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ABSTRACT
Decision-making in many industries relies heavily on accurate forecasts, including
the insurance sector. The Social Insurance System (SIS) in Egypt, operating under a
fully funded paradigm, depends on reliable predictions to ensure effective financial
planning. This research introduces a hybrid predictive model that combines fuzzy
time series (FTS) Markov chains with the tree partition method (TPM) and difference
transformation to forecast total pension benefits within Egypt’s SIS. A key feature of
the proposed model is its ability to optimize the partitioning process, resulting in the
creation of nine intervals that reduce computational complexity while maintaining
forecasting accuracy. These intervals were consistently applied across all fuzzy time
series models for comparison. The model’s performance is evaluated using established
metrics such as MAPE, Thiels’ U statistic, and RMSE. Additionally, prediction interval
coverage probability (PICP) and mean prediction interval length (MPIL) are used to
assess the quality of prediction intervals, with a 95% prediction interval serving as the
baseline. The proposed model achieved a PICP of approximately 95%, indicating well-
calibrated prediction intervals, although the MPIL of 424.5 reflects a wider uncertainty
range. Despite this, the model balances coverage accuracy and interval precision
effectively. The results demonstrate that the proposed model significantly outperforms
traditional models like linear regression, ARIMA, and exponential smoothing and
conventional FTSmodels like Song,Chen, Yu, andCheng by achieving the lowestMAPE
with the value of 11.8% for training and 10.65% for testing. This superior performance
highlights the model’s reliability and potential applicability to further forecasting tasks
in the field of insurance and beyond.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Social Computing
Keywords Fuzzy time series, Markov chain, Predictive method, Insurance, Forecasting

INTRODUCTION
Forecasting is a critical aspect for solving problems, particularly in various businesses
and the insurance industry, where predictions of future events must inform decision
making. Therefore, forecasting techniques enable the insurance authorities to anticipate
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future results and formulate strategies accordingly. Thus, accurate and efficient forecasting
systems are highly sought after in this industry (Khalil, Liu & Ali, 2022a).

The social insurance system (SIS) plays a pivotal role in countries around the world
as a cornerstone of social welfare and economic stability. Its significance lies in its ability
to provide a safety net for individuals and families during times of need, ensuring that
unforeseen events such as illness, unemployment, or disability do not lead to financial
ruin (Liu et al., 2023; Raouf & Elsaieed, 2022). Consequently, the SISs serve as a means for
individuals to actively participate in safeguarding their future. Thus, these systems rely
on contributions from both workers and employers, effectively distributing risks among
a wide population. By doing so, social insurance programs promote social cohesion and
mitigate income disparities, thereby cultivating a sense of security and well-being among
the populace (Chen et al., 2022).

SIS holds profound significance in countries as a critical component of their economic
and social fabric. Additionally, these programs often stimulate economic growth by
maintaining consumer spending even in times of economic downturns, as individuals
have a safety net to fall back on. Moreover, they contribute to the overall health and
productivity of the workforce, as access to healthcare and unemployment benefits can
prevent individuals from falling into poverty traps. In essence, social insurance embodies
a nation’s commitment to the welfare and resilience of its citizens, promoting economic
stability and social justice. Simultaneously, it is widely acknowledged as a fundamental
issue that numerous nations grapple with due to the intricate interplay between this matter
and its implications on public finances (Raouf & Elsaieed, 2022).

In Egypt, SIS operates on a fully funded model where employee contributions are
invested for pension payouts, evolving over time to include elements of a defined benefit
plan. Governed by laws, the latest being Law 148/2019, this legal framework aims to
modernize the system. However, Egypt’s SIS faces challenges due to fragmentation and
diverse benefit packages for different workforce segments, covering areas like old age,
disability, and illness. Unsustainability and inefficiency arise from low real interest rates
for pension fund investments, generous pensions, and flexible pension adjustments based
on recent contributions. Many workers under-report their income throughout most of
their working careers to reduce their payments, threatening the system’s financial viability
(Kassem, 2021; Loewe & Westemeier, 2018). In light of Egypt’s significant and increasing
total benefits (pension), which have exhibited a notable upward trajectory in recent years,
there is a need to forecast these benefits for the coming years.

Actuarial models are employed to estimate annual benefits, forming the basis for
demographic and financial predictions in pension systems. These models rely on factors
such as demographics and economics and are vital for supporting policy decisions.
Consequently, the integration of actuarial methodologies in tandem with predictive
analytics assumes paramount importance in comprehending and forecasting future
behavioral trends or occurrences, thereby furnishing the requisite support for informed
policy formulation and decision-making. In essence, the prediction and evaluation of
benefits have utmost significance for actuaries in their capacity as advisors for strategic
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decision-making within the realm of social insurance (Hassani, Unger & Beneki, 2020;
Raouf & Elsaieed, 2022).

In our study, we utilized a summative modeling approach to predict retirement benefits,
primarily based on historical data trends within the Egyptian social insurance system.
Unlike traditional actuarial methodologies, which often employmortality projections, such
as cohort-based mortality tables to estimate future pension payments, our method focused
on the available data. Actuarial literature, particularly from the Government Actuary’s
Department and other studies, highlights the importance of mortality assumptions for
accurately forecasting long-term pension liabilities. These actuarial models predict benefit
changes by incorporating life expectancy data, where pension growth is typically modeled
multiplicatively, reflecting the natural increase in benefit payouts as retirees age and
longevity improves (Booth & Tickle, 2008).

However, due to the unavailability of detailed mortality data for Egypt’s population,
we were unable to apply these traditional methods. Instead, we relied on a summative
model, in which retirement benefits are predicted based on observed incremental changes
in benefits, rather than factoring in mortality or life expectancy. Although our approach
may seem basic by comparison, it offers a practical solution given the constraints of the
available data. Incorporating more complex actuarial models in future work, including
mortality rates, could provide a more refined projection of retirement benefits (Belloni &
Maccheroni, 2013; Ingale & Paluri, 2023).

The study’s motivation and contribution
Fuzzy time series (FTS) models have exhibited more effectiveness in comparison to
traditional forecasting methods in the field of forecasting, particularly when dealing
with datasets that are incomplete, ambiguous, or have a limited number of observations
(Khalil, Liu & Ali, 2024a). Furthermore, these models do not require the imposition of
statistical assumptions. They use mathematical reasoning to build models and forecast
future events based on historical linguistic data. In contrast to the traditional approaches
taken for predicting time series, the inherent unpredictability of temporal observations is
acknowledged and accounted for by fuzzy time series forecasting techniques. This eliminates
the requirement for strict assumptions and a substantial amount of prior knowledge about
the observed data. Moreover, it is important to highlight that fuzzy time series forecasting
techniques demonstrate competence in handling a restricted number of data, emphasizing
their flexibility and usefulness (Mao & Xiao, 2019; Wu et al., 2021).

In recent times, there has been a notable proliferation in the adoption of hybrid
models as a means to enhance predictive accuracy. It has been demonstrated that the
utilization of hybrid approaches frequently results in enhanced performance outcomes.
The fundamental concept underlying hybridization models is their ability to synergistically
enhance the identification of patterns in data. Numerous studies, both theoretical and
empirical, have provided evidence supporting the notion that combining multiple models
through hybridization leads to enhanced performance as compared to the utilization of a
single model in isolation (Chen & Chen, 2015; Hadwan et al., 2022; Khairalla & Al-Jallad,
2017; Khozani et al., 2022).
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Numerous fuzzy time series models have been advanced for predictive purposes across
diverse domains. Building upon themerits inherent in thesemodels and their demonstrated
efficacy in predicting, this study presents a hybrid FTS that builds on the strengths of the
fuzzy time series Markov chain (FTSMC), the difference transformation data technique,
and the Tree Partition technique (TPM) for making predictions. The primary aim of
this model is to forecast the total benefits (pensions) of the social insurance system in
Egypt, reflecting a commitment to harness the capabilities of advanced methodologies for
enhancing predictive accuracy in this specific application domain. The research presents
several significant contributions to literature as outlined below:

1- The efficacy of FTS in modeling non-linear, with inherent uncertainties and
accommodating linguistic variables, and providing adequate performance
with limited data availability. Thus, this study investigates a hybrid prediction
model that combines fuzzy time series with Markov chain, by leveraging
the tree partition method (TPM) and data transformation method to
enhance the accuracy of forecasting the total benefits (pensions) of the
social insurance system in Egypt. Three metrics are proposed to evaluate the
prediction performance of the model. This method can enhance the accuracy
and effectively manage challenges in insurance data, such as uncertainty
and limited dataset size, and assist actuaries in fulfilling their professional
obligation to engage in strategic decision-making inside insurance businesses.

2- To the best of our knowledge, this work is the first empirical investigation
to employ a hybrid FTS that builds on the strengths of the fuzzy time series
Markov chain (FTSMC), the difference transformation data technique, and
the tree partition technique (TPM) for predicting the total benefits (pensions)
of social insurance system in Egypt. This research addresses a large gap in
existing insurance literature, making it a valuable contribution to the field.

3- Finally, the author’s primary objective is to provide insurance authorities with
a thorough and practical technique that can assist actuaries in fulfilling their
professional duty of making strategic decisions within the realm of the social
insurance system. Overall, the study offers several important contributions
to the field of insurance and gives crucial insights into the Egyptian social
insurance system.

The remainder of this work is outlined as follows: ‘Background and Literature Review’
provides a brief introduction to prior studies. ‘Data & Evaluation Methods’ provides a
detailed account of the research methodology, including the research design, describe the
specific techniques and approaches that were employed in the study and the evaluation
metrics. The findings are presented and analyzed in ‘Results and Discussion’. Finally, we
present the conclusion in ‘Conclusions’.

BACKGROUND AND LITERATURE REVIEW
Forecasting within the domain of insurance holds significant importance, necessitating
the application of various statistical and soft computing methodologies. These methods
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play a pivotal role in the prediction of events and trends within the insurance industry.
Enhanced forecasting capabilities are instrumental in aiding actuaries in their professional
responsibilities, enabling the informed and strategic decision-making processes inherent to
the management of social insurance systems. For instance, Ying et al. (2017) present a deep
learning based RNN framework for forecasting payment behaviour using real data from
Taiwan’s Ministry of Health and Welfare. This model outperforms SVM and HMM in
various settings, although it addresses individual payment predictions, which differs from
our research focus. Khalil, Liu & Ali (2022a) tried to forecast the loss ratios in petroleum
insurance using both ANFIS and ARIMA models. They found that the ANFIS models
provided more accurate results than the ARIMA models.

Fuzzy time series methods
In recent years, an increasing number of researchers have employed fuzzy time series
methodologies to address prediction challenges as in Alyousifi et al. (2020), Alyousifi et al.
(2021), Arnita, Afnisah & Marpaung (2020), Jilani, Burney & Ardil (2008), Lee et al. (2017),
Mao & Xiao (2019), Rahim et al. (2018), Raouf & Elsaieed (2022), Tsaur (2012) and Wu
et al. (2021). These fuzzy time series models have demonstrated notable efficacy when
juxtaposed with conventional forecasting approaches, particularly within the realm of
forecasting methodology. Tsaur (2012) designed a new model that integrates Fuzzy Time
Series analysis with Markov chain simulation, referred to as FTSMC. This model was
devised to ascertain suitable weights for fuzzy relationships within time series patterns,
thereby enhancing model accuracy. However, FTSMC exhibits a limitation as it relies on
arbitrary partitioning of intervals and does not possess the capability to determine the
optimal interval length. This limitation constitutes a drawback in the context of effectively
determining interval length within this hybrid model.

Fuzzy time series in insurance and actuarial science
Fuzzy time series (FTS) has become an invaluable tool in insurance and actuarial science,
particularly for dealing with the uncertainty, vagueness, and imprecision inherent in many
actuarial datasets. Actuaries, who traditionally rely on precise statistical methods, often face
challenges when working with datasets where variability and ambiguity prevail common
in areas like mortality rates, claims forecasting, and pension liabilities. The integration of
fuzzy logic within time series models offers a flexible and powerful approach to overcoming
these challenges.

Several studies have employed FTS methods to address various predictive challenges
in insurance and actuarial science, including car accidents, profitability, insurance claims
forecasting, and mortality rates. For example, Jilani, Burney & Ardil (2008) developed
a multivariate fuzzy time series model for predicting car accidents in Belgium. Their
approach demonstrated superior performance compared to existing techniques, offering
actuaries a robust tool for forecasting in both car and life insurance contexts. Similarly, De
Andrés-Sánchez & Puchades (2019) proposed a fuzzy-random extension of the Lee–Carter
model, which integrates uncertainties in time-dependent mortality trends (using ARIMA)
and age-dependent coefficients (represented by triangular fuzzy numbers). This enhanced
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model significantly improved the accuracy of mortality predictions, outperforming the
original Lee–Carter model as well as other fuzzy-based extensions in predicting central
mortality rates, death probabilities, and life expectancies.

Hong et al. (2021) expanded on this work by combining the Lee–Carter model with
machine learning and statistical techniques such as random forest (RF), artificial neural
networks (ANN) and ARIMA to forecast mortality rates. Their findings indicated that the
LC-ANN model achieved the highest accuracy in countries with less efficient healthcare
systems, such as Malaysia, whereas the LC-ARIMA model performed better in regions
with more advanced healthcare infrastructures. This integration of machine learning
methodologies further enhanced the precision of mortality predictions.

Raouf & Elsaieed (2022) contributed to the field by developing several fuzzy time
series models, including those proposed by Chen and others, aimed at forecasting social
insurance benefits. They recommended the use of the Huarng partitioning method to
determine optimal interval lengths. Empirical validation confirmed that the Chen model,
combined with Huarng partitioning, provided high forecasting accuracy with low error
rates during both training and testing phases. This underscores the effectiveness of FTS
methods in enhancing the accuracy and reliability of actuarial forecasts across diverse
applications.

Fuzzy time series in other fields
On the other hand, the FTS method proved efficiency for predicting in other
fields. For instance, Lee et al. (2017) improved FTS models by using the F-transform
technique to reduce prediction errors, achieving greater accuracy in forecasting, such as
student enrollment and Taiwanese patent data, and underscoring the value of dataset
transformation. Arnita, Afnisah & Marpaung (2020) predicted rainfall in Medan using
fuzzy time series models, comparing Chen (1996), Markov chain, and Cheng, Chen &
Chiang (2006) variations. The Chen method proved most accurate based on the lowest
MAPE values, with intervals determined using average-based principles. Alyousifi et al.
(2020) used a fuzzy time series Markov chain (FTSMC) model with a grid technique
to optimize partitions for predicting daily air pollution in Klang, Malaysia. This model
improved prediction accuracy and outperformed traditional statistical models, making
it a potentially more reliable method for forecasting air pollution. Alyousifi, Othman &
Almohammedi (2021) developed a hybrid forecasting model using Markov chain and C-
Means clustering for fuzzy time series data. This model showed superior performance over
existing models on real datasets, including TAIEX trading data and PM10 concentrations
in Melaka, Malaysia.

FTS is a broad field that comprises various models used in different fields. These
models might vary based on aspects such as the choice of model, characteristics of the
dataset, methodology for partitioning, and the selection of tools for assessing correctness.
Therefore, the primary objective of our study is to anticipate the total benefits (pensions)
within SIS in Egypt using the proposed hybrid predictive model. The primary objective
of this approach is to attain exceptional forecast accuracy, as supported by empirical
evidence. The primary benefit provided by the suggested model is in its ability to optimize
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the partitioning process, therefore mitigating computational complexity and decreasing
the associated computational load in the forecasting task.

FUZZY TIME SERIES AND PROPOSED METHOD
The concept of fuzzy set theory was first proposed by Zadeh (1965). This theory is
utilized to tackle the challenges of ambiguity and uncertainty that arise in practical
situations, by providing a framework for representing and analyzing linguistic fuzzy
information. The utilization of FTS models has been widespread and has contributed
to significant advancements in various fields. The original FTS model is developed
by Song & Chissom (1993); Song & Chissom (1994) utilized the max–min composition
technique, but it encountered computational difficulties. Chen’s (1996) subsequent model
introduced simplifications to the calculations; however, it did not incorporate suitable
weight mechanisms for fuzzy logical connections (FLRs).

Numerous researchers have since made modifications and enhancements to FTS models
in order to boost the accuracy of predictions such as Chen & Hwang (2000), Huarng
(2001a), Huarng (2001b), Huarng & Yu (2006), Hwang, Chen & Lee (1998) and Yu (2005).
These improvements encompass a range of weighing mechanisms, extended linguistic
intervals, and other division algorithms. The application of fuzzy theory, as refined by Yu
(2005) has been observed in several conventional FTS models, such as those used for stock
price predictions. The application of various weighted technologies was utilized by Yu to
improve the accuracy of forecasting.

On the other hand, Cheng, Chen & Chiang (2006) merged FTS with a trend-weighting
technique tomake forecasts for both real stock prices and university enrolment. Combining
fuzzy sets with the time series model generates the idea of fuzzy time series. The essential
procedures for constructing fuzzy time series models encompass the establishment of a
defined universe of discourse U, the partitioning of U into a uniform number of intervals,
the process of fuzzification, the specification of fuzzy logic relations, the determination of
forecasted values, and the subsequent defuzzification.

Previous literature has provided several key definitions of fuzzy time series that have
been constructed. These definitions are outlined as follows (Chen, 1996; Song & Chissom,
1993; Song & Chissom, 1994):

Definition 1
Let X(t )(t =1 ,2,3,..,n,) represent a collection of real numbers, serving as the universe
of discourse within which fuzzy sets fi(t ) are defined. The collection F(t ), denoted as
f1(t ),f2(t ),...,fn(t ), is referred to as a fuzzy time series defined on X(t ).

Definition 2
A fuzzy set refers to a category of entities that possess a continuous range of membership
grades. Let U denote the Universe of discourse, which is defined as U = u1,u2,...,un,
where ui represents the potential linguistic values within U. Then a fuzzy set of linguistic
variables Ai of U is defined in Eq. (1) by

Ai=
fAi (u1)
u1
+

fAi (u2)
u2
+ ...+

fAi (un)
un

, (1)
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where fAi represents the membership function of fuzzy set Ai, and fAi (u1) represents the
degree of belonging of u1 to Ai, if ui is a member of Ai.

Definition 3
The fuzzy logic relationship (FLR) between F(t−1) and F(t ), indicated as R(t ,t−1), can
be represented as F(t −1)→ F(t ). If R(t ,t −1) is independent of t for any given t value,
then,

R(t ,t−1)=R(t−1,t−2). (2)

Definition 4
Let us assume that the value of F at time (t−1) is denoted as Ai, and the value of F at time
(t ) isdenoted as Aj . The FLR, or Forward-Looking Relationship, is a term used to describe
the connection between two consecutive observations, F(t −1) and F(t ). It is denoted as
Ai→Aj , where Ai represents the left-hand side of the FLR and Aj represents the right-hand
side.

Tree partition method (TPM)
TPM methodology is a partition approach introduced by Alyousifi, Othman &
Almohammedi (2021) to linguistic partitioning that has been devised as a way for re-
partitioning, utilizing the average length of the initial sub-intervals, particularly the average
inter-quartile range. Themethod outlined in this study is characterized by its simplicity and
effectiveness in determining the optimal interval lengths for obtaining an ideal partition of
the universe of discourse (U), in contrast to clustering methods. In the majority of research
conducted on fuzzy time series, U is partitioned into intervals of equal duration. However,
fuzzy time series models may not provide aesthetically pleasant prediction outcomes in
situations where the distribution of the universe of speech is not uniform. Therefore, the
tree partition method is implemented in this study. Figure 1 shows the flowchart of TPM,
and the steps of the suggested partition method are outlined in detail as follows:
First step: The universe of discourse, denoted as U, is defined.
Second step: This universe is partitioned into a minimum of three and a maximum of

five equal-length intervals.
Third step: Calculate the frequency of each sub-interval based on the observations in

data. Then, the average of sub-intervals’ frequencies is calculated.
Fourth step: To optimize the granularity of the intervals, if any of the sub-intervals

exceed the computed average length, a further division of the specific sub-interval into two
equal parts is undertaken. This procedure is repeated until no individual sub-interval is
longer than the average length at the outset.

Fifth step: In the end, the number of partitions where the smallest sub-interval is shorter
than the average is taken into account for subsequent calculations and analysis.

The proposed model
In this study, a hybrid predictive model that integrates fuzzy time series Markov chain
(FTSMC) with the TPM and the difference transformation data method for predicting
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START

Define the universe of discourse (U)

U = [ Dmin - D1 , Dmax +  D2 ]

Partition U into n interval 

where 3 ≤ n ≤ 5

Calculate the frequency of each sub-
interval (fui) based on the first
partition in the previous step

Calculate the average of the
frequency of all sub-intervals

The average = sum (fui) / n

Is there

 any sub-intervals exceed the
computed average

YES

Divide the sub-intervals that exceed
the average into half-length

NO

END

Figure 1 The flowchart of TPM algorithm.
Full-size DOI: 10.7717/peerjcs.2500/fig-1

the total benefits (pensions) of the SIS in Egypt. The proposed framework utilizes the
simplified arithmetic operations of the FTSMC model, as developed by Tsaur (2012). The
phases of the suggested model are illustrated in Fig. 2 and can be delineated in detail as
follows:
Step 1:
This step collects the total benefits (pensions) of SIS in Egypt and preprocessing the

data using the difference transformation data method and splitting data into training and
testing datasets using the holdout (80:20) splitting approach.

Step 2:
The universe of discourse (U) is defined and established based on the dataset collection

using Eq. (3) below:

U = [Dmin−D1,Dmax+D2], (3)
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Preprocessing dataCalculating the first difference data

Defined the universe of discourse U 

Divide the universe of discourse (U)
into partitions based on Tree

Partition Method (TPM)

Implement the Tree partition method
to determine  the optimal number of

partitions based on TPM and

Defined the fuzzy sets and fuzzify
the time series into linguistic values

Determine fuzzy relations and
establish fuzzy logic relationships

group (FLRG)
Calculate Markov chain weights  

Defuzzification and Forecast value

Model validation and Evaluate the
model perfomance

Collecting data of SIS

Figure 2 The proposed model’s framework.
Full-size DOI: 10.7717/peerjcs.2500/fig-2

where the minimum number of observations is Dmin andthe maximum is Dmax . The
numbers D1 and D2 are both positive integers.

Step 3:
In this step, the universe of discourse (U) is divided into numerous partitions, and the

optimal number of partitions is determined using the TPM algorithm, as discussed in
subsection (tree partition method).

Step 4:
The fuzzy set, denoted as Ai, is a collection of things that possess a continuous

membership grade. This membership grade is determined using the universe of discourse
(U), which is defined as u1,u2,...,un, as specified in Eq. (1). Next, the fuzzy sets are
established for each real value of the time series by assigning them fuzzy numbers
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determined by the maximum membership value, following the intervals outlined in
Step 3.

Step 5:
In this step, the fuzzy logical relationships (FLRs) are established between the linguistic

values F (t−1)=Ai and F (t )=Aj , denoted as Ai→Aj , for all FLRs. For instance, FLRs
such as A1→A1, A1→A2, and A1→A3 are determined. Subsequently, the fuzzy logical
relation groups (FLRGs) are categorized and transformed into groups A1→A1, A2 and A3.

Step 6:
The Markov weights, also known as the transition probability matrix, are derived from

the frequencies of the established FLRGs in Step 6. Thematrix P is Pn×n. The state transition
probability, denoted as Pij , is the probability of transitioning from state Ai to state Aj . This
probability can be determined using Eq. (4) as follows:

Pij =
Nij

Ni
, i,j = 1,2,3,.....,n, (4)

where Nij represents the count of transitions from state Ai to state Aj , while Ni represents
the overall count of transitions in state Ai.

Step 7:
Determine the forecasted values through the process of forecasting. The calculation of

forecasts considers the following rules. Two cases are being considered: one-to-one and
one-to-many.

Rule 1, when the fuzzy logical relationship group ofAi exhibits a one-to-one relationship,
meaning there is only one transition for Ai, the forecasting of F(t ) is determined by mk ,
which represents the midpoint of uk . Here, k ranges from 1 to n. This calculation may be
performed using the Eq. (5) as follows:

F (t+1)=mk .Pij =mk . (5)

Rule 2. when Ai fuzzy logical relationship group contains more than one transition, also
known as ‘‘many-to-one’’. To calculate the predicted value F(t+1), the following Eq. (6)
can be used if the state is Ai for the actual value Y (t ) at time t.

F (t+1)=m1.Pi1+m2.Pi2+ ...+Y (t ).Pii+ ...+mk .Pin, (6)

where m1,....,mk represents the midpoint of u1,....,uk .
Step 8:
Calculate the final value of prediction after adding adjusted values by using Eq. (7) as

shown below:

F∗(t+1)= F (t+1)±D, (7)

where F∗(t )represents the final prediction value after the adjustment, F (t ) isthe prediction
value before the adjustment. D is the adjustment value according to the differences to
reduce the estimated error.
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Table 1 The dataset description.

Year Private
sector

Government
sector

Total
benefits
in millions

Year Private
sector

Government
sector

Total benefits
in millions

1976 58 121 179 1998 5003 5252 10255
1977 40 145 185 1999 5846 6034 11880
1978 52 162 214 2000 6798 6689 13487
1979 69 195 264 2001 7563 7742 15305
1980 105 243 348 2002 8314 9590 17904
1981 121 207 328 2003 8996 10791 19787
1982 352 401 753 2004 9756 12240 21996
1983 425 436 861 2005 10590 13988 24578
1984 485 557 1042 2006 12865 15441 28306
1985 553 641 1194 2007 13398 16867 30265
1986 631 779 1410 2008 15170 19311 34481
1987 688 841 1529 2009 18139 19488 37627
1988 824 1013 1837 2010 18456 22660 41116
1989 969 1275 2244 2011 22124 28724 50848
1990 1134 1417 2551 2012 28164 35568 63732
1991 1386 1714 3100 2013 35777 33640 69417
1992 1706 2037 3743 2014 43175 40558 83733
1993 2085 2353 4438 2015 51816 48554 100370
1994 2563 3019 5582 2016 59169 55495 114664
1995 3000 3587 6587 2017 67600 62300 129900
1996 3470 4107 7577 2018 77600 72800 150400
1997 4091 4810 8901 2019 92800 85700 178500

DATA & EVALUATION METHODS
Data description and preprocessing of pension payments in Egypt
The dataset presented in this study was acquired from authoritative sources, namely the
National Fund for Social Security and theMinistry of Insurance and Social Affairs (MOISA)
(https://www.capmas.gov.eg/Pages/Publications.aspx?page_id=5104&Year=23578). It
encompasses data from a substantial 44-year period, from 1976 to 2019, with annual
statistics specifically drawn from chapter/section 17 titled ‘‘Social Care’’ during the period
1979–2019. The records apply to the total benefits that are required by the social insurance
system, which include contributions from the government sector, public and private sector.
Table 1 and Fig. 3 show the total benefits of Egyptian social insurance system in million
during this study period.

To preprocess the data, we utilize the first difference transformation technique and
select the holdout (80:20) splitting approach. The division of data into training and testing
sets is a fundamental and essential practice in statistical modelling. This process plays a
critical role in evaluating the performance of the model and assuring its ability to effectively
generalize to new, unseen data. By training the model on one subset of the data and then
evaluating it on a distinct subset that it hasn’t seen before (Joseph, 2022; Kahloot & Ekler,
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Figure 3 The total benefit (in millions) graph.
Full-size DOI: 10.7717/peerjcs.2500/fig-3

2021). Based on the outcomes of our extensive review of the academic literature, it has been
observed that the holdout (80:20) splitting methodology is a widely employed method for
data partitioning, as previously employed in various studies (Hasanov, Wolter & Glende,
2022; Joseph & Vakayil, 2022), to divide our time series data into two independent sets. The
initial dataset comprised 80% of 2009 and covering the time frame from 1976 to 2009 and
was employed for the development of the models deployed in the training process. The
second subset consisted of 20% of the data collected between 2010 and 2019. This subset
was utilized to validate and assess the effectiveness of the proposed model.

In this study, we chose tomodel pension benefits using an additive approach, rather than
the commonly usedmultiplicativemodel, for several key reasons. First, the historical datawe
analyzed demonstrated non-linear and often irregular growth patterns, particularly during
periods of economic instability and policy changes. These variations were not adequately
captured by multiplicative models, which tend to assume more consistent exponential
growth. The additive model, on the other hand, allowed us to represent incremental
changes more accurately, particularly during periods of slower or more erratic growth,
where the assumption of constant percentage increases would lead to overestimations.
Additionally, the additive approach provides greater flexibility in scenarios where pension
increments are driven by fixed monetary adjustments rather than proportional increases,
which was observed in some segments of our data. By employing an additive model, we
aimed to reflect the real-world dynamics of the pension system under study, acknowledging
that while multiplicative models may bemore suitable for scenarios with consistent growth,
the additive model better fits the specific characteristics of our dataset.
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The evaluation metrics of forecasting models
The evaluation of a model’s performance is dependent on its ability to generate forecast
values that are closely aligned with the observed values for testing dataset. To evaluate the
efficacy of the proposed model, four distinct forecast consistency measures were utilized.
Four statistical criteria, namely mean absolute percent error (MAPE), Thiels’ U statistic,
and root mean square error (RMSE), were adopted as measures of forecasting accuracy
to assess the models (Khalil, Liu & Ali, 2024b; Khalil et al., 2022b; Rashidpoor Toochaei &
Moeini, 2023), as defined in Eqs. (8)–(10), respectively. The measures are presented as
follows:

MAPE =
100
n

n∑
t=1

∣∣∣∣yt −y∗tyt

∣∣∣∣, (8)

Thiels
′

U=

√∑n
t=1(yt −y

∗
t )2√∑n

t=1(yt )2+
√∑n

t=1(y
∗
t )2

, (9)

RMSE =

√√√√1
n

n∑
t=1

(yt −y∗t )2, (10)

where yt and y∗t denote actual and predicted model data samples, respectively. n is the
sample size. y t is the average of actual data.

Evaluation metrics for the prediction interval of the proposed model
Prediction intervals are typically assessed by their ability to accurately encompass the target
values (reliability) and their overall width (sharpness). Two widely used, independent
metrics for evaluating precise prediction intervals are the prediction interval coverage
probability (PICP), which measures reliability, and the mean prediction interval length
(MPIL), which measures sharpness. These metrics are briefly described below.

Prediction interval coverage probability (PICP)
PICP measures the proportion of observed data points that fall within the prediction
intervals generated by a model. It indicates how well the prediction intervals capture
the true values of the target variable (Adjenughwure & Papadopoulos, 2020). The PICP is
defined by using Eqs. (11) and (12) as follows:

PICP=
n∑

t=1

Ct

n
, (11)

where,

Ct =

{
1ifyLt ≤ yt ≤ yUt
0 otherwise

, (12)

where Ct refers to the number of observations within the prediction intervals, and n refers
to the total number of observations.
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Mean prediction interval length (MPIL)
MPIL quantifies the average width of the prediction intervals for all observations. It reflects
the precision of the predictions, with narrower intervals indicating greater prediction
accuracy (Tsao, Leu & Chou, 2021). The MPIL is defined by using Eq. (13) as follows:

MPIL=
1
n

n∑
t=1

(yUt −y
L
t ), (13)

where yUt and yLt are the upper and lower prediction limits for yt .

RESULTS AND DISCUSSION
This section provides a comprehensive calculation of the forecasting methods used in the
study, including the FTS and statistical employed. The aim is to provide a clear account of
the methodologies employed for data analysis, ensuring transparency and precision.

Experimental setup
The experiments were conducted on a computer equipped with a 2.60 GHz Intel(R)
Core (TM) i7-12700F CPU and 32 GB of RAM, running a 64-bit version of Windows
11. The framework was implemented using Python, with the dataset loaded via the
Pandas data frame. FTS methods were executed using the PYFTS library. The source
code and data associated with the proposed work have been made publicly accessible
on the author’s GitHub page (https://github.com/AhmedKhalil91/The-Benefits-of-Social-
Insurance-System-prediction.git).

The proposed model application
The calculations and implementation of the suggested method are fully illustrated in this
subsection. The procedure is as follows:

(1) Define the universe of discourse (U) from SIS data using Eq. (3).

U = [Dmin−D1,Dmax+D2]

U = [−20−5,4216+4]

U = [−25,4220].

(2) Divide the universe of discourse U based on TMP algorithm. Table 1 shows the
implementation of the proposed partition method based on the step that is illustrated in
the methodology section. Consequently, it has been determined that the frequencies of
u1,andu2 are greater than the mean. Subsequently, the intervals are divided into halves.
Then, we checked that again until we found there was not any sub-interval larger than the
average. According to the result of TPM implementation, the final number of partitions of
U is nine sub-intervals as shown in Table 2.

(3) Convert each time series’ real value into a fuzzy number using the intervals you
just put up as a guide, and then define the corresponding fuzzy sets using the maximum
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Table 2 TPM training dataset procedures description.

1st partition 2nd partition 3rd partition 4th partition

Interval Frequency Interval Frequency Interval Frequency Interval Frequency

[−25, 824] 18 [−25, 339.5] 13 [−25, 187.25] 10 [−25, 81.125] 5
[824, 1673] 7 [399.5, 824] 5 [187.25, 399.5] 3 [81.125, 187.25] 5
[1673, 2522] 4 [824, 1248.5] 3 [399.5, 824] 5 [187.25, 399.5] 3
[2522, 3371] 3 [1248.5, 1673] 4 [824, 1248.5] 3 [399.5, 824] 5
[3371, 4220] 2 [1673, 2522] 4 [1248.5, 1673] 4 [824, 1248.5] 3

[2522, 3371] 3 [1673, 2522] 4 [1248.5, 1673] 4
[3371, 4220] 2 [2522, 3371] 3 [1673, 2522] 4

[3371, 4220] 2 [2522, 3371] 3
[3371, 4220] 2

Repartition >6.8 Repartition >6.8 Repartition >6.8 Repartition >6.8

The average of frequency for the first partition = 18+7+4+3+2
5 = 6.8

If the frequency of all sub intervals is less than 6.8, then the partitioning process will end. Otherwise, the process of repartition should be continued

Notes.
The bold numbers represent the interval frequency that exceeds the average frequency of all sub-intervals.

Table 3 The fuzzy-numbered intervals.

Number of
intervals

Interval ui Mid-point of
interval (mi)

Interval
code

Fuzzy
number

1 [−25, 81.125] 28.0625 u1 A1

2 [81.125, 187.25] 134.1875 u2 A2

3 [187.25, 399.5] 293.375 u3 A3

4 [399.5, 824] 611.75 u4 A4

5 [824, 1248.5] 1036.25 u5 A5

6 [1248.5, 1673] 1460.75 u6 A6

7 [1673, 2522] 2097.5 u7 A7

8 [2522, 3371] 2946.5 u8 A8

9 [3371, 4220] 3795.5 u9 A9

membership value. Table 3 shows the fuzzy sets with the mid-point of each interval and its
fuzzy numbers. The linguistic time series of maximum membership is shown in Table 4.

(4) The fuzzy logic relationships (FLRs) are established based on the training dataset,
for instance, FLRs such as A1→A1, A1→A2, as shown in Table 5. Subsequently, the fuzzy
logical relation groups (FLRGs) are categorized and transformed into groups A1→A1, A2

and A3, as shown in Table 6.
(5) The transition probability matrix is calculated based on FLRGs that were created in

the previous step. Table 7 shows the Markov transition probability matrix based on the
probability of transitioning calculated by the frequencies of the established FLRGs using
Eq. (4).

(6) Calculate the forecasted values by using the rules that are illustrated in the proposed
methodology, with Eqs. (5) and (6) based on Markov transition probability matrix. For
example, the forecast value for year (1978) is calculated as following:
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Table 4 Linguistic time series.

No Linguistic time series values Ai

1 A1= 1
u1
+

0.5
u2
+

0
u3
+

0
u4
+

0
u5
+

0
u6
+

0
u7
+

0
u8
+

0
u9

2 A2= 0.5
u1
+

1
u2
+

0.5
u3
+

0
u4
+

0
u5
+

0
u6
+

0
u7
+

0
u8
+

0
u9

3 A3= 0
u1
+

0.5
u2
+

1
u3
+

0.5
u4
+

0
u5
+

0
u6
+

0
u7
+

0
u8
+

0
u9

4 A4= 0
u1
+

0
u2
+

0.5
u3
+

1
u4
+

0.5
u5
+

0
u6
+

0
u7
+

0
u8
+

0
u9

5 A5= 0
u1
+

0
u2
+

0
u3
+

0.5
u4
+

1
u5
+

0.5
u6
+

0
u7
+

0
u8
+

0
u9

6 A6= 0
u1
+

0
u2
+

0
u3
+

0
u4
+

0.5
u5
+

1
u6
+

0.5
u7
+

0
u8
+

0
u9

7 A7= 0
u1
+

0
u2
+

0
u3
+

0
u4
+

0
u5
+

0.5
u6
+

1
u7
+

0.5
u8
+

0
u9

8 A8= 0
u1
+

0
u2
+

0
u3
+

0
u4
+

0
u5
+

0
u6
+

0.5
u7
+

1
u8
+

0.5
u9

9 A9= 0
u1
+

0
u2
+

0
u3
+

0
u4
+

0
u5
+

0
u6
+

0
u7
+

0.5
u8
+

1
u9

F (1978)=Y (t ).p11+m2.p12+m4.p14
= 6∗0.6+134.187∗0.2+611.75∗0.2= 152.78

(7) Utilize Eq. (7) to compute the final predicted values. For instance, the subsequent
formula is utilized to compute the final forecast value for total benefits in the year 1978:

F∗(1978)= 152.78+23= 175.78

Then, the forecasted total benefits (1978)= 175.78+185= 360.78
Table 8 illustrates the forecasted values for the total benefits of Egyptian social insurance

system in million. The fitted value of the proposed model for training and testing datasets
is shown in Fig. 4.

The proposed model’s evaluation for the prediction interval
The proposed model’s outputs are evaluated for training and testing data using the
establishedmetrics of Prediction Interval Coverage Probability (PICP) andmean prediction
interval length (MPIL) to assess the quality of the prediction intervals and compared to
other traditional fuzzy and statistical time series models. A 95% prediction interval is
used as the baseline, with fuzzy numbers representing all intervals from 95% down to 0%.
As presented in Table 9, the PICP is approximately 95%, suggesting that the prediction
intervals are well-calibrated with near-perfect coverage. However, the MPIL of 424.5
indicates that the model generates relatively wide intervals, reflecting a substantial degree
of uncertainty in the data. This result suggests that the proposed model effectively balances
coverage accuracy and interval precision.

The results of the proposed model’s evaluation
In this subsection, the proposed model’s performance is evaluated using three statistical
criteria, namely mean absolute percent error (MAPE), Thiels’ U statistic, and root mean
square error (RMSE) for the training and testing datasets. In addition, to validate the
proposedmodel, we introduce a comparison of the proposedmodelwith existing traditional
fuzzy time series models that were proposed by Song & Chissom (1994), Chen (1996), Yu
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Table 5 Dataset training fuzzy number and fuzzy logic relationships.

Year Total benefits
in millions

Difference Fuzzy
number

Fuzzy logic
relationships

1976 179 0 A1 –
1977 185 6 A1 A1→A1

1978 214 29 A1 A1→A1

1979 264 50 A1 A1→A1

1980 348 84 A2 A1→A2

1981 328 -20 A1 A2→A1

1982 753 425 A4 A1→A4

1983 861 108 A2 A4→A2

1984 1042 181 A2 A2→A2

1985 1194 152 A2 A2→A2

1986 1410 216 A3 A2→A3

1987 1529 119 A2 A3→A2

1988 1837 308 A3 A2→A3

1989 2244 407 A4 A3→A4

1990 2551 307 A3 A4→A3

1991 3100 549 A4 A3→A4

1992 3743 643 A4 A4→A4

1993 4438 695 A4 A4→A4

1994 5582 1144 A5 A4→A5

1995 6587 1005 A5 A5→A5

1996 7577 990 A5 A5→A5

1997 8901 1324 A6 A5→A6

1998 10255 1354 A6 A6→A6

1999 11880 1625 A6 A6→A6

2000 13487 1607 A6 A6→A6

2001 15305 1818 A7 A6→A7

2002 17904 2599 A8 A7→A8

2003 19787 1818 A7 A8→A7

2004 21996 1818 A7 A7→A7

2005 24578 2599 A8 A7→A8

2006 28306 3728 A9 A8→A9

2007 30265 1959 A7 A9→A7

2008 34481 4216 A9 A7→A9

2009 37627 3146 A8 A9→A8

(2005), and Cheng Chen & Chiang (2006). It is important to note that all the fuzzy time
series models in the comparison, including the proposed model, were evaluated based on
the same number of intervals; specifically, nine intervals. This uniformity ensures that the
comparative results are fair and allows for a direct assessment of the relative performance
of the models under the same interval partitioning structure.
Table 10 reveals that the proposed model had the best overall performance in predicting

the total benefits of social insurance system in Egypt, compared to other traditional fuzzy
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Table 6 Fuzzy logic relationships groups (FLRG) for training dataset.

No FLRG

G1 A1→ (3)A1,(1)A2,(1)A4

G2 A2→ (1)A1,(2)A2,(2)A3

G3 A3→ (1)A2,(2)A4

G4 A4→ (1)A2,(1)A3,(2)A4,(1)A5

G5 A5→ (2)A5,(1)A6

G6 A6→ (3)A6,(1)A7

G7 A7→ (1)A7,(2)A8,(1)A9

G8 A8→ (1)A7,(1)A9

G9 A9→ (1)A7,(1)A8

Table 7 Markov transition probability matrix and count matrix based on FLRGs.

1 2 3 4 5 6 7 8 9
F 3 1 0 1 0 0 0 0 0

1
P 0.6 0.2 0 0.2 0.0 0.0 0.0 0.0 0.0
F 1 2 2 0 0 0 0 0 0

2
P 0.2 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0
F 0 1 0 2 0 0 0 0 0

3
P 0.0 0.33 0.0 0.67 0.0 0.0 0.0 0.0 0.0
F 0 1 1 2 1 0 0 0 0

4
P 0.0 0.2 0.2 0.4 0.2 0.0 0.0 0.0 0.0
F 0 0 0 0 2 1 0 0 0

5
P 0.0 0.0 0.0 0.0 0.67 0.33 0.0 0.0 0.0
F 0 0 0 0 0 3 1 0 0

6
P 0.0 0.0 0.0 0.0 0.0 0.75 0.25 0.0 0.0
F 0 0 0 0 0 0 1 2 1

7
P 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.5 0.25
F 0 0 0 0 0 0 1 0 1

8
P 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5
F 0 0 0 0 0 0 1 1 0

9
P 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0

Notes.
The bold numbers indicate the Markov transition probability for each interval based on FLRGs.

time series models, as it had lower values of MAPE, RMSE, and Thiels’ U for training
dataset with values of 11.8, 472.67, and 0.016 respectively. As well as, for testing dataset
with values of 10.65, 12999.6, and 0.064 respectively, as shown in Fig. 5.

The evaluation results indicate that the proposed model significantly outperforms
conventional models like linear regression, ARIMA, and exponential smoothing in both
training and testing datasets as shown in Table 11. With the lowest RMSE (472.67 for
training and 12,999.64 for testing), MAPE (10.653% for testing), and Thiels’ U (0.064 for
testing), the proposed model demonstrates superior accuracy and generalization ability. In
contrast, linear regression exhibits the poorest performance, particularly in the testing set,
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Table 8 Dataset training fuzzy number and fuzzy logic relationships.

Year Total
benefits

Difference Forecast
value

Adjusted
value

Adjusted
Forecast
value

Forecasted
Total
benefits

1976 179 0 – – – –
1977 185 6 149.18 6 149.18+6= 155.18 155.18+179= 334.18
1978 214 29 152.78 23 175.78 360.78
1979 264 50 166.58 21 187.58 401.58
1980 348 84 142.96 34 176.96 440.96
1981 328 −20 199.58 −104 95.58 443.58
1982 753 425 104.76 445 549.76 877.76
1983 861 108 292.96 −317 −24.03 728.96
1984 1042 181 166.16 73 239.16 1100.16
1985 1194 152 195.36 −29 166.36 1208.36
1986 1410 216 454.15 64 518.15 1712.15
1987 1529 119 209.36 −97 112.36 1522.36
1988 1837 308 454.15 189 643.15 2172.15
1989 2244 407 415.96 99 514.96 2351.96
1990 2551 307 454.15 -100 354.15 2598.15
1991 3100 549 415.56 242 657.56 3208.56
1992 3743 643 512.36 94 606.36 3706.36
1993 4438 695 549.96 52 601.96 4344.96
1994 5582 1144 947.69 449 1396.69 5834.69
1995 6587 1005 1248.50 −139 1106.53 6688.53
1996 7577 990 1155.40 −15 1140.40 7727.40
1997 8901 1324 1266.88 334 1600.88 9177.88
1998 10255 1354 1517.38 30 1547.38 10448.38
1999 11880 1625 1539.88 271 1810.88 12065.88
2000 13487 1607 1743.13 −18 1725.13 13605.13
2001 15305 1818 2823.88 211 3034.88 16521.88
2002 17904 2599 2946.50 781 3727.50 19032.50
2003 19787 1818 3071.88 −781 2290.88 20194.88
2004 21996 1818 2876.63 0 2876.63 22663.63
2005 24578 2599 2946.50 781 3727.50 25723.50
2006 28306 3728 2522 1129 3651 28229
2007 30265 1959 3354.13 −1769 1585.13 29891.13
2008 34481 4216 2522 2257 4779 35044
2009 37627 3146 2946.50 −1070 1876.50 36357.50

with an RMSE of 78,080.63. While ARIMA and exponential smoothing show comparable
results, their errors are notably higher than the proposedmodel’s, highlighting the proposed
model’s reliability and predictive efficiency.

Furthermore, Table 11 emphasizes the broader implications of this study for the
insurance sector, particularly in enhancing operational efficiency through an evaluation of
Egypt’s social insurance system and the development of precise analytical and predictive
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Figure 4 Plots of fit proposed model for training and testing datasets with the actual values of total
benefits.

Full-size DOI: 10.7717/peerjcs.2500/fig-4

Table 9 Evaluating model prediction intervals.

PICP MPIL

Linear regression 42.86% 1119.01
ARIMA 60% 2250.63
Exponential Smooth 60% 2250.63
Song & Chissom (1994) 100% 471.67
Chen (1996) 100% 471.67
Yu (2005) 100% 471.67
Cheng, Chen & Chiang (2006) 100% 471.67
The proposed model 100% 424.5

Table 10 The evaluation of the proposed model with traditional fuzzy time series models.

Model Evaluationmetric Rank

Training dataset Testing dataset

RMSE MAPE% Thiels’ U RMSE MAPE% Thiels’ U

Song & Chissom (1994) 879.41 17.31 0.033 13314.2 11.25 0.069 5th
Chen (1996) 553.26 16.76 0.025 13306.6 11.05 0.068 4th
Yu (2005) 501.50 12.92 0.02 13305.5 10.98 0.067 2nd
Cheng, Chen & Chiang (2006) 504.14 13.24 0.023 13306.6 11.05 0.068 3rd
The proposed model 472.67 11.80 0.016 12999.6 10.65 0.064 1st

Notes.
The bold numbers denote the lowest values of the evaluation metrics achieved by the proposed model.

methods. The study’s focus on the FTS model, known for its ability to capture complex,
non-linear patterns and uncertainties, further highlights its effectiveness in the Egyptian
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Figure 5 Plots of the evaluationmetrics for training and testing datasets for models.
Full-size DOI: 10.7717/peerjcs.2500/fig-5

insurance market, where conventional statistical approaches often face challenges due to
data constraints. The insights gained from this research provide valuable tools for insurers
aiming to improve risk management and profitability, while also holding relevance for
stakeholders such as regulators and consumers, potentially leading to more accurate
insurance pricing and improved policy frameworks.
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Table 11 The evaluation of the proposed model with conventional statistical models.

Model Evaluationmetric

Training dataset Testing dataset

RMSE MAPE% Thiels’ U RMSE MAPE% Thiels’ U

Linear Regression 4745.73 452.78 0.169 78080.63 62.82 0.564
ARIMA 805.08 12.03 0.028 52078.54 34.13 0.314
Exponential Smooth 551.10 13.86 0.019 52503.97 34.46 0.317
The proposed model 472.67 11.80 0.016 12999.64 10.653 0.064

Notes.
The bold numbers also represent the lowest values of the evaluation metrics achieved by the proposed model.

CONCLUSIONS
In conclusion, enhancing the accuracy of predicting social insurance benefits in Egypt
has far-reaching implications for countries around the world. Social insurance systems
are vital components of social welfare and economic stability, serving as a safety net for
individuals and providing economic security during times of need. Therefore, improving
prediction accuracy in this sector is essential for the efficient allocation of resources and the
sustainability of these systems. Accurate forecasting enables policymakers and insurance
providers to anticipate future needs, allocate resources more effectively, and adjust policies
proactively, ensuring that the system remains robust and responsive to changing social and
economic conditions.

Integrating actuarial methods with predictive analytics enhances understanding and
anticipation of future trends, supporting better decision-making and strengthening
social insurance systems worldwide. Recently, hybrid predictive methods have garnered
significant attention. This research introduces a novel hybrid predictive model combining
the fuzzy time series Markov chain, TPM, and the difference transformation data method
to forecast the total benefits (pensions) within Egypt’s social insurance system. The datasets
for this study were sourced from the National Fund for Social Security and the Ministry
of Insurance and Social Affairs (MOISA). The main goal of this model is to achieve high
forecast accuracy, as demonstrated by empirical evidence. The proposed model’s key
advantage lies in optimizing the partitioning process, thereby reducing computational
complexity and load during forecasting.

The model’s performance was assessed using standard statistical evaluation metrics
such as RMSE, MAPE, and Thiel’s U statistic, on both training and testing datasets.
The results were compared with traditional fuzzy time series models proposed by Song
& Chissom (1994), Chen (1996), Yu (2005), and Cheng, Chen & Chiang (2006). Findings
indicated that the proposed hybrid model significantly improved forecasting accuracy by
minimizing randomness and variability in the data. The model proved to be more robust
and outperformed traditional fuzzy time series approaches. This study contributes to the
literature by presenting a mathematical model applicable to estimating crucial values in
the insurance sector. It also opens up several avenues for future research on enhancing
predictive accuracy in social insurance systems.
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The main limitations of our study include the use of a first-order FTS model, which,
while simpler and less prone to overfitting, may limit the complexity of the predictions.
Additionally, the dataset was constrained to 44 years of data, focusing exclusively on the
Egyptianmarket, whichmay restrict the generalizability of the findings. The interpretability
of the fuzzy rules is also a potential limitation, as understanding the underlying reasons for
the model’s predictions could be improved.

Future research should explore alternative partitionmethods and higher-order or hybrid
FTS models, potentially integrating techniques such as ARIMA or exponential smoothing,
to enhance the interpretability and robustness of the model. Applying these methods to
datasets from different countries would also help increase the model’s generalizability.
Furthermore, the approach presented in this study could be extended to predict other
critical ratios within the insurance sector, potentially offering strong performance in
forecasting time series data in this field.
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