0.98 ± 0.128 0.138 0.94 0.19

https://doi.org/10.1371/journal.pone.0315413.t002

PLOS ONE Semiparametric change points detection using single index spatial random effects model

PLOS ONE | https://doi.org/10.1371/journal.pone.0315413 December 12, 2024 12 / 21

https://doi.org/10.1371/journal.pone.0315413.g003
https://doi.org/10.1371/journal.pone.0315413.t002
https://doi.org/10.1371/journal.pone.0315413


Simulation Study 3: Two change points

One hundred and fifty data sets are simulated from the proposed model (CP-SISM),

yis � Poisðmisjβ; ys; usÞ;

mis ¼ f ðb1x1is þ b11½x1is � y1�þ þ b12½x1is � y2�þ þ b2x2isÞ þ us;

i ¼ 1; 2; . . . ; n and s ¼ 1; 2; . . . ; r;

with six locations (r = 6) and 100 observations at each location (n = 100). Two explanatory var-

iables (x1 and x2) are generated from Uniform(π, 3π). We set true parameters β = (β1, β2, β11,

β12) = (1, 1, −2, 1.5), (θ1, θ2, σu) = (4.5, 7.5, 1), and the mean function μs = f(X(θ)β) + us = (x1 +

[x1 − 4.5]+ + [x1 − 7.5]+ + x2)2 + us. In this setting, there are two change points at θ1 = 4.5 and

θ2 = 7.5 for all locations. Here, β2 is set to 1 to fix the identifiability problem. Based on the

mean, median, and MSE of the estimates and 95% confidence interval of the model parame-

ters, the estimation would be evaluated. Table 3 shows that in the estimation based on the cri-

teria that are used, the model parameters are well estimated.

Real data application

In this section, our approach is applied to our motivating data. Non-accidental mortality

(ICD-10 codes A00-R99) data are obtained from Statistics Korea and historical weather data,

such as daily average temperature, pressure, and humidity, are obtained from the Korea Mete-

orological Administration. Non-accidental mortality (excluding deaths related to accidents) is

chosen because it has been widely used in previous studies. The non-accident mortality and

weather variables were recorded daily from January 2000 to December 2007 for six major cities

in South Korea: Busan, Daegu, Daejeon, Gwangju, Incheon, and Seoul. The total number of

records is 2,922 days with 668,583 deaths. The weekly data are also created from this daily

data, which resulted in 417 observations at each city. The latitude and longitude in this moti-

vating data set are further explained in S1 Table of the supporting information.

In previous studies, a change point was estimated for each city separately and a common

change point was considered [16, 18, 20, 36]. In addition, testing the change point was not

conducted.

Our goals are simultaneously (1) estimate the relationship between the weekly non-accident

mortality (y) and mean temperature (x1), adjusting for other covariates such as mean humidity

(x2), mean pressure (x3), and month as a factor (x4); (2) to detect the possible spatially depen-

dent change points in temperature of each city; and (3) to test whether the detected spatial

change points are significant by using the proposed permutation-based test. In our weekly

motivating data, we have four explanatory variables (p = 4) and 417 observations for each city

(n = 417).

Table 3. Results for 150 simulated data sets from CP-SISM with two change points; the mean, median, MSE, and

95% confidence interval of the model parameters and change point.

True Mean Median MSE 95% CI

β1 1 0.991 0.990 0.092 (0.943, 1.038)

β11 -2 -2.002 -1.986 0.077 (-2.047, -1.959)

β12 1.5 1.507 1.497 0.077 (1.480, 1.536)

θ1 4.5 4.527 4.500 0.033 (4.498, 4.557)

θ2 7.5 7.471 7.500 0.034 (7.439, 7.504)

σu 1 1.112 1.095 0.220 (1.045, 1.178)

https://doi.org/10.1371/journal.pone.0315413.t003
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Detecting and testing a common change point

The proposed model, with a common change point of all cities θs = θ, has the form

ys � Poisðμsjβ; y; usÞ;

μs ¼ f ðb1x1 þ b11½x1 � y�þ þ b2x2 þ b3x3 þ b4x4Þ þ us;
ð14Þ

and with no common change point, it takes the form

ys � Poisðμsjβ; y; usÞ;

μs ¼ f ðb1x1 þ b2x2 þ b3x3 þ b4x4Þ þ us; s ¼ 1; 2; . . . ; r:
ð15Þ

One common change point is detected. We then test whether this detected change point is

significant. The results are compared to the case of aggregating the data of all cities by ignoring

spatial effects.

Table 4 shows that the proposed model, CP-SISM, fits the data better than the aggregated

model does, in which the R2 (=0.69) of CP-SISM is much higher than R2 (=0.22) of the aggre-

gated data model is. However, the same change point value (θ = 22oC) is detected and found to

be significant, but the p-value of the proposed model is smaller. The standard error and confi-

dence intervals of the parameters and change point are calculated using a permutation

approach as follows:

Step 1. A sample of observations from each city (with replacement) is randomly selected.

Step 2. The model parameters and the change point are estimated.

1. Step 1—Step 2 are repeated 500 times and the standard error and confidence interval are

calculated for each parameter and change point.

It is found that the change point estimate of the proposed model has a smaller standard

error compared to that of the aggregated model. Fig 4 shows that detecting the change point

by smoothing the unknown function does not give an accurate value. The change point by

smoothing the unknown function is about 24oC. However, based on the permutation test, the

change point of the proposed model is about 22oC. Fig 4(a) shows the smoothed function for

aggregated data and Fig 4(b) shows the smoothed functions for the six cities from the proposed

model. The smoothed function of the aggregated data is wigglier compared to the smoothed

functions of the proposed model. Fig 5(b) shows that the highest mortality is for Busan and the

lowest mortality function is for Gwangju and Seoul.

Table 4. Parameter estimates, standard errors, change points detected, p-values, and R2 of CP-SISM and the

aggregated data model, assuming there is one common change point.

Aggregated Model CP-SISM

b̂1
-1.769±0.035 -1.334±0.034

b̂11
2.439±0.036 1.782±0.033

b̂2
.0963±0.001 -0.145±0.0003

b̂4
-0.4852±0.018 0.319±0.0048

ŝu — 29.99

θ±SE(θ) 22 ± 0.124 22 ± 0.111

p-value 0.019 0.009

R2 0.22 0.69

https://doi.org/10.1371/journal.pone.0315413.t004
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Regarding the single index coefficient estimates and their standard errors, Table 4 shows

that the standard errors estimated by the permutation method for the proposed model are

smaller than those of the aggregated model. We also noticed that some of the coefficients are

different in the sign. For both models, the coefficient of the mean pressure is set to 1 to fix the

identifiability problem.

Fig 4. Scatter plot along with the detected common change point (a), Spline smoothed mortality-temperature function of all the six cities (b).

https://doi.org/10.1371/journal.pone.0315413.g004

Fig 5. Smoothed mortality function of the aggregated data of the six cities (a) and the smoothed mortality functions from the proposed model

(b).

https://doi.org/10.1371/journal.pone.0315413.g005
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Detecting and testing various change points

The proposed model has the following form:

ys � Poisðμsjβ; ys; usÞ;

μs ¼ f ðb1x1 þ b11½x1 � ys�þ þ b2x2 þ b3x3 þ b4x4Þ þ us; s ¼ 1; 2; . . . ; r:
ð16Þ

Simultaneously, the model is estimated, the spatially dependent possible change points are

detected, and the detected change points are tested to determine whether they are significant.

The results are compared to the case of detecting a change point in each city separately and

then tested to determine whether it is significant.

Table 5 shows the change points that are detected in case of no spatial effects (each city is

analyzed separately) and the proposed model, CP-SISM, along with the standard errors and p-

values. It is found that the change points that are detected and tested simultaneously are com-

parable to the no spatial effects case. However, the parameter estimates of the CP-SISM have

smaller standard errors.

Under the CP-SISM, the smallest change point value is for Seoul and Gwangju (22.4), and

the highest change point value is for Busan (23.2). In addition, for the no spatial effects case,

one can see that three of the cities have insignificant change points (Incheon, Busan, and

Daegu). For the CP-SISM, R2 is improved (R2 = 0.73) compared to the one common change

point case (R2 = 0.69). The improvement is not significant because the detected change points

are close and close to the common change point value except Busan city change point which

has a higher change point compared to the other cities. As a result, the difference between the

two models’ R2 values is not big.

Fig 6(a) compares the change points detected in each city under the CP-SISM and under

the case of detecting a change point in each city separately. To check whether these change

points of the CP-SISM are different, the 95% confidence interval for each detected change

point is calculated using the permuted standard error and shown in Fig 6(b). It reveals the con-

fidence intervals of the detected change points overlap, except for Busan city. This explains

why there is not much difference between the two cases: one common change point and the

spatially dependent change points case. These two cases are also compared in terms of the

model parameter estimates and the results are summarized in Table 6. It shows they have com-

parable parameter estimates and standard errors, as well as comparable estimate values of spa-

tial effects. It shows that the smallest spatial random effects are of Seoul and Daejeon and the

Table 5. Detected change points in the two cases: No spatial effects considered (change point is detected and tested

for each city separately), and spatial effect considered in our proposed model, CP-SISM (change points are

detected and tested simultaneously).

No spatial CP-SISM

ŷs � seðŷsÞ
p-value ŷs � seðŷsÞ

Busan 23.2±0.131 0.371 23.2±0.112

Incheon 22.8±0.132 0.148 22.8±0.122

Seoul 22.6±0.136 0.019 22.4±0.124

Daegu 22.6±0.133 0.059 22.6±0.121

Daejeon 22.6±0.142 0.029 22.6±0.109

Gwangju 22.4±0.131 0.049 22.4±0.113

R2 = 0.73 and p-value = 0.000

https://doi.org/10.1371/journal.pone.0315413.t005
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highest is of Busan, which is much higher compared to the other cities. Busan has the highest

change point value and the highest mortality.

Discussion and conclusion

A semiparametric regression model (CP-SISM) is introduced to simultaneously estimate the

nonlinear temperature-mortality relationship, detect spatially dependent change points, and

test to determine whether they are significant based on a permutation-based test, and a unified

method is proposed. Simulation studies are conducted for two cases: change points are spa-

tially independent and change points are spatially dependent. Simulation studies showed that

our approach works well in estimating, detecting, and testing spatial change points

simultaneously.

The advantages of our proposed approach are demonstrated using epidemiology data on

mortality and temperature, as well as other weather variables that were collected daily from six

Fig 6. The 95% confidence interval for each change point (a) and a radar plot of the significant detected change points using the proposed model

(CP-SISM) and no spatial random effects considered case (b).

https://doi.org/10.1371/journal.pone.0315413.g006

Table 6. Parameter estimates and standard errors, spatial effect estimates of the proposed model (CP-SISM) in case one common spatial change point is assumed,

θ, and in case different spatially-dependent change points are assumed, θ = (θ1, . . ., θ6).

CP-SISM CP-SISM

A common change point Spatially-dependent change points

Parameter estimates b̂1
-1.334± 0.035 -1.436± 0.032

b̂11
1.782± 0.036 2.104± 0.031

b̂2
-0.145±0.001 -0.145± 0.001

b̂4
0.319± 0.018 0.2921±0.011

Spatial effects Busan 13.28 13.99

Incheon -2.91 -2.18

Seoul -7.73 -7.11

Daegu 3.53 4.30

Daejeon -8.35 -7.56

Gwangju -3.29 -2.73

https://doi.org/10.1371/journal.pone.0315413.t006
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major cities in South Korea. It is found that cities have close change points, except Busan city,

which has a higher change point value and higher mortality. The proposed model, CP-SISM,

with one common change point for all cities, is compared to the aggregated data model that is

commonly used in previous studies, and the proposed model was found to be much better in

terms of fitting the data (higher R2) and detecting the significant spatial change point (smaller

p-value and standard error). The proposed model, CP-SISM, with possible spatially dependent

change points, is compared to the case of each city’s data separately analyzed to detect its

change points, which is considered in many previous studies. It is found that the change-point

values are comparable, but three cities have insignificant change points in the case of separately

analyzed city data (previous studies have not tested the change points detected) and the

change-point estimates of the CP-SISM have smaller standard errors and smaller p-values.

The proposed model with one common change point is compared to the spatially depen-

dent change points case. Both models showed that Busan City has the highest mortality, and

Seoul and Daejeon have the lowest mortality. The CP-SISM with spatially-dependent change

points has a higher R2 value and detected that one of the cities (i.e., Busan) has a higher change

point compared to the other cities.

The proposed model offers several opportunities for extension and enhancements to

improve the estimation method. The proposed model assumes the mean mortality function

over the cities has the same shape; however, this assumption can be relaxed and can use differ-

ent functions for different cities.

In the proposed model, it is assumed that the mean mortality functions, f(�), over cities,

have the same form and then detect and test the change points. It is possible to consider change

point detection for the non-parametric part f(�). This approach would involve identifying shifts

in the functional form or underlying structure of f(�) over locations. Implementing change

point detection in a non-parametric context, however, may require different techniques, or

other non-parametric hypothesis tests, to effectively capture and detect changes in f(�). The

model assumes that the slopes before and after the change point are the same for all cities, but

different slopes can be used. In the model estimation, a grid search is used to obtain the change

points, however, better methods can be used such as assuming the change points are random

variables following some distribution with some mean and variance, such as a normal distribu-

tion. This will reduce the estimation time, especially if the Bayesian approach is used. The pro-

posed approach is applied to 6 cities in South Korea, but it can be applied to cities from

different countries. In some countries, the spatial effects may be integrated into the mean func-

tion as follows:

μju; β; y ¼ f ðXðθÞβþ ZuÞ:

In this case, there will be no identifiability problem for the single index function, and for

some countries, the spatial random effects may not be additive to the nonparametric function.

Mortality was found to depend on pollutant and weather variables as an index (a linear combi-

nation of these variables). In this context, a variable selection method can identify significant

index variables affecting mortality. To address the identifiability issue and facilitate variable

selection, the constraint ||β|| = 1 can be applied instead of fixing the first parameter of β to 1.

The proposed model can be extended to accommodate generalized linear models beyond the

Poisson framework. For instance, when the response variable is binary, methods designed for

estimating single-index functions can be applied using Bernoulli distribution. Once the single-

index model is estimated using such an approach, the subsequent steps in the proposed meth-

odology become straightforward.
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Environmental epidemiology often provides high-dimensional variables so we need to

detect many change points. In this case, we can build a high-dimensional nonparametric

model using deep neural network tools and visualize these high-dimensional change points

using computer vision. These connections among machine learning architecture [37], com-

puter vision [38, 39], and statistical models will provide more flexible analytical tools for com-

plex data.
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