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Abstract
Purpose—Identification of coherent structures in cardiovas-
cular flows is crucial to describe the transport and mixing of
blood. Coherent structures can highlight locations where
minimal blood mixing takes place, thus, potential thrombus
formation can be expected thither. Graph-based approaches
have recently been introduced in order to describe fluid
transport and mixing between multiple Lagrangian trajecto-
ries, where each trajectory serves as a node that can be
connected to another trajectory based on their relative
distance during the course of time. Methods—In this study,
we compute the Lagrangian trajectories from in vitro planar
instantaneous velocity fields in two models of abdominal
aortic aneurysms, (AAA) namely single bulge and bi-lobed.
Then, we construct unweighted and undirected graphs based
on the pairwise distance of Lagrangian trajectories. We
report local measures of the graph namely the degree and the
clustering coefficient. We also perform spectral clustering of
the graph Laplacian to extract the flow coherent sets.
Results—Local graph measures reveal fluid regions of high
mixing such as vortex boundaries. Through spectral cluster-
ing, the fluid is partitioned into a reduced number of
coherent sets where within each set, inner mixing of fluid is
maximized while the fluid mixing between different coherent
sets is minimized. The approach reveals multiple coherent
sets adjacent to the AAA bulge that have sustained this
adjacency to the wall through their coherent motion during
one cardiac cycle.
Conclusion—Identifying coherent sets enables tracking their
transport during the cardiac cycle and identify their role in
the flow dynamics. Moreover, the size and the transport of
the long residing coherent sets inside the AAA bulges can be

deduced which may aid in predicting thrombus formation at
such location.

Keywords—Lagrangian trajectories graph, Spectral cluster-

ing, Abdominal aortic aneurysms, Flow coherent sets.

INTRODUCTION

In time dependent flows, we can identify coherent
structures by adding passive particles to the flow. Such
coherent structures organize the particles in recogniz-
able patterns or regions–that last for a relatively long
times—where fluid transport and mixing can be pro-
moted or inhibited.6 Identifying the Lagrangian
coherent structures (LCS) in blood flow gained major
attention as their identification can reveal flow recir-
culation or separation and characterize mixing in car-
diovascular systems.4,10,11,16,23 Four major Lagrangian
approaches have been used to identify coherent struc-
tures in various fluid flows, namely geometric, proba-
bilistic, braid-based and trajectory-based graph, see
Ref. 1 and 5 for comprehensive reviews of these
approaches.

In geometric approaches, obtaining eigenvectors
and eigenvalues of the right Cauchy–Green strain
tensor is the pivotal analysis. Such task requires the
knowledge of highly resolved spatial derivatives of a
given flow map. Then, the identified repelling and
attracting material surfaces and lines can be visualized
by plotting the finite-time Lyapunov exponent (FTLE)
fields. Among the four approaches, the geometric
approach has been extensively used in cardiovascular
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flows to deduce LCS. For instance, higher potential of
platelet activation (due to elevated level of accumu-
lated shear stresses) is reported to be maximized along
repelling LCS in a stenotic vessel24 or downstream of a
dysfunctional bileaflet mechanical aortic valve.10 Fur-
thermore, as the left ventricle (LV) can be a potential
location for mural thrombus formation in patients
with myocardial infarction, Badas et al.4 used FTLE
fields to identify critical flow structures that do not
reach the LV apex. The AAA is another potential
location for mural and intra-luminal thrombus. Arzani
and Shadden3 used, therefore, FTLE fields to show
that LCS reveal—precisely—the location of flow sep-
aration, vortex transport, fluid mixing regions and flow
impingement. Revealing the fluid transport skeleton, in
an AAA, can aid educing the mechanism of thrombus
formation and AAA progression.3 This follows the
finding of Bluestein et al.8 and Biasetti et al.7 who
noticed that platelet activation and deposition on the
AAA wall is correlated to blood recirculation and
stasis inside the AAA bulge. Shadden and Arzani23

provide a thorough review of geometric techniques to
identify Lagrangian coherent structures in cardiovas-
cular flows.

The probabilistic approach is centered around the
discrete version of the Perron-Frobenius operator
which requires, first, discretization of the fluid domain
into a number of boxes (each box represents a node).
By seeding each box with a defined number of La-
grangian particles at an initial advection time, the
transfer operator is estimated from the flow among
each pair of boxes after a defined time interval. Con-
sequently, from a graph theoretic point of view, a
weighted-directed graph can be constructed between
the boxes spanning the flow domain resulting in a
complex network. By using basic graph measures such
as the in- and out-degree, one can deduce information
about the fluid mixing, backward stretching, forward
fluid stretching and fluid dispersion.22 Similar to the
geometric approach, the probabilistic approach also
requires dense and highly resolved Lagrangian trajec-
tories, thus both methods are computationally expen-
sive.

In braids approach, the two dimensional physical
space of a sparse set of trajectories is used as a base to
include the time, thus forming a three dimensional
space. By projecting the trajectories on one of the
physical axes, we can detect a fluid coherent region by
finding the individual trajectories that form a braid
(similar to a rope), such region is called a coherent
bundle.2 Recently, Di Labbio et al.12 applied braids
approach to describe the intraventricular mixing and
how the quality and complexity of mixing can be af-
fected by different degrees of aortic regurgitation
severity. Despite the ability of braids to handle sparse

trajectories, advected particle positions are required to
be known during the entire time interval. Moreover,
due to its topological basis, braid theory can not be
extended to three dimensional flows.2

The last approach, trajectory-based graph, used
here, is computationally inexpensive and represents an
objective method for identifying the coherent sets in
cardiovascular flows. The central basis of this
approach is a set of Lagrangian trajectories that can be
sparse and incomplete.6,14,15 As each trajectory acts as
a node, a link is established between trajectories based
on their Euclidean distance along the whole time
interval as in Ref. 15. This method generates a
weighted and undirected graph which can be compu-
tationally demanding. To further simplify the graph,
Padberg-Gehle and Schneide21 established a link
between the trajectories that approach each other at
least once during the given time interval. Therefore, the
resulting graph becomes unweighted and undirected,
significantly reducing the computational cost. Local
measures of this simple graph such as the nodal de-
grees can reflect the amount of mixing each trajectory
has with other trajectories. Additionally, the nodal
clustering coefficient can indicate the trajectories that
form a connected cluster (or subgraph) where all its
neighbors become strongly connected. To extract the
coherent sets, a spectral clustering approach is used
with a k-means clustering algorithm to partition the
graph into a defined number of coherent cluster sets.
By doing so, one ensures that within each set, trajec-
tories are highly connected while the connection
between different set is minimized.

In this study, we will illustrate the application of the
trajectory-based graph approach on in vitro planar
instantaneous velocity fields in models of abdominal
aortic aneurysms (AAA). Two geometries are investi-
gated here, single bulge and bi-lobed AAAs. We will
compute graph local measures (degree and clustering
coefficient) and show their relation to mixing and
blood transport. Moreover, we will highlight the
transport of the coherent sets inside the two AAA
models.

METHODS

Graph Construction from Lagrangian Flow Trajectories

For a given N Lagrangian particle trajectories in a
time-dependent flow, a discrete-temporal representa-
tion of these trajectories during a defined time period
t 2 ½0;T� can be used as a starting point for the graph
analysis, see (a) in Fig. 1. Each trajectory is considered
as a node and all nodes are labeled as xi with i = 1,…,

N, and xi;t 2 R2: In cardiovascular flows, having direct
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access to the Lagrangian trajectories can be challeng-
ing. In this cases, the first step is to define the initial
time t0 which corresponds to a velocity field uðx; t0Þ
where a grid of Lagrangian particles will be located.
The particles are uniformly spaced (in x–y directions)
with a distance d: Now, as the particles follow their
Lagrangian trajectories in time for a time interval s
(using a fourth-order Runge–Kutta scheme), new
positions will be reached at each intermediate time-step
(between t0 and t0 þ s) by each particle leading to a
change in the distance between their respective trajec-
tories. Then, an edge is added (to the network) if two
trajectories come e-close to each other at any time step
during their temporal evolution, see (b) in Fig. 1. La-
ter, a graphical representation of the network can be
obtained, as in (b) of Fig. 1. However, the need to
further analyse the network necessitates using a
mathematical representation such as the adjacency
matrix S19

Sij ¼
max
0�t�T

1Ceðxi;tÞðxj;tÞ; i 6¼ j

0; i ¼ j;

(
ð1Þ

where Sij ¼ 1; if an edge exists between two trajectories
i and j. Under such condition, we can find the trajec-
tory xj;t in a circle Ceðxi;tÞ; with e-radius, away from

xi;t: Here, we need to select a value of e>0; a threshold

that can be applied on the distance between the tra-
jectories in the course of time interval s. Notably, as
the reported network is unweighted, we do not count
the number of encounters between trajectories which
means that trajectories that approach each other once
have Sij ¼ 1 similar to that of trajectories that become

closer more than once. Therefore, S is symmetric and
represents an unweighted-undirected graph as shown
in (c) of Fig. 1. To ensure that all nodes in the graph
have at least one connection, the lower bound of e
should be selected based on the 2D Euclidean distance
between the initially positioned particles. For instance,
if the initial particle locations are distributed over an
equally spaced grid, then e must be more than or equal
to the grid size spacing.

Nodal Degree

The local properties of the adjacency matrix can be
easily mapped to each individual node; for instance the

(a) (b) (c)

(d)(e)

FIGURE 1. Graphical illustration of Lagrangian particle graph analysis. (a) Four Lagrangian trajectories originating from an
initially located grid of particles being equally spaced with a distance d. Each trajectory is given a different color with a faded
region highlighting the e search region along each trajectory. The Lagrangian particle location is highlighted by a circle which is
colored based on the advection time (t0—red, t1—gray, t2—yellow and t3—black). (b) The graph constructed from the Lagrangian
particle locations in (a). Each node represents a corresponding trajectory which becomes connected to another node, if they
become e-close to each other at any given time instant. The edges are colored based on the timing when the e-closeness occurs
between the trajectories. The adjacency matrix is shown in (c) which represents a pairwise connection matrix of the graph in (b).
Each column and row is colored by its corresponding node (trajectory). Either a column-wise or a row-wise summation of the
adjacency matrix gives the degree of each node. The degree matrix, in (d), holds the values of nodal-degree in its diagonal. (e) The
computation of nodal clustering coefficients of the orange trajectory, CCi ; by using two graphs with different number of edges.
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nodal degree, Di as in (2), is used to count the number
of trajectories that become e-close to a trajectory i.
Then, the values of Di form the diagonal matrix D:
Panels (c) and (d) in Fig. 1 graphically show the
computation of the nodal degree matrix.

Di ¼
XN
j¼1

Sij; i; j ¼ 1; . . . ;N: ð2Þ

Clustering Coefficient

Another local graph property is the clustering
coefficient which indicates the degree of inner connec-
tion between the neighbors of a certain node i, as in (3)
(for undirected graphs)

CCi ¼
2ð# of triangles at node iÞ

DiðDi � 1Þ : ð3Þ

So, for a given node i, a high clustering coefficient
suggests that this node and its neighbors form a highly
connected subgraph.

Threshold Selection

In general, the graph and its measures depend on
the considered number of trajectories, the complexity
of the flow and the initial condition of the trajecto-
ries.13 However, the critical parameter for the graph
analysis is e.13,21 Therefore, Donner et al.13 linked the
selection of e to another graph parameter, the edge
density qðeÞ

qðeÞ ¼ 2EðeÞ
NðN� 1Þ; ð4Þ

where EðeÞ is the number of edges in the adjacency
matrix for a selected e: As the reader can notice, for a
given number of trajectories N, increasing e will in-
crease the edge density, thus the adjacency matrix will
become dense and more expensive –computationally–
to handle. By selecting large e values, the coherent sets
identified by graph measures become less representa-
tive of the flow dynamics as reported in Ref. 21.
Therefore, following the suggestion of Donner et al.,13

we select a value for e to lead to qðeÞ � 0:05:

Spectral Graph Partitioning

Graph partitioning aims to dividing the graph into a
set of subgraphs where nodes in each subgraph are
strongly connected while all subgraphs are minimally
connected amongst each.19 To partition an unidrected
graph, the Laplacian matrix is required. The graph
Laplacian is another matrix that can describe a graph.
For an unweighted and undirected graph, the Lapla-

cian matrix is symmetric with its non-normalized form
as defined in (5)

L ¼ D� S: ð5Þ

From the graph Laplacian and the degree matrix, Shi
and Malik25 proposed solving a normalized cut prob-
lem by considering the generalized eigenvalue problem
in (6)

Lv ¼ kDv: ð6Þ

Now, by sorting the eigenvalues in a ascending order
as 0 ¼ k1 � k2 � � � � � kN; the number of coherent sets
(clusters) can be identified by finding the number of
eigenvalues close to zero.9 To heuristically accomplish
such a task, we find the largest eigengap index k fol-
lowing Hadjighasem et al.15 as in (7)

k ¼ argmini½maxðkiþ1 � kiÞ�: ð7Þ

To extract the desired k clusters, we apply the standard
k-means clustering algorithm17 using the eigenvectors
vi; with i ¼ 1; 2; . . . ; k: In k-mean clustering algorithm,

k number of centers are created within R2 with a task
to minimize the mean-square distance between each
node and its closest center, thus each node can be as-
signed to a center (a cluster). By doing so, we ensure
that all trajectories within a cluster have strong con-
nections between each other and weak connections
with the remaining trajectories.

Finally, in order to validate our algorithm, we use
an analytical flow called the Bickleyjet. The identified
coherent sets match the ones reported in Ref. 21. The
reader is referred to Appendix—Supplementary
Materials for more details.

APPLICATIONS

Abdominal Aortic Aneurysms

To cluster the trajectories in AAA flows, we report
the flow inside two models of AAA namely single bulge
and a bi-lobed AAAs, see Ref. 20 for more details. By
using an in vitro setup as shown in Fig. 2, the flow
fields are measured using time-resolved planar particle
image velocimetry technique. The inlet flow waveforms
for both cases are shown in Fig. 2. These waveforms
correspond to a heart rate of 63 bpm while the
Womersely number at the AAA inlet is 13.2. The
resulting mean Reynolds number for all cases is
344 ± 7. As the duration of one cardiac cycle T is
0.953 s, the time axis in Fig. 2 is normalized so that it
indicates t� ¼ t=T: The original instantaneous 2D flow
fields are resolved over a grid with 0.6 mm spacing in
both x and y directions and a temporal resolution of

BIOMEDICAL
ENGINEERING 
SOCIETY

Spectral-Clustering of Lagrangian Trajectory Graphs 507



1.9 9 10�3 s. Table 1 summarizes the experimental
conditions that have been used to acquire the velocity
fields in both AAA models.

Initially, particles on a uniform grid (spaced at d =
1 mm) are released shortly after systole at a selected t0
as shown in Fig. 2. A bi-cubic interpolation is per-

formed to acquire the velocities at non original loca-
tions. Then, as particles are treated as passive, they are
advected in time using a fourth-order Runge–Kutta
scheme to find their locations at each intermediate
time-step between t0 and t0 þ s with s ¼ 1: The new
particle location is extracted at each time instant of the
original velocity fields. For graph construction, we
select e ¼ 2d (double the value of the initial particle
spacing) to ensure graph connectivity. Thus, every
node in the graph has to be connected, at least, to
another node. The values of edge density qðeÞ are
0.0178 and 0.021 for the single bulge and the bi-lobed
AAAs, respectively.

For the single bulge AAA, nodal degrees and clus-
tering coefficients show the initial location of the
propagating vortex ring (see the instantaneous velocity
field in Fig. 3). The vortex closer to the bulge has a
relatively low degree and clustering coefficients. No-
tably, regions with high clustering coefficients will be
mostly located at the vortex center, where the trajec-
tories and their neighbours are strongly connected. For
instance, the vortex closer to the bulge has relatively
lower clustering coefficient value at its center when
being compared with the other opposite vortex. This
indicates that for the vortex closer to the bulge wall,
trajectories are slightly distorted which justifies their
relatively higher nodal degree. In the supplementary
document, the reader can see the evolution of the
trajectories which justifies their corresponding degree
and clustering coefficient values. Now, between the
vortex pair, a strip with high degree and low clustering
coefficient can be noticed. As this high degree strip
coincides with the core of the propagating jet, thus, a
large number of trajectories are accelerated for a short
period through the narrow jet core while being close to
each other. Following this short acceleration, the tra-
jectories start to diverge where they become e-close to
additional new trajectories. Clearly, as the nodal de-

bFIGURE 2. The top part shows a schematic of the
experimental setup where the aortic model includes the
ascending aorta, the aortic arch, the descending aorta, and
the infrarenal abdominal aorta. At the infrarenal abdominal
aortic section, AAA model can be placed. The reported two
AAA models (single bulge and bi-lobed) are shown. Each AAA
model ends with aortic bifurcation into the left and right
common iliac arteries. The flow is produced by the means of a
gear pump with its motor being controlled via LabVIEW
interface. The outlet of the pump is connected to the aortic
inlet where a bioprosthetic valve is placed. The pump received
the working fluid from a high reservoir to ensure a
physiological mean aortic pressure. To close the circuit, the
flow passes from the iliac arteries back into the reservoir. The
bottom part shows the inlet flow waveform to the bi-lobed
AAA (in red) and the single bulge AAA (in blue) are shown.
The initial release time of the Lagrangian particles (t0) is
highlighted with a small circle on each flow rate curve.
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grees of these trajectories increase, their respective
local clustering coefficients decrease due to the rela-
tively weak connection between their new neighbours.
To highlight this behavior of trajectories inside the jet
core, further details have been included in the supple-
mentary document. At the AAA inlet, a region with
high degree and clustering coefficient can be observed;
the opposite can be found at the AAA’s outlet. Fur-
thermore, the trajectories starting at the bulge have low
degree and moderate clustering coefficient values. To
identify the coherent sets, the spectral gap in the
leading eigenvalues of the graph Laplacian identifies 15
clusters which are extracted by applying the k-means
clustering algorithm. The clusters are shown in Fig. 4.
To examine the temporal advection of the coherent
sets, we show two time instants; one is after half a
cardiac cycle has passed (t0 þ 0:5) and another after
one complete cycle (t0 þ 1). For a more detailed view
of the propagation of clusters, the reader can see the
supplementary videos. The clusters closer to the
AAA’s outlet (4 faded clusters) have a relatively
shorter life span as they leave the domain early,
therefore they will be excluded from our discussion .
Four clusters are adjacent to the bulge wall; these sets
experienced minimal transport from their initial loca-
tions while keeping their attachment to the wall, as
shown in Fig. 4. By advecting the clusters, we can
notice that the initial boundary, of each cluster, de-
forms with the motion of the particles. However, the
particles associated with each cluster keep a defined
boundary that is minimally invaded by other clusters.
For instance, see the blue cluster motion in Fig. 4
between (t0 þ 0:5) and (t0 þ 1). Interestingly, one
cluster can identify the coherence of the posterior
vortex between (t0) and (t0 þ 0:5) in Fig. 4.

For the bi-lobed AAA, the narrower area of the
aneurysm does not allow the development of a vortex
ring. Under these conditions, the longitudinal region,
facing the upper lobe, with high degree indicates higher
mixing where trajectories mix with each other more
frequently. Moreover, a low degree region can be no-

ticed at the lower bulge and the posterior wall. The
clustering algorithm identifies 9 coherent sets with the
lower three sets leaving the domain first (being faded in
Fig. 4). Three longitudinal coherent sets extend from
the inlet where one is adjacent to the upper lobe, the
second occupies the AAA center and extends to cover
the junction between the two lobes and the third
adjacent to the posterior wall. Another set includes the
trajectories starting inside the lower lobe. These tra-
jectories have minimally traveled away from their ini-
tial position, as shown in Fig. 4 and the supplementary
video material.

DISCUSSION AND CONCLUSION

In this study, we apply the simplest and the most
computationally-efficient trajectory-based approach to
analyze the fluid transport within two AAA models.
This approach uses an unweighted-undirected graph to
describe the connectivity between a coarse grid of
Lagrangian trajectories in the flow of interest. The
graph is described by the adjacency matrix which is
being sparse by connecting only the trajectories that
become e-close to each other at least once during their
life span. By doing so, the graph considers the trajec-
tories during all investigated time instants; unlike the
case of probabilistic approach where the fluid trans-
port is considered only at the initial and final time
instants.22 Using the simplest graph characteristics
(i.e., node degree and clustering coefficients), we re-
vealed regions with high or low mixing. Such charac-
teristics are sensitive to the value of e; therefore
Donner et al.13 suggested using an edge density qðeÞ �
0:05 in order to identify more representative clusters of
the dynamics in the investigated flow. Thus, we can
construct a sparse adjacency matrix that can represent
the investigated flow from a set of few trajectories. We
also utilize the spectral analysis of the generalized
graph Laplacian eigenvalue problem to extract the
number of coherent sets in each investigated flow. The

TABLE 1. Summary of the experimental conditions.

Working fluid properties Water–glycerol ratio 60–40 (% by volume)

Density (q) 1160 kg/m3

Dynamic viscosity (l) 0.0041 Pa s

Simulator operating conditions Infrarenal flow rate 1 ± 0.18 L/min

Cardiac period 0.952 s

Systolic pressure 153 ± 3 mmHg

Diastolic pressure ± 3 mmHg

Recording resolution Number of images/cardiac cycle 500

Temporal resolution 1.9 ms

Spatial resolution 0.6 mm
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number of flow coherent sets (clusters) matches the
index of the largest eigengap in the leading eigenvalues.
The results show the ability of the clustering algorithm
to define flow coherent sets where trajectories remain
close under the considered time span.

In cardiovascular flows, revealing the coherent sets
can help understanding the transport of individual sets
(clusters), for instance, the clustering algorithm is able
to identify the trajectories remaining inside the bulge in
the case of an AAA. The distribution and size of these
coherent sets can be related to the recirculation inside
the aneurysm. For instance, Bluestein et al.8 noticed
that the flow recirculation region inside the aneurysm
promotes thrombus formation and increases the pos-
sibility of rupture. A similar conclusion was drawn by
Biasetti et al.7 where they suggested that the platelet
activation and deposition on the AAA wall can be
attributed to the increased shear stress along the
boundary of the long staying fluid inside the bulge. In
this study, as the spectral clustering approach has been
able to partition the fluid into different coherent clus-
ters; by doing so, the approach has revealed the

boundaries of these sets including the ones being
adherent to the AAA wall.

Targeted drug delivery is another promising field
where identification of flow coherent sets can be
instrumental. Recently, Meschi et al.18 reported that
the LCS can be used to optimize an efficient targeted
drug delivery. Furthermore, in liver cancer treatment,
accurate and precise delivery of the radioactive do-
se—through the hepatic artery—only to the tumor
ensures the efficacy of the treatment.26 Notably, the
flow coherent sets (via spectral clustering) show the
origin of each set, while advecting the sets in time can
show their destination. Therefore, they can provide a
promising guiding map of potential initial injection
locations that can maximize the likelihood to reaching
the targeted destination.

Furthermore, the approach handles incomplete
trajectories that flee the domain faster due to their
closeness to the outlet; such ability was highlighted in
Ref. 21. Additionally, the approach can be easily ex-
tended to three dimensional trajectories despite not
being included in this study. Such approach can be

FIGURE 3. Left column shows the velocity fields in both AAA models at the initial particle advection time t0 ¼ 0:402 for the single
bulge, and t0 ¼ 0:39 for the bi-lobed AAA. This time is indicated by a circle on each flow rate curves in Fig. 2. The middle and right
columns show node degree and clustering coefficients for single bulge AAA (top row) and bi-lobed AAA (bottom row). The graph is
evaluated for e ¼ 2d and qðeÞ ¼ 0:0178 for the single bulge and qðeÞ ¼ 0:021 for the bi-lobed.
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directly implemented on three dimensional cardiovas-
cular flows being acquired via 4D-MRI or ech-PIV.
Under such condition, the trajectories can be con-
nected if they become e-close to each other, where e will
be the radius of a search sphere. Notably, the number
of identified clusters depends on the initial release time,
the value of e and the edge density. For instance, to
identify a coherent set that encompasses the intra-
vortical structures, their presence in the flow field at the
initial time is necessary.

The temporal resolution of the Lagrangian trajec-
tories also affects the graph measures and the spectral
clustering results, particularly in defining the vortical
structures. Interestingly, the temporal resolution does
not significantly affect the coherent sets adjacent to the
AAA bulge. This can be attributed to the minimal
transport of such coherent sets. Notably, the compu-
tational performance of the suggested algorithm can be
ensured by using a relatively small number of trajec-
tories. Clearly, using a small number of trajectories will
reduce the size of the adjacency matrix S, the graph
Laplacian L and the degree matrix D. Therefore,
solving the normalized cut problem by considering the

generalized eigenvalue problem in (6) will require less
time and computational resources. Moreover, as the k-
means clustering algorithm iteratively assigns each
node (trajectory) to their nearest cluster, one can ex-
pect that for a larger number of nodes, higher com-
putational resources could be required in order to
obtain the coherent sets.

In conclusion, in this work, we have illustrated the
applicability of spectral-clustering of particle trajectory
graphs to cardiovascular flows and more specifically to
the flow in models of AAAs. This is a very promising
approach that identifies and tracks coherent sets in a
flow field. This information is critical for the evalua-
tion of the risks of sub-optimal mixing in the presence
of cardiovascular disease or after the implantation of
cardiovascular medical devices.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material
available at https://doi.org/10.1007/s13239-021-00590-
3.

FIGURE 4. Identified coherent sets in single bulge and bi-lobed AAA at (t0), (t0 þ 0:5) and (t0 þ 1). The initial particle advection time
t0 ¼ 0:402 for the single bulge, and t0 ¼ 0:39 for the bi-lobed AAA. The right column shows the leading eigenvalues in each case
with the eigengap being defined by the vertical red line. The graph is evaluated for e ¼ 2d and qðeÞ ¼ 0:0178 for the single bulge AAA
and qðeÞ ¼ 0:021 for the bi-lobed AAA.
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