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Tables are everywhere, from scientific journals, articles, websites, and newspapers all the way to items we buy 

at the supermarket. Detecting them is thus of utmost importance to automatically understanding the content of 

a document. The performance of table detection has substantially increased thanks to the rapid development of 

deep learning networks. The goals of this survey are to provide a profound comprehension of the major 

developments in the field of Table Detection, offer insight into the different methodologies, and provide a 

systematic taxonomy of the different approaches. Furthermore, we provide an analysis of both classic and new 

applications in the field. Lastly, the datasets and source code of the existing models are organized to provide 

the reader with a compass on this vast literature. Finally, we go over the architecture of utilizing various object 

detection and table structure recognition methods to create an effective and efficient 
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system, as well as a set of development trends to keep up with state-of-the-art algorithms and future research. 

We have also set up a public GitHub repository where we will be updating the most recent publications, open 

data, and source code. The GitHub repository is available at 

https://github.com/abdoelsayed2016/tabledetection-structure-recognition. 
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1 INTRODUCTION 

Textbooks, lists, formulae, graphs, tables, and other elements are common in documents. Most 

articles, in particular, contain several sorts of tables. Tables, as a significant part of articles, may 

convey more information in fewer words and allow readers to quickly explore, compare, and 

comprehend the content. Table detection (TD) and structure identification are crucial tasks in image 

analysis because they allow retrieving vital information from tables in a digital format. Because of 

the document’s type and the variety of document layouts, detecting and extracting images or 

document tables is tough. Researchers have previously used heuristic techniques to recognize tables 

or to break pages into many parts for table extraction [51]. Few studies have focused on table 

structure recognition (TSR) in documents following TD [45, 141]. 

The layout and content analysis of documents are used to detect tables. Tables come in a number 

of layouts and formats. As a result, creating a general method for TD and TSR is quite difficult. TD 

is regarded as a difficult subject in the scientific community. A large number of studies have been 

conducted in this sector, although the majority of them have limitations, such as Table areas cannot 

be fully detected from document images (DIs) using current commercial and open-source document 

analysis algorithms, such as Tesseract [44]. 

Detecting and Structure recognition of tables in documents is challenging due to their varied 

layouts and formats, making the development of a universal detection and recognition method 

difficult. Despite extensive research, current algorithms like Tesseract struggle to accurately identify 

table areas, underscoring the complexity of this issue in document analysis [44]. 

In recent years, a variety of remarkable and creative strategies have been used to improve deep 

learning model detection accuracy and solve complex challenges encountered during the training 

and testing process of deep learning object recognition models. Modification of the activation 

function of deep convolutional neural networks (CNNs) [136], Transfer learning [71, 83], Image 

Inpainting [79, 138], cancer diagnosis, detection [1, 46], and classification [20], and medical 

question answers [2–4, 84], as well as software engineering applications such as optimizing the time 
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and schedule of software projects[8, 34], Customer Segmentation [6, 54], Intrusion Detection in IoT 

[80, 133] and handwritten recognition for various languages [55, 81, 91, 125], and inventive ways 

in the combined selection of the activation function and the optimization system for the proposed 

deep learning model are among these unique strategies. Among the various variables and initiatives 

that have contributed to the rapid advancement of TD algorithms, the development of deep 

convolutional neural networks (DCNNs) and GPU computational capacity should be credited. Deep 

learning models are now widely used in many aspects of computer vision, including general TD [28, 

109]. Table structures, on the other hand, receive far less attention, and the table structure is typically 

characterized by the rows and columns of a table [52, 82]. 

Figure 1 shows a basic pipeline comparison of deep learning techniques and conventional 

approaches for the task of understanding tables. Traditional table recognition (TR) techniques either 

can’t handle varied datasets well enough or need extra metadata from PDF files. Extensive pre- and 

post-processing were also used in the majority of early approaches to improve the effectiveness of 

conventional TR systems. However, deep learning algorithms retrieve features using neural 

networks, primarily CNNs [126], instead of manually created features. Object detection or 

segmentation networks then try to differentiate the tabular portion that is further broken down and 

recognized in a DI. 

This survey examines deep learning-based TD, recognition, and classification architectures in 

depth. While current evaluations are comprehensive [19, 139], the majority of them do not address 

recent advancements in the field. 

TD [78, 94, 105] is a foundational task in the domain of DI analysis. This process seeks to identify 

the presence and precise location of tables within a document or image. The primary goal of TD is 

not to interpret or understand the data within the table but rather to demarcate its boundaries 

within the broader document space. Tables are structured data representations that carry substantial 

informational weight in documents, making their accurate detection crucial. This is especially 

significant in scanned documents or PDFs where tables cannot be programmatically accessed but 

need to be extracted for further data analysis or transformation. While TD is about finding where a 

table is, TSR [48, 109] delves deeper. It involves understanding the internal layout, organization, 

and relationships of components within a detected table. Specifically, this means identifying 

individual rows, columns, headers, footers, and cells. Recognizing the structure is pivotal for any 

subsequent data extraction or transformation tasks. Without a clear understanding of the table’s 

structure, the data within it can be misinterpreted. For instance, mistaking a header for a data row 

could lead to incorrect data parsing. Table classification is the process of categorizing tables based 

on various criteria, such as layout, content type, purpose, or complexity. For instance, tables could 

be classified as full-line tables, partial-line tables, and more. Not all tables serve the same purpose, 

and understanding the type or category of a table can aid in subsequent processing steps. The 

primary contributions of this article include: 

(1) A comprehensive overview of historical and contemporary Table Datasets, emphasizing their 

distinct characteristics. 

(2) An in-depth review of pivotal TD methodologies, tracing their development and evolution. 

(3) An exhaustive exploration of TSR techniques, providing a deep dive into their intricacies. 

(4) A comparative study of various Table Classification methods, filling a noticeable gap in the 

existing literature where such a broad summary was previously absent. 

(5) Presentation of experimental results based on several datasets related to TD. 

There are several challenges associated with TD and structure recognition. Some of these 

challenges include: 
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(1) Tables can have a wide range of shapes, sizes, and styles, which can make it difficult for 

algorithms to accurately detect and recognize them. 

(2) Tables can be located in a variety of different contexts, such as in documents, web pages, or 

natural images, which can make it difficult for algorithms to generalize to different settings. 

(3) Tables can contain a wide range of different types of information, such as text, numbers, and 

images, which can make it difficult for algorithms to extract and interpret this information. 

(4) Tables can be distorted or occluded by other objects in the scene, which can make it difficult 

for algorithms to accurately detect and recognize them. 

 

Fig. 1. Table analysis pipeline comparison of conventional and deep learning methods. While convolutional 

networks are used in deep learning techniques, classical approaches primarily perform feature extraction 

through image processing techniques. Deep learning methods for interpreting tables are more generalizable 

and independent of data than conventional approaches. 

(5) Tables can be presented in a variety of different formats, such as HTML tables, PDF tables, 

or scanned images, which can make it difficult for algorithms to handle different input 

formats. 

Overall, these challenges can make it difficult for algorithms to accurately and reliably detect and 

recognize tables in a wide range of different settings. 

1.1 Comparison with Previous Reviews 

For many years, the issue with table analysis has been widely acknowledged. Figure 2 shows the 

upward trend in publications during the previous eight years; these analysis values were derived 

from Scopus. There have been notable TD and table classification surveys published. There are 

outstanding studies on the subject of TD in these surveys [19, 139]. There have been few recent 

surveys that specifically address the subject of TD and classification. B. Coüasnon [15] released 

another review on TR and forms. The review gives a quick rundown of the most recent techniques 

at the time, S. Khusro [58] stands as the latest comprehensive survey on PDF table extraction, to our 

knowledge. Despite deep learning’s breakthroughs in fields like visual recognition and medical 

image analysis, there’s a gap in exhaustive surveys on deep learning approaches for TD. A detailed 

review is essential for progress in this area, particularly benefiting researchers new to the field. 

1.2 Scope 
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The vast number of studies on deep learning for TD precludes a full review within a single article, 

necessitating selective focus on top-tier journal and conference publications. This article aims at 

offering a detailed survey of deep learning techniques for detecting, recognizing, and classifying 

tables, including a taxonomy for understanding these approaches based on datasets, evaluation 

metrics, and methods. The taxonomy is designed to clarify the similarities and differences between 

various strategies, aiding readers and guiding future research directions. 

 

Fig. 2. shows an illustration of an expanding trend in the area of table analysis. This information was gathered 

by looking through the annual reports on TD and table identification from the years 2015 to 2022, this 

analysis values were derived from Scopus. 

2 MAJOR CHALLENGES 

2.1 Object Detection Challenges 

Developing a general-purpose algorithm that fulfills two competing criteria of high quality/accuracy 

and great efficiency is ideal for object detection. High-quality detection must accurately localize and 

recognize objects in images or video frames, allowing for the distinction of a 

wide range of object categories in the real world and localization and recognition of object instances 

from the same category, despite intra-class appearance variations, for high robustness. High 

efficiency necessitates that the full detection process is completed in real time while maintaining 

reasonable memory and storage requirements. 

2.2 TD Challenges 

Although a trained segmentation model can accurately locate tables, conventional machine learning 

techniques have flaws in the structural identification of tables. A major issue is the large number of 

things in such a little space. As a result, the network misses out on critical visual cues that may aid 

in the detection and recognition of tables [109]. As physical rules are available, intersections of 

horizontal and vertical lines are computed to recognize table formations. The Hough transform is a 

prominent approach in computer vision that aids in the detection of lines in document scans [123]. 

Length, rotation, and average darkness of a line are utilized to filter out false positives and determine 

if the line is, in fact, a table line [67]. The intersections of the remaining horizontal and vertical lines 

are computed after the Hough lines have been filtered. Table cells are created based on the crossings. 

2.3 TSR Challenges 



305:6 M. Kasem et al. 

ACM Comput. Surv., Vol. 56, No. 12, Article 305. Publication date: October 2024. 

TR in document analysis is a multifaceted task that involves comprehending the intricate structures 

of tables within textual content. In the realm of TSR, scholars and researchers have identified two 

fundamental aspects: logical structure recognition and physical structure recognition. Logical 

structure recognition delves into the semantic meaning of the table, focusing on understanding 

relationships and hierarchies among different elements within the table, such as headers, rows, and 

columns. On the other hand, physical structure recognition centers on the spatial arrangement of 

table elements on a document page, concentrating on precise localization, boundary delineation, and 

positional information of cells. In this comprehensive exploration, we delve into these two pivotal 

aspects separately, discussing the diverse methodologies and techniques employed to tackle each 

facet [65, 100]. 

3 A QUICK OVERVIEW OF DEEP LEARNING 

From image classification and video processing to speech recognition and natural language 

understanding, deep learning has transformed a wide range of machine learning activities. Given the 

incredible rate of change [74], there is a plethora of current survey studies on deep learning [31, 73, 

137, 142], medical image analysis applications [73], natural language processing [137], and speech 

recognition systems [142]. 

CNNs, the most common deep learning model, can use the fundamental properties of actual 

signals: translation invariance, local connection, and compositional hierarchies. A typical CNN 

comprises a hierarchical structure and numerous layers for learning data representations at different 

levels of abstraction [66]. We start with a convolution. 

Nl−1 

 xl−1 ∗ wl, xjl = σ xil−1 ∗ wil,j +blj , σ(x) = max{x, 0} (1) 

i=1 

between a feature map from the previous layer l-1 and an input feature map xl−1 , convolved using a 

2D convolutional kernel (or filter or weights) wl. This convolution is seen as a series of layers that 

have been subjected to a nonlinear process σ, such that with a bias term bl
j and a convolution between 

the Nl−1 input feature maps xi
l−1 and the matching kernel wi

l
,j . For each element, the element-wise 

nonlinear function σ(.) is commonly a rectified linear unit (ReLU) for each element, Finally, pooling 

is the process of downsampling and upsampling feature maps. DCNNs are CNNs with a large 

number of layers, often known as “deep” networks. A CNN’s most basic layers consist of a series 

of feature maps, each of which operates as a neuron. A set of weights wi,j connects each neuron in a 

convolutional layer to feature maps from the preceding layer (essentially a set of 2D filters). 

Whereas convolutional and pooling layers make up the early CNN layers, the subsequent layers are 

usually completely connected. The input picture is repeatedly convolved from earlier to later layers, 

and the receptive field or region of support grows with each layer. In general, the first CNN layers 

extract low-level characteristics (such as edges), whereas subsequent layers extract more generic 

features of increasing complexity [9, 66]. 

DCNNs have a hierarchical structure that allows them to learn data representations at numerous 

levels of abstraction, the ability to learn highly complicated functions, and the ability to learn feature 

representations directly and automatically from data with minimum domain expertise. The 

availability of huge-size labeled datasets and GPUs with extremely high computational capabilities 

is what has made DCNNs so successful. 
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Despite the enormous achievements, there are still acknowledged flaws. There is a critical need 

for labeled training data as well as expensive computational resources, and selecting proper learning 

parameters and network designs still requires substantial expertise and experience. Trained networks 

are difficult to comprehend, and lack resistance to degradations, and many DCNNs have been 

proven to be vulnerable to assaults [31], all of which restrict their applicability in real-world 

applications. 

 

Fig. 3. Examples of images in ICDAR 2013, ICDAR 2017, ICDAR 2019, and RVL-CDIP. 

4 DATASETS AND EVALUATION METRICS 

4.1 Datasets 

This section will describe datasets that are available and have been most commonly used for TD, 

TSR, and classification tasks. 

4.1.1 ICDAR 2013. The ICDAR2013 dataset, used as the official practice dataset for the 

ICDAR2013 competition, was created by collecting PDFs from Google searches, limited to 

europa.eu and *.gov sites for public domain documents [30]. It includes 150 tables from 27 EU and 

40 US Government documents, focusing on TD and structure recognition tasks. The dataset 

challenges methods in identifying table cell structures and spans multiple pages, as shown in Figure 

3. 

4.1.2 ICDAR 2017 Page Object Detection (POD). The ICDAR2017 POD dataset [26], published 

for testing TD methods, contains 2,417 images from 1,500 CiteSeer scientific articles, including 

figures, tables, and formulae. It’s larger than the ICDAR2013 table dataset, with 1,600 images for 

training (731 tabular areas) and 817 for testing (350 tabular regions). Examples are shown in Figure 

3. 

4.1.3 ICDAR2019. ICDAR2019 [25] introduced a dataset for TD (TRACK A) and recognition 

(TRACK B), divided into historical and modern types. The modern dataset includes diverse formats 

from scientific articles, forms, and financial documents, while the historical dataset features images 

from sources like handwritten ledgers and old books. It consists of 1,600 training images and 839 

testing images, with TRACK A providing images containing tables and TRACK B divided into two 

sub-tracks for TSR with or without prior knowledge. Annotations follow a format similar to ICDAR 

2013 [30], using XML files to detail table and cell positions. Examples are shown in Figure 3. 
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4.1.4 TabStructDB. TabStructDB is a different publicly available image-based TSR dataset that 

was promoted by SA Siddiqui [115]. The authors enhanced the well-known POD dataset from 

ICDAR-17 by incorporating detailed structural information for all the tabular regions within the 

dataset. Figure 4 illustrates two examples of this dataset. 

4.1.5 TABLE2LATEX-450K. TABLE2LATEX-450K [16], a large dataset released at the latest 

ICDAR conference, comprises 450,000 annotated tables and associated images. It was created by 

crawling LaTeX source documents and ArXiv publications from 1991 to 2016, leading to a 

highquality, refined dataset. Examples from this dataset are shown in Figure 4. 

 

Fig. 4. Examples of images in PubTabNet, TABLE2LATEX-450K, SynthTabNet, and TabStructDB. 

4.1.6 RVL-CDIP (SUBSET). The RVL-CDIP dataset, a prominent collection in document 

analysis, contains 400,000 images across 16 categories [37]. P. Riba [106] created a subset of this 

dataset by annotating 518 invoices specifically for TD research. This subset, publicly available, is 

vital for testing table identification methods in invoice DIs. Examples from this dataset are 

illustrated in Figure 3. 

4.1.7 IIIT-AR-13K. IIT-AR-13K, introduced by A Mondal [85], is a new dataset formed from 

publicly available annual reports in multiple languages, and is the largest manually annotated dataset 

for graphical page object recognition. It includes diverse annotations like figures, natural images, 

logos, signatures, and tables, with 11,000 training samples, and 2,000 and 3,000 samples for 

validation and testing, respectively. Examples from this dataset are in Figure 5. 

4.1.8 CamCap. CamCap, proposed by W. Seo [110], is a dataset of camera-captured photos 

comprising only 85 images, including 38 tables on curved surfaces (1,295 cells) and 47 tables on 

planar surfaces (1,162 cells). It is publicly available for detecting and identifying table structures 
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and is crucial for assessing the accuracy of table identification techniques in camera-captured DIs. 

Two examples from this dataset are shown in Figure 5. 

4.1.9 UNLV Table. The UNLV Table dataset [112] consists of 2,889 pages of scanned DIs from 

diverse sources such as magazines, newspapers, and business letters, available in bitonal, grayscale, 

and fax formats with resolutions between 200 to 300 DPI. It includes ground truth data with 

manually marked zones, detailed in text format. Examples from this dataset are displayed in Figure 

5. 

4.1.10 UW-3 Table. The UW-3 Table dataset [96] contains 1,600 skew-corrected English DIs from 

books and magazines, with manually edited bounding boxes for page frames, text, non-text 

 

Fig. 5. Examples of images in IIIT-AR-13K, CamCap, UNLV, and UW3. 

zones, lines, and words. Approximately 120 images include at least one marked table zone. Ground 

truth, stored in XML, was prepared using the T-Truth tool, with manual validation and corrections 

for accuracy. Challenges in labeling, especially for column-spanning cells and varying table 

structures, are noted. Examples from this dataset are in Figure 5. 

4.1.11 Marmot. The Marmot dataset [23], a pioneer in TD, comprises 2,000 PDF pages from 

conference papers in both English and Chinese, ranging from 1970 to 2011, and includes ground 

truth data. Labeling was standardized and double-checked by 15 people to ensure consistency. The 

dataset, still expanding, features a balance of Chinese and English pages, with the Chinese pages 

sourced from over 120 e-Books in Founder Apabi’s digital library, and the English pages in both 

one and two columns. It covers a variety of table types, including ruled, partially and nonruled, 

horizontal, vertical, inside-column, and span-column tables. Samples from this dataset are displayed 

in Figure 6. 

4.1.12 TableBank. The TableBank dataset [70] introduced a novel weak supervision method for 

automatically creating a dataset that is significantly larger and of higher quality than existing human-

labeled datasets for table analysis. It was compiled by systematically gathering .docx documents 

from online sources and LaTeX documents from the arXiv database. This approach involves 

modifying Office XML code for Word documents and LaTeX code to identify table boundaries, 

resulting in high-quality labeled data across various domains like business documents, official 

filings, and research articles. The TableBank dataset comprises 417,234 high-quality labeled tables 

and their original documents. Samples from this dataset are illustrated in Figure 6. 
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4.1.13 DeepFigures. DeepFigures [119], a dataset for figure extraction, was created without 

human assistance using scientific articles from databases like arXiv and PubMed. It comprises 

around 5.5 million tables and figures-induced labels, making it 4,000 times larger than its 

predecessor and achieving an average precision of 96.8%. This substantial dataset supports the 

development of modern, data-driven approaches for figure extraction, with samples shown in Figure 

7. 

4.1.14 PubTables-1M. PubTables-1M [121] is a dataset comprising nearly one million tables from 

scientific articles. It supports multiple input modalities and offers detailed header and location 

information for table structures, suitable for various modeling approaches. The dataset introduces a 

novel canonicalization procedure to address over-segmentation, a common issue in previous 

datasets, enhancing training performance and providing a more accurate assessment of model 

performance for TSR. Additionally, transformer-based object detection models trained on 

 

Fig. 6. Examples of images in Marmot and TableBank. 
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Fig. 7. Examples of images in FinTabNet, DeepFigures, and TNCR. 

PubTables-1M have shown excellent results in detection, structure recognition, and functional 

analysis without task-specific customizations. Two examples from this dataset are displayed in 

Figure 8. 

4.1.15 SciTSR. SciTSR [14] presents a large-scale TSR dataset compiled by systematically 

collecting LaTeX source files from the arXiv repository. that comprise 15,000 tables from PDF files 

and their related structural labels. Figure 8 illustrates two examples of this dataset. 

 

Fig. 8. Examples of images in PubTabNet-1M and SciTSR. 

4.1.16 FinTabNet. FinTabNet [144] introduces GTE, a vision-guided framework for TD and 

cellstructured identification, adaptable to any object detection model. GTE-Table uses a penalty 

based on cell containment constraints for training, while GTE-Cell detects cells using table layouts. 

The authors developed a method for automatically labeling table and cell structures in texts, creating 

a large training and testing corpus cost-effectively. FinTabNet comprises real-world scientific and 

financial datasets with detailed structure annotations. Collaboration with PubTabNet creators 

enriched FinTabNet with cell labels from PubMed scientific articles. Examples from this dataset are 

shown in Figure 7. 

4.1.17 PubTabNet. PubTabNet [146] is a large open-access TR collection with 568k table images 

and corresponding HTML representations, automatically constructed by comparing XML and PDF 
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formats of scientific publications from the PubMed CentralTM Open Access Subset (PMCOA). The 

authors introduced an attention-based encoder-dual-decoder (EDD) architecture for converting table 

images to HTML code, featuring a structure decoder for table reconstruction and a cell decoder for 

cell content recognition. They also proposed a new Tree-Edit-Distance-based Similarity (TEDS) 

metric for TR, effectively addressing multi-hop cell misalignments and OCR errors. Examples from 

this dataset are displayed in Figure 4. 

4.1.18 TNCR. TNCR [1], a new table collection, features images of varied quality sourced from 

free access websites, and is designed for recognizing and classifying tables in scanned DIs into five 

categories. The dataset includes approximately 6,621 images with 9,428 captioned tables. Using 

state-of-the-art deep learning approaches for TD, the study established robust baselines. Notably, 

Deformable DERT with a Resnet-50 Backbone Network achieved the best performance on the 

TNCR dataset, with an accuracy of 86.7%, recall of 89.6%, and an F1 score of 88.1%. Samples from 

this dataset are presented in Figure 7. 

4.1.19 SynthTabNet. SynthTabNet, proposed by A Nassar [88], is a synthetic dataset of 600 k 

samples, developed to diversify appearance styles and complexity in table datasets. It synthesizes 

elements from Tablebank, PubTabNet, and FinTabNet into four distinct styles, ranging from realistic 

appearances to colorful, high-contrast, and minimal-content tables. This dataset aims at correcting 

imbalances in existing datasets. Samples are illustrated in Figure 4. 

4.1.20 WiredTableintheWild (WTW). R. Long [76] introduces a solution for parsing table 

structures from diverse images, including those with deformations and occlusions, focusing on real- 

world scenarios with a novel method called Cycle-CenterNet. Built on the CenterNet architecture, 

Cycle-CenterNet features a cycle-pairing module for detecting and grouping tabular cells into 

structured tables. Additionally, the article presents the WTW dataset, a comprehensive collection of 

well-annotated tables from photos, scanned files, and web pages, emphasizing various table styles 

and scenes. 

4.1.21 WikiTableSet. NT Ly [77] introduces WSTabNet, a weakly supervised model for TR in 

images using HTML or LaTeX annotations instead of detailed cell annotations. This end-to-end 

system, comprising an encoder, structure decoder, and cell decoder, is trained using images and their 

HTML/LaTeX codes. The WikiTableSet dataset, sourced from Wikipedia, supports this approach 

with millions of table images in English, Japanese, and French, including their HTML 

representations. 

4.1.22 STDW. M. Haloi [33] introduces a comprehensive dataset for TD to overcome the 

limitations of current benchmarks. This dataset, consisting of over seven thousand diverse table 

samples, was collected from scanned documents, Word files, and searchable PDFs, providing a 

varied resource for analysis and research. The article showcases baseline results using a CNN-based 

approach, demonstrating its superiority over traditional computer vision methods in detecting table 

structures in documents. 

4.1.23 TabRecSet. F. Yang [135] delves into TR in pattern recognition, encompassing TD, 

TSR, and table content recognition (TCR). The study introduces the Table Recognition Set 

(TabRecSet), a comprehensive dataset and the first to include both English and Chinese languages, 

tailored for end-to-end TR research. TabRecSet features 38.1 K tables (20.4 K English, 17.7 K 

Chinese) in various formats, including complete and incomplete borders, regular and irregular 

shapes, and sourced from diverse scenarios like scanned and camera-taken images, documents, 
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Excel tables, educational papers, and financial invoices. Additionally, the article presents TableMe, 

an annotation tool designed for improved efficiency and quality in annotation through visualization 

and interactivity. 

4.1.24 ICT-TD. B. Xiao [132] improves TD datasets by enhancing annotations in the 

“OpenTables” dataset and introducing the “ICT-TD” dataset, which contains 175,682 PDF 

documents across 370 ICT commodities. These datasets, manually annotated for quality, offer a 

reliable resource for cross-domain research, with experiments showing their effectiveness for cross-

domain evaluations and their ability to improve model performance in such settings. 

4.1.25 DECO. E Koci [63] introduces the DECO dataset, a collection of 1,165 Enron corpus 

spreadsheet files annotated for both layout and contents, with assigned roles like Header and Data. 

The dataset includes marked table borders and categorization for files without tables. The article 

extensively analyzes the dataset and annotations, offering insights for future research. The detailed 

annotation methodology, along with the DECO dataset and tools, is openly accessible to the research 

community. 

Table 1 presents a comparison between some of the popular datasets of TD and structure 

recognition. 

4.2 Dataset Challenges 

The spectrum of table data analysis is broad and fraught with intricacies. While the presented 

datasets offer a treasure trove of data for researchers, they also embody an array of challenges, each 

distinct and demanding. 

Starting with foundational datasets like ICDAR2013 and ICDAR2017-POD, one can discern the 

intricacies tied to source variety. These datasets, which feature data from diverse sources like books, 

journals, and magazines, present challenges linked to varied layouts and structures. Furthermore, 

the latter’s inclusion of diverse objects elevates the domain of multi-object detection tasks. 

Table 1. The Table Illustrates a Quantitative Comparison between Some Famous Datasets in TD 
Dataset Total pages Total Tables Table detection Table Structure Classification Document Type 

ICDAR2013 462 150 ✓ ✓ ✗ Scanned 

ICDAR2017-POD 2,417 - ✓ ✗ ✗ Scanned 
TabStructDB 2.4 k - ✗ ✓ ✗ Scanned 

TABLE2LATEX-

450K 
- 450,000 ✗ ✓ ✗ Scanned 

RVL-CDIP 

(SUBSET) 
518 - ✓ ✗ ✗ Scanned 

IIIT-AR-13K 13 K - ✓ ✗ ✗ Scanned 
CamCap 85 - ✓ ✓ ✗ Camera Capture 
UNLV 2,889 - ✓ ✓ ✗ Scanned 

UW-3 dataset 1,600 - ✓ ✓ ✗ Scanned 

Marmot 2,000 - ✓ ✗ ✗ Scanned 
TableBank - 417,234 ✓ ✓ ✗ Scanned 

ICDAR2019 - 2,000 ✓ ✓ ✗ Scanned 

DeepFigures - 5.5 million ✓ ✗ ✗ Scanned 
PubTables-1M 460,589 1 million ✓ ✓ ✗ Scanned 

SciTSR - 15,000 ✗ ✓ ✗ PDF 

FinTabNet 89,646 112,887 ✓ ✓ ✗ PDF and HTML 
PubTabNet - 568 k ✗ ✓ ✗ Scanned 

TNCR 6621 9,428 ✓ ✗ ✓ Scanned 
SynthTabNet 600 k - ✓ ✓ ✓ Scanned 
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WTW 14,581 - ✗ ✓ ✗ Scanned 
WikiTableSet - 5 M ✗ ✓ ✗ HTML or LaTeX 

STDW 7 K - ✓ ✗ ✗ Scanned 
TabRecSet 32.07 K 38.17 K ✓ ✓ ✗ Scanned 

ICT-TD 5,000 3,581,805 ✓ ✗ ✗ PDF 

DECO 1, 165 - ✗ ✓ ✗ Spreadsheets 

However, as we move to Marmot and UNLV, the complexity deepens. Chinese and English 

language intricacies in Marmot, coupled with the vast array of scanned document challenges in 

UNLV, like skewing, low-resolution, and diverse layout arrangements, highlight the need for robust 

preprocessing and detection mechanisms. Meanwhile, DeepFigures and PubTables-1M, due to their 

volume and figure diversity, require refined segmentation techniques to ensure accurate data 

extraction. Over-segmentation, particularly in PubTables-1M, emerges as a primary concern, 

necessitating intelligent interpretation of table structures. 

SciTSR and FinTabNet, being domain-specific, carry their unique set of hurdles. SciTSR, 

centered around scientific articles, grapples with elements like footnotes, subscripts, and 

superscripts, making data extraction an intricate task. On the other hand, FinTabNet, rooted in the 

financial domain, presents challenges like intricate layouts, merged cells, and domain-specific 

jargon and structures. Such nuances can easily lead to misinterpretations if not handled adeptly. 

WikiTableSet and TableBank confront linguistic and format diversity. The former’s multilingual 

array and the latter’s duality of Word and Excel data sources mandate a versatile extraction and 

interpretation strategy. ToTTo and WikiSQL, being centered around natural language interfaces, 

challenge researchers with ensuring context retention and semantic understanding. 

TabFact and SQA, while seemingly traditional in format, introduce complexities in reasoning and 

question answering, requiring models not just to extract but also to infer and deduce. TABMCQ and 

TURL, being tailored for educational and URL-centered tasks, respectively, present challenges of 

context sensitivity and accurate source linking. 

Datasets like TabbyQA, WikiTables, and OpenTable emphasize scale and structural diversity. 

The vastness of the data combined with variations in table presentations calls for robust and 

adaptable analysis techniques. The likes of SemTab, TaPas, and Table-Pretrain introduce semantical, 

context-driven, and pretraining challenges, urging researchers to not just perceive tables as data 

structures but as entities with inherent meanings. 

Finally, datasets like ExTab, TableNet, DocBank, and TableSet further widen the challenge 

spectrum. From extending to non-tabular elements in ExTab to grappling with annotations in 

TableNet and diverse OCR challenges in DocBank, these datasets push the boundaries of table 

analysis. TableSet, with its focus on adversarial examples, introduces the need for resilient models 

capable of 

withstanding intentionally misleading data. 

In essence, the expansive list of datasets, while providing rich opportunities for research, also 

underscores the multifaceted challenges in table data analysis. As the field progresses, it becomes 

imperative to develop techniques that are not only accurate but also versatile across varied datasets. 

4.3 Metrics 

Evaluation in TD, and more critically, in TSR, requires a careful selection of metrics to ensure 

robustness and accuracy. While table detectors utilize metrics such as frames per second (FPS) for 

speed evaluation, precision, recall, and mean Average Precision (mAP) are common for performance 

accuracy. 
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4.3.1 TD. Precision is derived from Intersection over Union (IoU), which is the ratio of the area 

of overlap and the area of union between the ground truth and the predicted bounding box. A 

threshold is set to determine if the detection is correct. If the IoU is more than the threshold, it is 

classified as True Positive, while an IoU below it is classified as False Positive. If the model fails to 

detect an object present in the ground truth, it is termed a False Negative. Precision measures the 

percentage of correct predictions, while recall measures the correct predictions with respect to the 

ground truth. 

 True Positive (TP) TruePositive 

Average Precision (AP) = = . (2) (True Positive (TP) + False Positive (FP))

 AllObservations 

 True Positive (TP) TruePositive 

 Average Recall (AR) = = . (3) 

 (True Positive (TP) + False Negative (FN) ) AllGroundTruth 

 2 ∗ (AP ∗ AR) Area of intersection 

 F1-score = , IOU = . (4) 

 (AP + AR) area of union 

Based on the above equation, average precision is computed separately for each class. To compare 

performance between the detectors, the mean of average precision of all classes, called mAP is used, 

which acts as a single metric for final evaluation. 

IOU is a metric that finds the difference between ground truth annotations and predicted bounding 

boxes. This metric is used in most state-of-the-art object detection algorithms. In object detection, 

the model predicts multiple bounding boxes for each object, and based on the confidence scores of 

each bounding box, it removes unnecessary boxes based on their threshold value. We need to declare 

the threshold value based on our requirements. 

4.3.2 TSR. Unlike TD, TSR delves deeper into understanding the components of the table, such 

as rows, columns, headers, cells, and their inter-relationships. 

Directed adjacency relations (DAR) [29, 60]: This metric considers the connectivity of cells in a 

table, represented as a directed graph. The DAR score is calculated as the fraction of correctly 

predicted edges in the graph. 

correctly predicted edges 

DAR =  . (5) total number 

of edges 

Tree edit distance similarity (TEDS) [118]: This metric considers the logical structure of a table 

represented as a tree. The TEDS score is calculated as the minimum number of edits required to 

transform the predicted tree into the ground truth tree. 

 TEDS = Tmin∈T dist(T,T), (6) 

where 

T represents the set of all possible trees, T’ is the ground truth tree, T (without the prime) is the 

predicted tree. 

dist(T, T’) denotes the distance (or the number of edit operations) between the predicted tree T and 

the ground truth tree T’. 4-gram BLEU score (BLEU-4) [95, 120]: This metric considers the text 
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content of cells in a table, represented as a sequence of words. The BLEU-4 score is calculated as 

the similarity between the predicted and ground truth sequences. 
4 

n=1 

 BLEU-4 = BP · expwn logpn. (7) 

Here, BP is the brevity penalty.wn is the weight assigned to the n-gram precision.pn is the modified 

n-gram precision. 

 1 if c > r 

 BP =e(1−cr ) if c ≤ r . (8) 

c is the length of the candidate sequence. r is the length of the reference sequence. 

ngram∈C min(countC(ngram), countR(ngram)) 

 pn =. (9) 

ngram∈C countC(ngram) 

C is the set of n-grams in the candidate sequence. R is the set of n-grams in the reference sequence. 

countC(ngram) and countR(ngram) are the counts of ngram in the candidate and reference sequences, 

respectively. TEDS-based IOU similarity (TEDS (IOU)) [65, 100]: This metric combines aspects of 

TEDS and DAR, considering both the logical and physical structure of a table. The TEDS (IOU) 

score is calculated as the weighted average of the TEDS score and the IOU score between the 

predicted and ground truth bounding boxes of the cells. 

 TEDS (IOU) = α · TEDS + (1 − α) · IOU. (10) 

TEDS (IOU) represents the combined TEDS and IOU similarity metric. α is the weight assigned to 

the TEDS score. TEDS is the Tree Edit Distance Similarity score. IOU is the Intersection over Union 

score. (1 − α) is the weight assigned to the IOU score. Grid table similarity metric (GriTS) [120]: 

This metric evaluates the correctness of a predicted table directly in its natural form as a matrix. To 

create a similarity measure between matrices, the authors generalize the two-dimensional largest 

common substructure (2D-LCS) problem to the 2D most similar substructures (2DMSS) problem 

and propose a polynomial-time heuristic for solving it. 

 GriTSf (A,B) = 2 i,j f (A˜,B˜) . (11) 

|A| + |B| 

In order to provide a comprehensive understanding of the various metrics utilized in TSR, a 

comparison of the most prevalent evaluation metrics is presented. Table 2 shows these metrics, 

breaking down their components by cell attributes they target, the data structures they represent, 

their criteria for matching, and their respective scoring methods. As illustrated, different metrics 

prioritize different aspects of table structure, from content to topology, and their corresponding 

scoring methods vary accordingly. 
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Researchers are still actively developing new evaluation metrics for TSR. This is because the 

task is challenging, and there is no single metric that can perfectly capture all aspects of table 

structure. 
Table 2. Evaluation Metrics for TSR 

Evaluation Metric Cell Attributes Structure Representation Matching Criteria Scoring 

DAR [60] Content Adjacency Relations Set Exact match F-score 

DAR [29] Location Adjacency Relations Set Average (Multiple 

IoU) 
F-score 

BLEU-4 Topology and Role Token Sequence Exact match BLEU-

4 

GriTSTop Topology Cell Matrix IoU F-score 

GriTSCon Content Cell Matrix Normalized LCS F-score 

GriTSLoc Location Cell Matrix IoU F-score 

5 TD AND STRUCTURE RECOGNITION MODELS 

TD has been studied for an extended period of time. Researchers used different methods that can be 

categorized as follows: heuristic-based methods, machine learning-based methods, and deep 

learning-based methods. Primarily heuristic-based methods were mainly used in the 1990s, 2000s, 

and early 2010. They employed different visual cues like lines, keywords, space features, and so on 

to detect tables. 

P Pyreddy [98] proposed an approach to detecting tables using character alignment, holes, and 

gaps. Y Wangt [129]. used a statistical approach to detect table lines depending on the distance 

between consecutive words. Grouped horizontal consecutive words together with vertical adjacent 

lines were employed to propose table entity candidates. MACA Jahan [49] presented a method that 

uses local thresholds for word spacing and line height for detecting table regions. 

K Itonori [48] proposed a rule-based approach that led to the text-block arrangement and ruled 

line position to localize the table in the documents. S Chandran [13] developed another TD approach 

based on vertical and horizontal lines. W Seo [110] used junctions (intersection of the horizontal 

and vertical line) detection with further processing. 

T Hassan [39] locates and segments tables by analyzing spatial features of text blocks. E Oro [93] 

introduced PDF-TREX, a heuristic bottom-up approach for TR in single-column PDF documents. 

It uses the spatial features of page elements to align and group them into paragraphs and tables. A 

Nurminen [90] proposed a set of heuristics to locate subsequent text boxes with common alignments 

and assign them the probability of being a table. 

J Fang [22] used the table header as a starting point to detect the table region and decompose its 

elements. G Harit [36] proposed a technique for TD based on the identification of unique table start 

and trailer patterns. S Tupaj [127] proposed an OCR-based TD technique. The system searches for 

sequences of table-like lines based on the keywords 

The above methods work relatively well on documents with uniform layouts. However, heuristic 

rules need to be tweaked to a wider variety of tables and are not really suited for generic solutions. 

Therefore, machine learning approaches started to be employed to solve the TD problem. 

T Kieninger [59] applied an unsupervised learning approach by clustering word segments. F 

Cesarini [12] used a modified XY tree supervised learning approach. M Fan [21] uses both 

supervised and unsupervised approaches to TD in PDF documents. Y Wang [128] applied Decision 

tree and SVM classifiers to layout, content type, and word group features. T Kasar [53] used the 

junction detection and then passed the information to the SVM classifier. AC e Silva [18] applied 

joint probability distribution over sequential observations of visual page elements (Hidden Markov 

Models) to merge potential table lines into tables. S Klampfl [61] compares two unsupervised TR 
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methods from digital scientific articles. L O’Gorman’s Docstrum algorithm [92] applies KNN to 

aggregate structures into lines and then uses perpendicular distance and angle between lines to 

combine them into text blocks. It must be noted that this algorithm was devised in 1993, earlier than 

other methods mentioned in this section. 

F Shafait [111] proposes a useful method for TR that performs well on documents with a range 

of layouts, including business reports, news stories, and magazine pages. The Tesseract OCR engine 

offers an open-source implementation of the algorithm. 

As neural networks gained interest, researchers started to apply them to document layout analysis 

tasks. Initially, they were used for simpler tasks like TD. Later on, as more complex architectures 

were developed, more work was put into table columns and overall structure recognition. 

L Hao[35] employed CNN to detect whether a certain region proposal is a table or not. A Gilani 

[28] proposed a Faster R-CNN-based model to make up for the limitations of L Hao [35] and other 

prior methodologies. 

S Schreiber [109] was the first to perform TD and structure recognition using Faster RCNN. D 

He [40], used FCN for semantic page segmentation. S Arif [7] attempted to improve the accuracy 

of Faster R-CNN by using semantic color-coding of text. MM Reza [105] used a combination of 

GAN-based architecture for TD. M Agarwal [5] used a multistage extension of Mask R-CNN with 

a dual backbone for detecting tables. 

Recently transformer-based models were applied to document layout analysis, B Smock[121] 

applied N Carion[10] DEtection TRansformer framework, a transformer encoder-decoder 

architecture, to their table dataset for both TD and structure recognition tasks. J Li [69] proposed a 

self-supervised pre-trained DI Transformer model using large-scale unlabeled text images for 

document analysis, including TD 

5.1 TD Models 

In this section, we examine the deep learning methods used for document image TD. We have 

divided the methods into several deep-learning ideas for the benefit of our readers’ convenience. 

Tables 3 and 4 list all the object identification-based TD strategies. It also discusses various deep 

learning-based methods that have been used in these methods. 

CNN-based Models. D Prasad [97] presents an automatic TD approach for interpreting tabular 

data in document pictures, which primarily entails addressing two issues: TD and TSR. Using a 

single CNN model, provide an enhanced deep learning-based end-to-end solution for handling both 

TD and structure recognition challenges. CascadeTabNet is a Cascade mask Region-based CNN 

High-Resolution Network (Cascade mask R-CNN HRNet)-based model that simultaneously 

identifies table areas and recognizes structural body cells from those tables. 

L Hao [35] offers a new method for detecting tables in PDF documents that are based on CNNs, 

one of the most widely used deep learning models. The suggested method begins by selecting some 

table-like areas using some vague constraints, then building and refining convolutional networks to 

identify whether the selected areas are tables or not. Furthermore, the convolutional networks 

immediately extract and use the visual aspects of table sections, while the non-visual information 

contained in original PDF documents is also taken into account to aid in better detection outcomes. 

DD Nguyen [89] introduces TableSegNet, a fully convolutional network (FCN) with a compact 

design that concurrently separates and detects tables. TableSegNet uses a shallower path to discover 

table locations in high resolution and a deeper path to detect table areas in low resolution, splitting 

the found regions into separate tables. TableSegNet employs convolution blocks with broad kernel 
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sizes throughout the feature extraction process and an additional table-border class in the main 

output to increase the detection and separation capabilities. 

AA Gurav [32] devised an innovative approach to automate data extraction from diverse digital 

documents (DDs), including images, scanned files, e-mails, and books. Focusing on DIs, like office 

documents and scans, they employed CNNs for superior performance. Their unique method, based 

on weakly supervised learning, detects and recognizes table locations in DI without the need for 

bounding box annotations. This groundbreaking approach promises efficient and accessible 

automation of tabular data extraction from varied DDs. 

M Haloi [33] addressed limitations in existing TD benchmarks by introducing a large-scale, 

diverse dataset comprising over seven thousand samples with varied table structures from multiple 

sources. They employed CNN-based methods, demonstrating their superiority over classical 

computer vision techniques in detecting table structures within documents. This dataset offers a 

valuable resource for developing efficient deep learning methods for document layout understanding 

and tabular data processing. 

H Dong[17] developed TableSense, an innovative framework for spreadsheet TD, which is 

crucial for spreadsheet data intelligence. They used a CNN model tailored for precise table 

boundary detection, leveraging an active learning approach to create a diverse training dataset. 

TableSense achieved remarkable performance with 91.3% recall and 86.5% precision, surpassing 

both existing detection algorithms in common spreadsheet tools and state-of-the-art CNNs in 

computer vision. 

RPN Models. A Gilani [28] has shown how to recognize tables using deep learning. Document 

pictures are pre-processed initially in the suggested technique. These photos are then sent into a 

Region Proposal Network for TD, which is followed by a fully connected neural network. The 

suggested approach works with great precision on a variety of document pictures, including 

documents, research articles, and periodicals, with various layouts. 

Á Casado-García [11] Uses object detection techniques, The authors have shown that finetuning 

from a closer domain improves the performance of TD after conducting a thorough examination. 

The authors have utilized Mask R-CNN, YOLO, SSD, and Retina Net in conjunction 

with object detection algorithms. Two basic datasets are chosen to be used in this investigation, 

TableBank, and PascalVOC. 

N Sun [122] presents a corner-finding approach for faster R-CNN-based TD. The Faster R-CNN 

network is first used to achieve coarse table identification and corner location. then, coordinate 

matching is used to group those corners that belong to the same table. Untrustworthy edges are 

filtered at the same time. Finally, the matching corner group fine-tunes and adjusts the table borders. 

At the pixel level, the suggested technique enhances table boundary finding precision. 

A Samari [108] developed an innovative approach for detecting tables in digitized historical print, 

addressing challenges in varied table characteristics and their visual similarity to other elements. 

They introduced the NAS dataset, enhancing evaluation diversity. Their method utilized the Gabor 

filter for dataset preparation and Faster-RCNN for detection, overcoming labeled data limitations 

with weakly supervised bounding box extraction and pseudo-labeling, improving model 

generalization. 

GenerativeAdversarialNetwork (GAN) Models. Y Li [72] provides a new network to produce the 

layout elements for table text and to enhance the performance of less ruled table identification. The 

GANs and this feature generator model are comparable. The authors mandate that the feature 

generator model extract comparable features for both heavily governed and loosely ruled tables. 
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Adaptive and Hybrid Models. Y Huang [47] describes a table-detecting algorithm based on the 

YOLO principle. The authors offer various adaptive improvements to YOLOv3, including an anchor 

optimization technique and two post-processing methods, to account for the significant differences 

between document objects and real objects. also employ k-means clustering for anchor optimization 

to create anchors that are more suited for tables than natural objects, making it easier for our model 

to find the exact placements of tables. The additional whitespaces and noisy page objects are deleted 

from the projected results during the post-processing procedure. 

D Zhang [140] suggests a YOLO-table-based TD methodology. To enhance the network’s 

capacity to learn the spatial arrangement aspects of tables, the authors incorporate involution into 

the network’s core, and the authors create a simple Feature Pyramid Network to increase model 

efficacy. This research also suggests a table-based enhancement technique. 

X Zheng [145] provides Global Table Extractor (GTE), a method for jointly detecting tables and 

recognizing cell structures that can be implemented on top of any object detection model. To train 

their table network with the help of cell placement predictions, the authors developed GTE-Table, 

which introduces a new penalty based on the inherent cell confinement limitation of tables. A novel 

hierarchical cell identification network called GTE-Cell makes use of table styles. Additionally, in 

order to quickly and inexpensively build a sizable corpus of training and test data, authors develop 

a method to automatically classify table and cell structures in preexisting texts. 

I Kavasidis [56] proposes a method for detecting tables and charts using a combination of deep 

CNNs, graphical models, and saliency ideas. M Holeček [43] presented the concept of table 

understanding utilizing graph convolutions in structured documents like bills, extending the 

applicability of graph neural networks. A PDF document is used in the planned research as well. 

The job of line item TD and information extraction are combined in this study to tackle the problem 

of TD. Any word may be quickly identified as a line item or not using the line item technique. 

Following word classification, the tabular region may be easily identified since, in contrast to other 

text sections on bills, table lines are able to distinguish themselves rather effectively. 

R Liu [75] introduced FewTUD, a benchmark dataset focusing on few-shot table understanding, 

a challenging task due to limited annotations. They addressed the scarcity of public Chinese tables 

by creating a large-scale corpus. Additionally, they developed FewTPT, a novel pre-trained language 

model, and extensively evaluated its performance on the FewTUD benchmark. 

P Fischer [24] developed Multi-Type-TD-TSR, an end-to-end solution for TR in scanned 

documents. This multistage pipeline employs deep learning models and differentiates between three 

types of tables based on their borders. The system addresses challenges such as rotated images and 

noise artifacts. Their approach also includes specific algorithms for non-bordered and bordered 

tables, achieving comprehensive TSR. 

T Shehzadi [113] proposes an innovative semi-supervised TD method utilizing the deformable 

transformer, a deep learning technique. Traditional deep learning methods for TD demand extensive 

labeled data, but this approach significantly reduces the need for labeled samples. By leveraging the 

deformable transformer, this method achieves outstanding results on various datasets including 

PubLayNet, DocBank, ICADR-19, and TableBank. It surpasses both fully supervised methods and 

previous semi-supervised approaches, demonstrating superior performance with limited labeled 

data. 

5.2 Discussion on TD 

The intricate landscape of TD in DIs has witnessed a seismic shift with the proliferation of deep 

learning methodologies. Within this sphere, several researchers have designed innovative strategies 

to navigate the nuances and challenges inherent to detecting tables in varied document formats. 
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The core tenet of many methodologies, as portrayed by A Gilani [28], revolves around 

preprocessing DIs followed by leveraging neural architectures like the Region Proposal Network. D 

Prasad [97]’s CascadeTabNet further encapsulates the essence of simultaneous TD and structure 

recognition, illustrating the benefit of end-to-end solutions. These methodologies showcase the 

power of employing CNN models, underscoring their adeptness at handling the intricacies of 

documents ranging from periodicals to research articles. 

Table 3. A Comparison of the Benefits and Drawbacks of Several Deep Learning-based TD Methods 
Literature Method Benefits Drawbacks 

A Gilani [28] Faster R-CNN 
(1) On scanned document pictures, this is the first 

deep learning-based table detection method. (2) 

The object detection technique is made easier by 

converting RGB pixels to distance measures. 

There are additional phases in 

the pre-processing process. 

S Schreiber [109] 
transfer learning methods + 

Faster R-CNN 
end-to-end strategy for detecting tables and table 

structures that is straightforward 
and efficient 

When compared to other 
state-of-the-art techniques, it 

is less accurate. 

SA Siddiqui [117] Deformable CNN + Faster 

R-CNN 

Deformable convolutional neural networks’ dynamic 

receptive field aids in the reconfiguration of multiple 

tabular boundaries. 

When compared to standard 

convolutions, deformable 
convolutions are computationally 

demanding. 

P Riba [106] 
OCR-based Graph NN that 

makes use of textual 

characteristics 
The suggested technique makes use of more data than 

only spatial attributes. 

(1) No comparisons to other state-ofthe-

art strategies. (2) Additional 
annotations are needed using this 

strategy in addition to the tabular data. 

N Sun [122] Faster R-CNN + 

Locate corners 

(1) Better outcomes are obtained using a novel 

technique. (2) Faster R-CNN is used to identify not just 

tables, but also the corners of tabular borders. 

(1) It is necessary to do 

postprocessing operations such as corner 

refining. 
(2) Because of the additional 

detections, the computation is more 

involved. 

I Kavasidis [56] 
combination of deep CNNs, 

graphical models, and 
saliency 

(1) Dilated convolutions rather than conventional 

convolutions are used. (2) Using this technique, 

saliency detection is performed in place of table 

detection. 

To provide equivalent results, many 

processing stages are necessary. 

M Holeček [43] Graph NN + line item 

identification Method 
This approach yields encouraging outcomes when 

used to layout-intensive documents like invoices and 

PDFs. 

(1) Limited baseline approach without 

comparisons to other state-of-the-art 
techniques . (2) No publicly accessible 

table datasets are used for the evaluation 

of the approach. 
Y Huang [47] YOLO In comparison, a quicker and more effective strategy The suggested methodology relies on 

data-driven post-processing methods. 

Y Li [72] 
GAN 

For ruling and less ruled tables, the GAN-based strategy 

drives the network to extract comparable 

characteristics. 

In document images with different 

tabular layouts, the generator-based 

model is susceptible. 

M Li [70] Faster R-CNN 
This method demonstrates how a basic Faster 

R-CNN can yield excellent results when used with 

a huge dataset like TableBank. 

Just a simple Faster-RCNN 

implementation 

D Prasad [97] 
Cascade mask Region-based 

CNN High-Resolution 
Network-based model 

The study shows how iterative transfer learning may 

be used to transform pictures, which can lessen the 

need for huge datasets. 

The same as [28], There are additional 

phases in the pre-processing process. 

Á Casado-García [11] 
Liken fine-tuning + 

Mask R-CNN, RetinaNet, 

SSD, and YOLO 

Describe the advantages of using object detection 

networks in conjunction with domain-specific fine-

tuning techniques for table detection. 

Closed domain fine-tuning is still 

insufficient to get state-of-the-art 

solutions. 

M Agarwal [5] 
multistage extension of 

Mask R-CNN with a dual 

backbone 

(1) A comprehensive object detection-based framework 

utilizing a composite backbone to deliver state- 
of-the-art outcomes (2) Extensive tests on benchmark 

datasets for table detection that are openly accessible. 

The technique is computationally 

expensive since it uses a composite 
backbone in addition to deformable 

convolutions. 

X Zheng [145] 
GTE which is general 

method for object detection 

(1) The problem of table detection is benefited by the 

extra piece-wise constraint loss introduced. (2) A 

complete method that is compatible with all object 

detection frameworks. 

Annotations for cellular borders are 

necessary since the process of table 

detection depends on cell detection. 

AA Gurav [32] 
CamNet (ResNet 50 + 

CAM map prediction) 
(1) It does not require detailed bounding box 

annotations. (2) Enables efficient extraction of structur- 
ed data 

Document layout, fonts, and languages’ 

variability require extra prepro- 
cessing for accuracy 

Several methodologies have extended the foundational principles of popular object detection 

strategies to suit the TD landscape. For instance, Y Huang [47]’s YOLO-based approach accentuates 

the essential modifications needed, such as anchor optimization, to tailor YOLOv3 for document 



305:22 M. Kasem et al. 

ACM Comput. Surv., Vol. 56, No. 12, Article 305. Publication date: October 2024. 

structures. The emphasis on pre-processing and post-processing to eliminate noise and refine 

detections offers a holistic view of the entire TD pipeline. 

The realm of TD isn’t just confined to structured documents. L Hao [35]’s methodology, focusing 

on PDF documents, epitomizes the importance of preliminary selection of table-like areas, refining 

detection through convolutional networks. This approach underscores the essence of intertwining 

visual with non-visual information for enhanced detection outcomes. 

Innovative strategies like SA Siddiqui [117]’s usage of deformable CNN paired with Faster R- 

CNN/FPN further delineate the adaptability of deep learning models. By accommodating variable 

Table 4. A Comparison of the Benefits and Drawbacks of Several Deep Learning-based TD Methods 

(Continue Table 3) 
Literature Method Benefits Drawbacks 

A Samari [108] Faster R-CNN 

(1) The article addresses the scarcity of 

comprehensive datasets for table detection, 

introducing two 
new datasets with diverse table structures and 

classes. (2) Innovative table detection approach. 

The unavailability of public access 

to the two datasets prevents the 
evaluation of state-of-the-art detection 

results. 

R Liu [75] FewTPT (Table 

PreTraining) 

(1) Provides a comprehensive benchmark dataset for 

few-shot table understanding. (2) Introduces a 

comprehensive benchmark dataset for few-shot table 

understanding, covering five downstream tasks. 

Require substantial time, and 

computational resources. 

M Haloi [33] CNN (RetinaNet) 
(1) Diverse dataset reflecting real-world scenarios. 
(2) CNN methods outperform classical techniques. 

They do not compare various stateof-

the-art approaches on the STDW 

dataset. 

H Dong [17] 
TableSense (CNN 

and employs active 

learning) 

(1) Effectiveness table detection approach. (2) The 

introduction of a Precise Bounding Box Regression 
(PBR) module contributes to more accurate 

predictions of table boundaries. 

Need More Pre-processing Efforts. 

P Fischer [24] 
CNN Multi-Type- 
TD (ResNeXt-

152) 

(1) Utilizes advanced deep learning models, 

leveraging recent trends in transfer learning, to 

enhance 
accuracy and adaptability. (2) The combination of 

two conventional algorithms into a third, unified 

algorithm demonstrates an insightful strategy. 

(1) The algorithms are designed for 

tables with basic cell structures, lack- 
ing a comprehensive solution for m- 
ore complex, recursive structures of- 
ten found in tables. (2) The proposed 
algorithm’s F1-score diminishes at 

higher IoU thresholds due to the 

inability to detect sharp borders. 

T Shehzadi 

[113] 

Semi-supervised 
Deformable 

DETR 

(1) Reduces the dependency on large-scale 

annotated datasets, making the method more 

practical and cost-effective. (2) effective for 

handling spatial deformations in document images. 

(1) Require significant computational 

resources. (2) They does not provide 

insights into the potent- 
ial limitations or challenges asso- 

ciated with varying levels of 

annotated data. 

table sizes and orientations, it tailors its receptive field, emphasizing the customization and 

flexibility deep learning offers in detection methodologies. 

It’s also noteworthy to highlight the dedicated efforts towards refining the precision of TD, such 

as N Sun [122]’s corner-finding approach. By integrating coordinate matching and filtering untrust- 

worthy edges, this strategy emphasizes the importance of pixel-level precision in delineating table 

boundaries. 

Beyond traditional TD, approaches like I Kavasidis [56]’s combination of deep CNNs, graphical 

models, and saliency ideas, or M Holeček [43]’s exploration of graph convolutions, extend the 

boundaries of what’s achievable. These methods indicate the continued blurring of lines between 

classical computer vision techniques and deep learning methodologies. 

However, the landscape is further enriched by the inclusion of methods that cater to specialized 

scenarios. AA Gurav [32]’s approach focuses on automating data extraction from diverse DDs, 

leveraging CNNs and emphasizing the significance of weakly supervised learning. This 

methodology exemplifies the potential of deep learning in handling varied DD formats without 

extensive annotations. Similarly, A Samari [108]’s strategy for detecting tables in historical prints, 
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R Liu [75]’s emphasis on few-shot table understanding, and M Haloi’s large-scale dataset 

introduction echo the sentiment of embracing diversity in data and challenges. 

Innovative frameworks like H Dong [17]’s TableSense accentuate the need for precision in unique 

scenarios such as spreadsheet TD, exemplifying the adaptability of CNN models. Mean- 

while, P Fischer [24]’s Multi-Type-TD-TSR underscores the importance of end-to-end solutions 

tailored for varied table types. 

T Shehzadi [113]’s semi-supervised approach, capitalizing on the deformable transformer, 

captures the overarching theme of the current research landscape—the quest for optimizing 

performance while minimizing the need for extensive labeled data. 

5.3 Case Study Analysis: Evaluating Methodologies in TR 

This section delves into the practical application of TR methodologies through detailed case studies. 

By examining specific implementations and their outcomes, we aim at highlighting the real- 

world challenges and benefits associated with these methods. The analysis not only sheds light on 

the efficacy of various approaches but also underscores the adaptability and limitations of TR 

technologies in addressing diverse data extraction needs. 

5.3.1 Introduction to Case Study Selection. The case studies were carefully selected to cover a 

wide range of applications, from academic research articles to business financial reports and medical 

records. This diversity ensures a comprehensive understanding of how TR methodologies perform 

across different domains. The selection criteria focused on the complexity of the table structures, 

the document formats, and the specific challenges each application presented. 

5.3.2 Case Study 1: Academic Research Article Data Extraction. The goal was to automate data 

extraction from tables in environmental science academic articles using a CNN-based model, 

overcoming challenges like diverse table formats and mixed content types. Implementing multi-step 

preprocessing for format standardization and symbol accuracy, along with semantic analysis in post-

processing, enhanced data extraction and organization. This method significantly cut down on 

manual data compilation time despite requiring substantial computational effort. Automating this 

process boosted meta-analysis efficiency, enabling the analysis of larger datasets more quickly. This 

advancement not only streamlines research workflows but also sets a precedent for applying similar 

technologies in other scientific domains. 

5.3.3 Case Study 2: Financial Report TR for Business Intelligence. This case involved extracting 

financial data from tables in quarterly and annual reports of publicly traded companies to enhance 

business intelligence analyses. An ensemble approach combining OCR technologies with machine 

learning-based TR algorithms was utilized to cater to both scanned and digitally generated financial 

reports. The primary challenge was dealing with the high variability in report formats and the 

accuracy of financial data extraction critical for analysis. Custom OCR correction algorithms were 

developed to address common errors in financial data recognition. Additionally, a domain-specific 

adaptation of the machine learning model was trained on a dataset of financial tables to improve 

accuracy. This approach enabled highly accurate extraction of financial data across a wide range of 

report formats, significantly enhancing the business intelligence process. However, the system 

required ongoing training and adaptation to new report formats, presenting scalability challenges. 

The implementation led to a more efficient and accurate business intelligence process, enabling 

deeper and faster financial analyses of competitor and market trends. 
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5.3.4 Comparative Analysis and Lessons Learned. The case studies underscore the potential of 

TR methodologies to streamline data extraction across diverse domains. While each approach has 

its strengths, common challenges include the need for domain-specific adaptations and the balance 

between accuracy and computational efficiency. These insights pave the way for future innovations 

in TR technology, emphasizing the importance of flexible, adaptable solutions capable of handling 

the complexities of real-world applications. 

5.4 TSR Models 

In order to recognize table structures in DIs, deep learning approaches are reviewed in this part. We 

divided the methods into discrete deep-learning principles for the benefit of our readers. Tables 5 

and 6 list all methods for recognizing table structures based on object detection, as well as their 

benefits and drawbacks. It also discusses various deep learning-based methods that have been used 

in these methods. 

CNN Based Models. SS Paliwal [94] presents TableNet which is a new end-to-end deep learning 

model for both TD and structure recognition. To divide the table and column areas, the model uses 

the dependency between the twin objectives of TD and TSR. Then, from the discovered tabular sub-

regions, semantic rule-based row extraction is performed. SA Siddiqui [116] described the structure 

recognition issue as the semantic segmentation issue. To segment the rows and columns, the authors 

employed FCNs. The approach of prediction tiling is introduced, which lessens the complexity of 

table structural identification, assuming consistency in a tabular structure. The author imported pre-

trained models from ImageNet and used the structural models of FCN’s encoder and decoder. The 

model creates features of the same size as the original input picture when given an image. 

SA Khan [57] presents a robust deep learning-based solution for extracting rows and columns 

from a recognized table in document pictures in this work. The table pictures are pre-processed 

before being sent into a bi-directional Recurrent Neural Network (RNN) using Gated Recurrent 

Units (GRUs) and a fully-connected layer with softmax activation in the suggested solution. 

A Nassar [88] provides a fresh identification model for table structures. The latter enhances the 

most recent EDD from PubTabNet end-to-end deep learning model in two important aspects. First, 

the authors provide a brand-new table-cell object detection decoder. This allows them to easily 

access the content of the table cells in programmatic PDFs without having to train any proprietary 

OCR decoders. The authors claim that this architectural improvement makes table-content 

extraction more precise and enables them to work with non-English tables. Second, transformer-

based decoders take the place of LSTM decoders. 

C Tensmeyer [124] has presented SPLERGE (Split and Merge), another method using dilated 

convolutions. Their strategy entails the use of two distinct deep learning models, the first of which 

establishes the grid-like layout of the table and the second of which determines if further cell spans 

over many rows or columns are possible. 

Another effort to segment tabular structures is the ReS2TIM article by W Xue [134] which 

describes the reconstruction of syntactic structures from the table. Regressing the coordinates for 

each cell is this model’s main objective. A network that can identify the neighbors of each cell in a 

table is initially built using the new technique. In the study, a distance-based weighting system is 

given that will assist the network in overcoming the training-related class imbalance problem. 

To identify rows and columns in tables, KA Hashmi [38] suggested a guided technique for table 

structure identification. The localization of rows and columns may be made better, according to this 

study, by using an anchor optimization approach. The boundaries of rows and columns are detected 

in their proposed work using Mask R-CNN and optimized anchors. 
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Another study by Y Zou [147] called for the development of an image-based table structure 

identification technique using FCNs. the shown work divides a table’s rows, columns, and cells. All 

of the table components’ estimated bounds are enhanced using connected component analysis. 

Based on the placement of the row and column separators, row and column numbers are then 

allocated for each cell. In addition, special algorithms are used to optimize cellular borders. X Shen 

[114] suggested two modules, referred to as Rows Aggregated (RA) and Columns Aggregated (CA). 

First, to produce a rough forecast for the rows and columns and address the issue of high 

Table 5. A Comparison of the Benefits and Drawbacks of Several Deep Learning-based Table 

Structure Recognition Methods 
Literature Method Benefits Drawbacks 

SF Rashid [104] 
Uses the geometric 

position of words + A 

neural network model 
(autoMLP) 

No reliance on complex layout analysis 
Mechanism. Can be used on the diverse set 

of documents with different layouts. 

limitation is in marking columns 
boundaries due to variations in 

the number of words in each 

column. 

E Koci [62] 

Encoding of spatial 

interrelations between 

these 
regions using a graph 

representation, as well as 

rules and heuristics 

(1) Recognition for single-table and multitable 

spreadsheets. (2) No reliance on any 
assumptions with what regards the 

arrangement of tables. 
Tables with few columns and 

empty cells are not handled 

well. 

SA Siddiqui [115] deformable CNN 

+ Faster R-CNN 

(1) The use of deformable convolution can 

handle various tabular structures. (2) released 

a new dataset that contained table structure 

data. 

The tables in the proposed 

approach won’t operate co- 
rrectly if they have a row and 

column span. 

SA Siddiqui [116] Fully CNNs 
The complexity of the task of identifying table 

structures is reduced by the proposed 

prediction tiling approach. 

(1) Additional post-processing 

processes are necessary when 

rows or columns are excessively 
fragmented. (2) The technique is 

based on the tabular structures’ 

consistency assumption. 

SR Qasim [99] Graph NN + CNN 

(1) This article also presents a unique, 

memoryefficient training strategy based on 

Monte Carlo. (2) The suggested approach 

makes use of both textual and spatial 

characteristics. 

The publicly accessible table 

datasets are not used to test 

the system. 

W Xue [134] 
Graph NN + weights 

depending on distance 
For the cell relationship network, the class 

imbalance issue is solved using the 

distancebased weighting method. 

When dealing with sparse tables, 

the approach is insecure. 

C Tensmeyer 

[124] 
Dilated Convolutions 

+ Fully CNN 
The technique is effective with both scanned 

and PDF document images. 
The post-processing heuristics 

determine how the merging portion 

of the method works. 

SA Khan [57] RNN The reduced receptive field of CNNs is solved 

by the bi-directional GRU. 

Pre-processing procedures 

including binarization, noise 

reduction, and morphological 

modification are necessary. 

P Riba [106] Graph Neural Networks 

approach 

(1) It is not constrained to rigid tabular layouts 

in terms of single rows, columns or presence 

of rule lines. (2) The model is language 

independent. 

(1) The method may have problems 

when dealing with border cond- 
itions. (2) There is a small amount 

of training data in the RVL-CDIP 

dataset and F1, Precision and 

Recall metrics are lower than other 

methods. 

Y Deng [16] Encoder decoder net 
(1) In the work that is given, issues with endto-

end table recognition are examined. (2) Mad -e 

a contribution with yet another sizable data -set 

in the area of table comprehension. 

The other publicly accessible 

table recognition datasets are not 
used to assess the suggested 

baseline technique. 

E Koci [64] 
Graph model + Appl- 

ication of genetic-based 

approaches 
Requires little to no involvement of domain 

experts . 

The accuracy of GE depends on 

the number of edges. Specifica- 
lly, we determined that GE 

achieves an accuracy of only 

19% for multi-table graphs. 

SS Paliwal [94] Networks with fully 

convolutions 

(1) First attempt at combining a single solution 

to handle both the problem of table detection 
and structure recognition. (2) A comprehensive 

method for structure recognition and detection 

in document pictures. 

This approach only functions on 

column detection when used for 

table structure extraction. 

D Prasad [97] 
Cascade mask 

Regionbased CNN High- 
Resolution Networkbased 

model 

Direct regression occurs at cellular boundaries 

using an end-to-end method. 

Tables with/out ruling lines 

must undergo further post-

processing. 
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S Raja [101] 
Mask R-CNN + 

ResNet-101 based 

Net 

(1) An additional alignment loss is 

suggested for precise cell detection. (2) A 

trainable top-down for cell identification 

and 
bottom-up for structure recognition collection 

is proposed. 

When cells are empty, the 

strategy is weak. 

error tolerance, feature slicing, and tiling are applied. Second, the attention maps of the channels are 

computed to further obtain the row and column information. In order to complete the rows 

segmentation and columns segmentation, the authors employ RA and CA to construct a semantic 

segmentation network termed the Rows and Columns Aggregated Network (RCANet). 

C Ma [78] presents RobusTabNet, a novel method for recognizing the structure of tables and 

detecting their borders from a variety of document pictures. The authors suggest using CornerNet 

Table 6. A Comparison of the Benefits and Drawbacks of Several Deep Learning-based TSR Methods 

(Continue Table 5) 
Literature Method Benefits Drawbacks 

B Xiao [131] 

cells’ bounding boxes 
+ conditional attention 

network Only utilizes visual features without any 

metadata . 

(1) Assumes that the 

coordinates of cells in the table 

are known. 
(2) Difficulties with 

tables without borders. 

Y Zou [147] Fully CNNs 

(1) Using linked component analysis enhances 

the outcomes. (2) In a table, cells are 

segmented in addition to the rows and 

columns. 

To provide comparison findings, 

a small number of post-

processing procedures utilizing 

specific algorithms are 

necessary. 

X Zhong [146] 
Dual decoder with attention-

based enc- 
oding 

(1) To assess table recognition techniques, the 

methodology offers a unique evaluation metric 

called TEDS. (2) released a huge table dataset. 

The technique cannot be readily 

compared to other state-of-theart 

techniques. 

KA Hashmi [38] 
Utilizing an optimization 

technique for 
anchors+ Mask RCNN 

Networks of region proposals converge more 

quickly and effectively thanks to optimized 

anchoring. 

This study relies on the pre 

liminary pre-processing phase 

of clustering the ground truth 

to find appropriate anchors. 

A Zucker [148] 

Character Region Awareness 

for Text Detection (CRAFT) 

and Density-Based Spatial 
Clustering of Applications with 

Noise (DBSCAN) 

A bottom-up method, which emphasizes that 

the table structure is formed by relative 

positions of text cells, and not by inherent 

boundaries . 
Cannot handle spreading rows 

or columns well. 

X Zheng [145] 
Method for object 

detecting generally 
An additional innovative cluster-based tech 

nique combined with a hierarchical network 

to detect tabular forms. 

Accurately classifying a table 

is a prerequisite for final cell 

structure identification. 

Z Zhang [143] 
A combination of FCN+ RoI- 
Align + the pretrained BERT 

model + 
GRU decoder 

Directly operates on table images with no 

dependency on meta-information, can process 

simple and complex tables. 

Oversegments tables when space 

between cells is large, doesn’t 

handle merged cells well. 

M Namysl [86] 
Rule-based algorithms + graph-

based table interpretation 

method 

(1) Approach allows processing images and 

digital documents. (2) Processing steps can 

be adapted separately. 

(1) Support the most 

frequent table formats only. 

Reliance on the 
presence of predefined 

keywords. 
(2) Prone to the errors 

propagated from the upstream 

components of system. (3) Focus 

on the tables with rulings. 

A Nassar [88] 
End-to-end neural network 

+ CNN Backbone + 

transformer based layers 

(1) Handles different languages without being 

trained on them. (2) Predicts tables structure 

and bounding boxes for the table content. 
Work with PDF documents. 

A Jain [50] spatial associations + dynamic 

programming techniques 
Recognizing complex table structures having 

multi-span rows/columns and missing cells. 
Uses OCR to read words from 

images Not language agnostic. 
S Raja [102] object detection Better detection of empty cells. Fails for very sparse tables where 

most of the cells are empty. 

J Herzig [42] Tabular Pre-trained Language 

Model 

Simplifies question-answering by directly 

predicting denotations from tables, 

outperforming traditional methods in 

accuracy, and showcasing efficient transfer 

learning capabilities. 

Limited scope beyond table-

related tasks, requires substantial 

computational resources, and 
depends heavily on the quality 

of pre-training data. 

SX Rao12 [103] Weak Supervision + 

Mask R-CNN 

(1) Handles both native PDFs and scanned 

images. (2) Provides TableAnnotator and 

ExcelAnnotator, fostering collaborative 

research. 

(1) Computationally 

demanding. 
(2) Accuracy hinges 

on the quality of training data, 

impacting performance if data is 

noisy or limited. 
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M Namysł [87] 
heuristic-based structure re- 
cognition, and graph-based 

semantic interpretation 

(1) Flexible and adaptable to various 

document layouts. (2) Handles both image and 

PDF formats (3) Effective when extracting 

specific data from chosen table columns. 

May require adjustments for 

unconventional layouts or 

formats . 

NT Ly [77] 
WSTabNet (a weakly 

supervised table recognition 
model ) 

(1) Achieves top-tier accuracy on benchmark 

datasets (2) Simplifies training, enhancing 

model efficiency. 

Relies heavily on specific HT- 
ML annotations, limiting applic- 
ability to datasets without such 

annotations. 

A Ghosh Chowdhury [27] self-supervised image classifier 

+ pix2pix GAN 

(1)Accurately detects tables and recognizes 

structures, demonstrated through evaluations 

on multiple datasets. (2) Reduces dependency 

on manual annotations. 

Requires significant 

computational resources. 

as a new region proposal network to produce higher-quality table proposals for Faster R-CNN, 

which has greatly increased the localization accuracy of Faster R-CNN for table identification. by 

utilizing only the minimal ResNet-18 backbone network. Additionally, the authors suggest a 

brandnew split-and-merge approach for recognizing table structures. In this method, each detected 

table is divided into a grid of cells using a novel spatial CNN separation line prediction module, and 

then a Grid CNN cell merging module is used to recover the spanning cells. Their table structure 

recognizer can accurately identify tables with significant blank areas and geometrically deformed 

(even curved) tables because the spatial CNN module can efficiently transmit contextual 

information throughout the whole table picture. 

A Jain [50] suggests training a deep network to recognize the spatial relationships between various 

word pairs included in the table picture in order to decipher the table structure. The authors offer an 

end-to-end pipeline called TSR-DSAW: TSR through Deep Spatial Association of Words, 

which generates a digital representation of a table picture in a structured format like HTML. The 

suggested technique starts by utilizing a text-detection network, such as CRAFT, to identify every 

word in the input table picture. Next, using dynamic programming, word pairings are created. These 

word pairings are underlined in each individual image and then given to a DenseNet-121 classifier 

that has been trained to recognize spatial correlations like same-row, same-column, samecell, or 

none. Finally, The authors apply post-processing to the classifier output in order to produce the 

HTML table structure. 

SX Rao12 [103] developed TableParser, a system adept at parsing tables in native PDFs and 

scanned images with high precision. They emphasized the significance of parsing table structures 

and extracting bounding content from various formats such as PDFs, images, spreadsheets, and 

CSVs. The study highlighted the efficacy of domain adaptation techniques in developing 

TableParser. Additionally, they introduced TableAnnotator and ExcelAnnotator, enabling weak 

supervision and facilitating table parsing. These resources were shared with the research community 

to encourage further exploration in this area. 

NT Ly [77] introduced WSTabNet, a novel weakly supervised model for TR, reducing 

dependency on detailed and costly annotations. Their approach utilizes only HTML (or LaTeX) 

codelevel annotations of table images. WSTabNet includes components for feature extraction, table 

structure generation, and cell content prediction. The model trained end-to-end using stochastic 

gradient descent, demonstrated superior or comparable accuracy to state-of-the-art methods. To 

support deep learning in TR, the authors curated WikiTableSet, a vast dataset from Wikipedia, 

containing millions of table images in multiple languages, enabling extensive experiments and 

validations. 

GAN Models. A Ghosh Chowdhury [27] explores self-supervised learning in document TD, 

addressing the challenges of extracting tabular information from complex documents. They use a 

self-supervised image classifier as a primary backbone for supervised object detection and employ 

a pix2pix GANs approach for TSR. Their proposed methods form a robust machine learning pipeline 

for TD and structure recognition. Evaluation across various datasets, including domainspecific ones, 
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demonstrates the effectiveness of these approaches in extracting tabular information from intricately 

structured documents. 

Adaptive and Hybrid Models. A Zucker [148] presents CluSTi, a Clustering approach for 

recognizing the Structure of Tables in invoice scanned images, as an effective way. CluSTi makes 

three contributions. To begin, it uses a clustering approach to eliminate high noise from the table 

pictures. Second, it uses state-of-the-art text recognition to extract all text boxes. Finally, CluSTi 

organizes the text boxes into the correct rows and columns using a horizontal and vertical clustering 

technique with optimum parameters. Z Zhang [143] presents Split, Embed, and Merge (SEM) as a 

table structure recognizer that is accurate. M Namysl [86] presents a versatile and modular table 

extraction approach in this research. 

E Koci [62] offers a new method for identifying tables in spreadsheets and constructing layout 

areas after determining the layout role of each cell. Using a graph model, they express the spatial 

interrelationships between these areas. On this foundation, they present Remove and Conquer 

(RAC), a TR algorithm based on a set of carefully selected criteria. 

Using the potential of deformable convolutional networks, SA Siddiqui [115] proposes a unique 

approach for analyzing tabular patterns in document pictures. P Riba [106] presents a graph-based 

technique for recognizing tables in document pictures in this article. also employ the location, 

context, and content type instead of the raw content (recognized text), thus it’s just a structural 

perception technique that’s not reliant on the language or the quality of the text reading. E Koci [64] 

uses genetic-based techniques for graph partitioning, to recognize the sections of the graph matching 

to tables in the sheet. SR Qasim [99] presents a graph network-based architecture for table 

recognition as a superior alternative to typical neural networks. S Raja [101] describes a method for 

recognizing table structure that combines cell detection and interaction modules to locate the cells 

and forecast their relationships with other detected cells in terms of row and column. Also, structural 

limitations to the loss function for cell identification as extra differential components. The existing 

issues with end-to-end table identification were examined by Y Deng [16], who also highlighted the 

need for a larger dataset in this area. S Raja [102] suggests a novel object-detection-based deep 

model that is tailored for quick optimization and captures the natural alignments of cells inside 

tables. Dense TR may still be problematic even with precise cell detection because multi-

row/column spanning cells make it difficult to capture long-range row/column relationships. 

Therefore, the authors also seek to enhance structure recognition by determining a unique rectilinear 

graph-based formulation. The author emphasizes the relevance of empty cells in a table from a 

semantics standpoint by introducing a novel loss function designed to capture the natural alignment 

of cells within a cell detection network. Additionally, they proposed a graphbased approach to 

establish connections between the identified cells, enabling a more comprehensive understanding of 

their relationships. The authors recommend a modification to a well-liked assessment criterion to 

take these cells into consideration. To stimulate fresh perspectives on the issue, then provide a 

moderately large assessment dataset with annotations that are modeled after human cognition. 

B Xiao [131] postulates that a complex table structure may be represented by a graph, where the 

vertices and edges stand in for individual cells and the connections between them. Then, the authors 

design a conditional attention network and characterize the table structure identification issue as a 

cell association classification problem (CATT-Net). 

H Li [68] formulates the issue as a cell relation extraction challenge and provides T2, a 

cuttingedge two-phase method that successfully extracts table structures from digitally preserved 

texts. T2 offers a broad idea known as a prime connection that accurately represents the direct 

relationships between cells. To find complicated table structures, it also builds an alignment graph 

and uses a message-passing network. 
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Z Chi [14] introduced GraphTSR, a novel graph neural network designed for recognizing intricate 

table structures within PDF files. Their approach, GraphTSR, utilizes table cells as input and 

predicts relationships among these cells to understand the table layout accurately, even in complex 

scenarios involving spanning cells that occupy multiple columns or rows. 

M Namysł [87] developed an advanced table extraction system to extract quantitative data from 

documents with diverse layouts. Their hybrid approach integrates a deep learning-based TD module, 

heuristic-based structure recognition, and graph-based semantic interpretation. This modular system 

handles both image format and PDF files, outperforming baseline methods and achieving results 

comparable to state-of-the-art techniques. Additionally, the system demonstrates high performance, 

especially when extracting targeted information from specific table columns. 

NLP models. J Herzig[42] introduced TAPAS, a novel method for answering natural language 

questions over tables. Unlike traditional semantic parsing approaches, TAPAS avoids generating 

complex logical forms, instead predicting answers directly from weak supervision in the form of 

denotations. The model operates by selecting relevant table cells and applying aggregation 

operators. TAPAS extends BERT’s architecture to encode tables and is trained from a joint pre-

training of text segments and Wikipedia tables. In evaluations across three semantic parsing datasets, 

TAPAS outperformed or matched the accuracy of traditional semantic parsing models, achieving 

significant improvements in question-answering accuracy, particularly on the SQA dataset. 

Importantly, it achieved this while utilizing a simpler model architecture. 

5.5 Discussion on TSR 

TSR in DIs is pivotal for information retrieval and data digitization, particularly in documents that 

are dense with tabular data. Recent advancements in deep learning have paved the way for a 

multitude of models and algorithms designed to tackle this challenge. This discussion offers an 

overview and insight into the key methods and their respective merits and drawbacks. 

At the heart of TR lies the problem of understanding spatial relationships between various 

elements in a document, be they textual or graphical. Most contemporary approaches, such as 

CluSTi [148] and SEM [143], focus on effectively segmenting the table, recognizing its structure, 

and then extracting data from it. The use of clustering and embedding techniques showcases the 

shift towards unsupervised and semi-supervised methodologies, reducing the need for exhaustive 

manual annotations. 

Models like TableNet [94] and ReS2TIM [134] highlight the interconnected nature of TD and 

structure recognition, arguing that a holistic view of both processes can improve accuracy. Such an 

integrated approach also allows these models to be more flexible and adaptable to varied table 

structures. 

A trend noticeable in the recent literature is the drift towards more context-aware models. These 

models, such as the ones proposed by SA Siddiqui [116] and SA Khan [57], emphasize 

understanding the underlying context and content, moving away from purely structural analysis. 

This shift provides two significant advantages: language independence and robustness against 

varying text quality, as highlighted by P Riba [106]. 

Transformers, originally designed for NLP tasks, have made a notable entrance into the TR 

domain as well. Nassar’s TableFormer [88] exemplifies the adaptability of transformer-based 

architectures for spatial tasks. Given their capability to capture long-range dependencies, 

transformers are particularly suited for TR, especially when dealing with complex structures. 

The aspect of granularity in TR cannot be overlooked. While some models strive for a macrolevel 

understanding, identifying tables’ boundaries and general layout, others delve into microlevel 
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details. These models, such as the one proposed by Raja [102], emphasize detecting individual cells 

and their inter-relationships, which is especially crucial for tables with multi-row/column spanning 

cells. 

Datasets play an undeniable role in the advancement of any machine learning task. The need for 

extensive and diverse datasets for TR has been accentuated by Y Deng [16]. Recent efforts, such as 

the WikiTableSet introduced by NT Ly [77], cater to this demand, providing rich training material 

in multiple languages. 

A noteworthy approach to the challenge of TR is self-supervised learning, as advocated by A 

Ghosh Chowdhury [27]. This method’s elegance lies in reducing the dependency on labeled data, 

which is often a significant bottleneck for deep learning projects. 

In summary, TSR has witnessed a paradigm shift in the past few years. From heuristic-based 

methods to advanced deep learning architectures, the field has evolved rapidly. Each method has its 

unique strengths, catering to different challenges within TR. Future advancements may well see a 

fusion of these techniques, aiming for a universal model adept at handling any table structure in DIs. 

5.6 Case Study Analysis: Evaluating Methodologies in TSR 

5.6.1 Introduction to Case Study Analysis. Concrete case studies provide invaluable insights into 

the practical application, challenges, and benefits of TSR methodologies. This analysis aims at 

bridging the gap between theoretical research and real-world application, offering a deeper 

understanding of how these methodologies perform under various conditions. 

5.6.2 Selection Criteria for Case Studies. The case studies were selected based on several criteria: 

the complexity of the table structures, the diversity of the document formats (including scientific 

articles, financial reports, and medical records), and the unique challenges each case presented. 

These criteria ensure a broad perspective on the applicability and performance of TSR methods. 

5.6.3 Case Study 1: Financial Report Analysis. The first case study focused on automating data 

extraction from financial tables in multinational corporation reports to improve the efficiency of 

quarterly financial analyses. Challenges included variable table formats and the precision required 

for fine-grained numerical data. To overcome these, the study used a custom version of the TableNet 

deep learning model, enhanced with specialized OCR for better numerical recognition and fine-

tuned on financial tables. Despite the high accuracy achieved in data extraction, the need for detailed 

fine-tuning and preprocessing underscored the model’s limitations in handling diverse tables without 

specific adjustments. This adaptation of TableNet significantly streamlined the data extraction 

portion of financial analysis, marking a substantial step toward automating and enhancing financial 

report processing. The success of this approach opens avenues for applying similar methodologies 

across different sectors requiring detailed data extraction. Furthermore, it underscores the potential 

for AI to transform traditional business processes, making them more efficient and less reliant on 

manual labor. 

5.6.4 Case Study 2: Medical Records Extraction. The case study aimed at enhancing digitization 

accuracy of patient data from scanned medical records into a hospital’s electronic system, utilizing 

Faster R-CNN for TD and an LSTM-based model for recognizing structures despite poor scan 

quality and varied layouts. Key challenges were low-quality scans, handwritten notes, and 

maintaining data privacy and security. Solutions included advanced denoising, handwriting 

recognition, and training on a secure, anonymized medical dataset. This approach improved 

digitization accuracy and reduced manual errors, though its scalability was limited by the need for 

extensive preprocessing and a secure training setup. The hybrid deep learning technique 
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significantly enhanced the efficiency and accuracy of converting medical records into digital form, 

aiding better patient data management and care. 

5.6.5 Comparative Analysis and Lessons Learned. The case studies illustrate the potential of deep 

learning methodologies to transform TSR across different domains. However, they also underscore 

the importance of domain-specific adaptations, the challenges posed by diverse document formats, 

and the critical role of preprocessing steps. Lessons learned include the need for targeted dataset 

preparation, the potential for hybrid models to address complex recognition tasks, and the 

importance of privacy considerations in medical applications. These insights contribute to advancing 

the field of TSR, offering guidance for future research and application. 

6 EXPERIMENTS RESULTS 

6.1 TD Results 

TD is crucial for analyzing the structure of documents by identifying tables and their boundaries 

within images. We conduct a comparative study on different TD techniques using benchmarks like 

ICDAR and UNLV, assessing them with the IOU metric detailed in Tables 7 and 8. The evolution 

Table 7. TD 
Approach Dataset Method  IoU Year 

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 50%:95% 

Tesseract 

[111] UNLV Tab-stop Detection 
Precision 

Recall 
- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

86.00 
79.00 

- 
- 

- 
- 2010 

   F1-

Score 
- - - - - - - - 82.35 - -  

A Gilani [28] UNLV Faster R-CNN 
Precision 

Recall 
- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

82.30 
90.67 

- 
- 

- 
- 2017 

   F1-

Score 
- - - - - - - - 86.29 - -  

SA Siddiqui 

[117] UNLV 
Deformable 

CNN + Faster 

R-CNN 

Precision 

Recall 
F1-

Score 

78.6 
74.9 
76.7 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 2018 

Á Casado-

García [11] UNLV YOLO 
Precision 

Recall 
- 
- 

- 
- 

93.0 
95.0 

- 
- 

92.0 
94.0 

- 
- 

83.0 
85.0 

- 
- 

48.0 
49.0 

- 
- 

- 
- 2020 

   F1-

Score 
- - 94.0 - 93.0 - 84.0 - 49.0 - -  

M Agarwal 

[5] UNLV 
Cascade mask 

R-CNN 
Precision 

Recall 
F1-

Score 

96.0 
77.0 
86.5 

- 
- 
- 

94.4 
75.8 
85.1 

- 
- 
- 

91.5 
73.4 
82.5 

- 
- 
- 

82.6 
66.3 
74.4 

- 
- 
- 

61.8 
49.6 
55.7 

- 
- 
- 

- 
- 
- 2018 

S Schreiber 

[109] ICDAR2013 Mask R-CNN 
Precision 

Recall 
97.40 
96.15 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2017 

   F1-

Score 
96.77 - - - - - - - - - -  

SA Siddiqui 

[115] ICDAR2013 Deformable CNN 
Precision 

Recall 
99.6 
99.6 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2018 

   F1-

Score 
99.6 - - - - - - - - - -  

I Kavasidis 

[56] ICDAR2013 
Semantic Image 

Segmentation 
Precision 

Recall 
F1-

Score 

97.5 
98.1 
97.8 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 2019 

Y Huang [47] ICDAR2013 YOLO 
Precision 

Recall 
100 

94.9 
- 
- 

98.6 
93.6 

- 
- 

- 
- 

- 
- 

89.2 
84.6 

- 
- 

- 
- 

- 
- 

- 
- 2019 

   F1-

Score 
97.3 - 96.1 - - - 86.8 - - - -  

SS Paliwal 

[94] ICDAR2013 fully convolutions 
Precision 

Recall 
96.97 
96.28 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2019 

   F1-

Score 
96.62 - - - - - - - - - -  

Á Casado-

García [11] ICDAR2013 Mask R-CNN 
Precision 

Recall 
- 
- 

- 
- 

70.0 
97.0 

- 
- 

70.0 
97.0 

- 
- 

70.0 
97.0 

- 
- 

47.0 
65.0 

- 
- 

- 
- 2020 
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   F1-

Score 
- - 81.0 - 81.0 - 81.0 - 54.0 - -  

D Prasad [97] ICDAR2013 
Cascade mask 

R-CNN HRNet 
Precision 

Recall 
F1-

Score 

100 
100 
100 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 2020 

M Li [70] ICDAR2013 Faster R-CNN 
Precision 

Recall 
96.58 
95.94 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2020 

   F1-

Score 
96.25 - - - - - - - - - -  

M Agarwal 

[5] ICDAR2013 
Cascade mask 

R-CNN 
Precision 

Recall 
F1-

Score 

100.0 
100.0 
100.0 

- 
- 
- 

100.0 
100.0 
100.0 

- 
- 
- 

98.7 
98.7 
98.7 

- 
- 
- 

94.2 
94.2 
94.2 

- 
- 
- 

66.0 
66.0 
66.0 

- 
- 
- 

- 
- 
- 2021 

X Zheng 

[145] ICDAR2013 
object detection 

networks 
Precision 

Recall 
F1-

Score 

98.97 
99.77 
99.31 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 2021 

SA Siddiqui 

[115] ICDAR2017 Deformable CNN 
Precision 

Recall 
- 
- 

- 
- 

96.5 
97.1 

- 
- 

- 
- 

- 
- 

96.7 
93.7 

- 
- 

- 
- 

- 
- 

- 
- 2018 

   F1-

Score 
- - 96.8 - - - 95.2 - - - -  

Y Huang [47] ICDAR2017 YOLO 
Precision 

Recall 
- 
- 

- 
- 

97.8 
97.2 

- 
- 

- 
- 

- 
- 

97.5 
96.8 

- 
- 

- 
- 

- 
- 

- 
- 2019 

   F1-

Score 
- - 97.5 - - - 97.1 - - - -  

Abdallah [1] TNCR 
HRNets Cascade Mask R-

CNN 
Precision 

Recall 
88.8 
97.0 

88.7 
97.0 

88.7 
97.0 

88.6 
96.7 

88.5 
96.7 

88.4 
96.5 

87.2 
95.5 

85.8 
94.2 

82.8 
91.8 

73.2 
83.6 

81.0 
90.3 2022 

   F1-

Score 
92.7 92.6 92.6 92.4 92.4 92.2 91.1 89.8 87.0 78.0 90.3  

Abdallah [1] TNCR HRNets - Mask R-CNN 
Precision 

Recall 
85.9 

97.1 
85.7 

96.9 
85.7 

96.9 
85.7 

96.9 
85.2 

96.5 
84.8 

96.0 
83.3 

94.7 
81.6 

93.4 
76.4 

88.9 
58.5 

74.4 
81.6 93.4 

2022 

   F1-

Score 
91.1 90.9 90.9 90.9 90.4 90.0 88.6 87.1 82.1 65.4 87.1  

Abdallah [1] TNCR HRNets - HTC 
Precision 

Recall 
88.5 

98.7 
88.5 

98.7 
88.3 

98.4 
88.2 

98.4 
88.1 

98.2 
87.5 

97.6 
86.2 

96.6 
84.9 

95.4 
80.8 

91.5 
69.1 

81.6 
78.8 90.1 

2022 

   F1-

Score 
93.3 93.3 93.0 93.0 92.8 92.2 91.1 89.8 85.8 74.8 84.0  

Abdallah [1] TNCR HRNets - Faster R-CNN 
Precision 

Recall 
86.7 

97.2 
86.5 

97.0 
86.3 

96.8 
85.9 

96.4 
85.3 

95.9 
84.5 

95.2 
82.7 

94.0 
80.6 

91.5 
75.0 

86.9 
55.6 

71.1 
71.1 84.2 

2022 

   F1-

Score 
91.6 91.4 91.2 90.8 90.2 89.5* 87.9 85.7* 80.5* 62.4 77.0  

Abdallah [1] TNCR 
HRNets - Cascade R-

CNN 
Precision 

Recall 
89.3 
96.7 

89.1 
96.5 

89.1 
96.5 

89.1 
96.4 

88.8 
96.1 

88.0 
95.6 

87.1 
94.8 

85.4 
93.5 

83.1 
91.4 

70.5 
81.1 

79.9 
88.9 2022 

   F1-

Score 
92.8 92.6 92.6 92.6 92.3 91.6 90.7 89.2 87.0 75.4 84.1  

Abdallah [1] TNCR 
Mask R-CNN - 

ResNeXt-101 
Precision 

Recall 
77.8 
97.5 

77.7 
97.4 

77.4 
96.8 

76.9 
96.4 

75.9 
95.2 

74.9 
94.1 

71.3 
91.3 

65.1 
85.6 

47.7 
72.5 

40.7 
69.5 

43.4 
62.6 2022 

   F1-

Score 
86.5 86.4 86.0 85.5 84.4 83.4 80.0 73.9* 57.5 51.3 51.2  

Abdallah [1] TNCR 
Faster R-CNN - 

ResNeXt-101 
Precision 

Recall 
88.4 
97.2 

88.4 
97.0 

88.0 
96.9 

87.9 
96.7 

87.6 
96.5 

87.1 
96.1 

85.6 
95.0 

83.3 
93.1 

78.0 
88.4 

58.1 
72.4 

73.3 
84.8 2022 

   F1-

Score 
92.5 92.5 92.2 92.0 91.8 91.3 90.0 87.9 82.8 64.4 78.6  

from basic strategies like Tesseract’s tab-stop detection to advanced CNNs like the Faster R-CNN 

by A Gilani[28] shows significant improvements in accuracy. Recent methods have improved 

precision and recall across various IOU thresholds, though challenges remain at higher thresholds 

indicating the need for further refinement. The comparison suggests that newer methods, particularly 

those leveraging CNNs, offer promising advancements in detecting complex table structures across 

diverse datasets. 

Table 8. TD (Continue Table 7) 
Approach Dataset Method  IoU Year 

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 50%:95% 
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Y Li [72] ICDAR2017 GANs 
Precision 

Recall 
- 
- 

- 
- 

94.4 
94.4 

- 
- 

- 
- 

- 
- 

90.3 
90.3 

- 
- 

- 
- 

- 
- 

- 
- 2019 

   F1-

Score 
- - 94.4 - - - 90.3 - - - -  

N Sun [122] ICDAR2017 Faster R-CNN 
Precision 

Recall 
- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

94.3 
95.6 

- 
- 

- 
- 

- 
- 

- 
- 2019 

   F1-

Score 
- - - - - - 94.9 - - - -  

Á Casado-

García [11] ICDAR2017 RetinaNet 
Precision 

Recall 
- 
- 

- 
- 

92.0 
87.0 

- 
- 

92.0 
87.0 

- 
- 

89.0 
84.0 

- 
- 

79.0 
75.0 

- 
- 

- 
- 2020 

   F1-

Score 
- - 89.0 - 89.0 - 86.0 - 77.0 - -  

M Agarwal 

[5] ICDAR2017 
Cascade mask 

R-CNN 
Precision 

Recall 
F1-

Score 

- 
- 
- 

- 
- 
- 

96.9 
89.9 
93.4 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 2021 

D Prasad [97] ICDAR2019 
Cascade mask 

R-CNN HRNet 
Precision 

Recall 
F1-

Score 

- 
- 
- 

- 
- 
- 

- 
94.3 

- 
- 
- 

- 
93.4 

- 
- 

- 
92.5 

- 
- 
- 

- 
90.1 

- 
- 
- 

- 
- 
- 2020 

M Agarwal 

[5] ICDAR2019 
Cascade mask 

R-CNN 
Precision 

Recall 
F1-

Score 

98.7 
94.6 
96.6 

- 
- 
- 

98.0 
93.9 
95.9 

- 
- 
- 

97.7 
93.6 
95.6 

- 
- 
- 

97.1 

93.0 
95.0 

- 
- 
- 

93.4 
89.5 
91.5 

- 
- 
- 

- 
- 
- 2021 

X Zheng 

[145] ICDAR2019 
object detection 

networks 
Precision 

Recall 
F1-

Score 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

96.0 
95.0 
94.0 

- 
- 
- 

90.0 
89.0 
94.0 

- 
- 
- 

- 
- 
- 2021 

DD Nguyen 

[89] ICDAR2019 
fully 

convolutional 

network 

Precision 

Recall 
F1-

Score 

- 
- 
- 

- 
- 
- 

- 
92.8 

- 
- 
- 

- 
91.7 

- 
- 

- 
91.0 

- 
- 
- 

- 
87.4 

- 
- 
- 

- 
- 
- 2022 

J Li [69] ICDAR2019 
Vanilla 

Transformer 

architecture 

Precision 

Recall 
F1-

Score 

- 
- 
- 

- 
- 
- 

- 
97.89 

- 
- 
- 

- 
97.22 

- 
- 

- 
97.00 

- 
- 
- 

- 
93.88 

- 
- 
- 

- 
- 
- 2022 

SA Siddiqui 

[117] Mormot 
Deformable 

CNN 
Precision 

Recall 
84.9 
94.6 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2018 

   F1-

Score 
89.5 - - - - - - - - - -  

M Agarwal 

[5] TableBank 
Cascade mask 

R-CNN 
Precision 

Recall 
F1-

Score 

93.4 
92.4 
92.9 

- 
- 
- 

99.5 
97.8 
98.6 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 2021 

P Riba [106] RVL-CDIP Graph NN 
Precision 

Recall 
15.2 
36.5 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2019 

   F1-

Score 
21.5 - - - - - - - - - -  

P Riba [107] RVL-CDIP Graph NN 
Precision 

Recall 
30.80 
25.20 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2022 

   F1-

Score 
39.60 - - - - - - - - - -  

P Riba [107] RVL-CDIP GAT 
Precision 

Recall 
30.80 
25.20 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2022 

   F1-

Score 
39.60 - - - - - - - - - -  

P Riba [107] RVL-CDIP GAT 
Precision 

Recall 
30.80 
25.20 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2022 

   F1-

Score 
39.60 - - - - - - - - - -  

C Ma [78] ICDAR2019 Faster R-CNN 
Precision 

Recall 
- 
- 

- 
- 

98.4 
94.0 

- 
- 

98.2 
93.9 

- 
- 

97.7 
93.3 

- 
- 

95.0 
90.8 

- 
- 

- 
- 2022 

   F1-

Score 
- - 96.1 - 96.0 - 95.4 - 92.9 - -  

C Ma [78] 
IIIT-AR-

13K Faster R-CNN 
Precision 

Recall 
- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

99.0 
97.8 

- 
- 

- 
- 2022 
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   F1-

Score 
- - - - - - - - 98.4 - -  

Abdallah [1] TNCR 
Dynamic R-

CNN 
Precision 

Recall 
85.5 

97.8 
85.4 

97.7 
85.3 

97.5 
84.9 

97.1 
83.9 

96.3 
82.3 

94.3 
80.2 

92.5 
76.4 

88.8 
64.6 

79.3 
26.7 

45.1 
56.1 71.4 

2022 

   F1-

Score 
91.2 91.1 90.9 90.5 89.6 87.8 85.9 82.1 71.1 33.5 62.8  

Abdallah [1] TNCR Faster R-CNN 
Precision 

Recall 
89.3 
98.1 

89.3 
97.9 

89.0 
97.7 

88.8 
97.5 

87.9 
96.7 

87.6 
96.3 

86.2 
95.0 

82.3 
92.1 

74.7 
86.1 

49.5 
64.5 

69.4 
81.3 2022 

   F1-

Score 
93.4 93.4 93.1 92.9 92.0 91.7 90.3 86.9 79.9 56.0 74.8  

Abdallah [1] TNCR Cascade R-CNN 
Precision 

Recall 
90.5 

98.5 
90.3 

98.4 
90.2 

98.3 
89.9 

97.9 
89.3 

97.6 
89.1 

97.2 
88.4 

96.5 
87.6 

95.8 
82.6 

91.7 
69.3 

81.1 
79.9 89.8 

2022 

   F1-

Score 
94.3 94.1 94.0 93.7 93.2 92.9 92.2 91.5 86.9 74.7 84.5  

Abdallah [1] TNCR HRNets - FCOS 
Precision 

Recall 
79.0 
98.3 

78.8 
97.8 

78.2 
97.2 

77.9 
96.9 

77.0 
95.9 

75.9 
94.7 

72.9 
91.7 

69.1 
87.8 

59.6 
78.6 

33.5 
54.5 

56.3 
76.4 2022 

   F1-

Score 
87.5 87.2 86.6 86.3 85.4 84.2 81.2 77.3 67.7 41.4 64.8  

Tables 7 and 8 delve into the specifics of various TD methodologies across different datasets. A 

notable observation is the employment of GANs by Y Li [72] and the impressive performance of 

Faster R-CNN by N Sun [122] on the ICDAR2017 dataset. On the ICDAR2017 dataset, Y Li [72] 

used GAN and reported an F1-Score of 90.3% at an IoU of 80% in 2019. On the same dataset, N 

Sun [122] employed the Faster R-CNN method, achieving an F1-Score of 94.9% at an IoU of 80% 

in 2019. Á Casado-García [11] utilized RetinaNet and attained an F1-Score of 86.0% at an IoU of 

80% in 2020. M Agarwal [5], using the Cascade mask R-CNN approach on the ICDAR2017 dataset, 

reported a 93.4% F1-Score at 60% IoU in 2021. On the ICDAR2019 dataset, D Prasad [97] 

employed the Cascade mask R-CNN HRNet and achieved a 94.3% F1-Score at 60% IoU in 2020. 

Again, M Agarwal [5] on the ICDAR2019 dataset with the Cascade mask R-CNN reported an F1-

Score of 95.0% at 80% IoU in 2021. X Zheng[145] proposed the use of object detection networks 

for the ICDAR2019 dataset and reached a 94.0% F1-Score at 80% and 90% IoU in 2021. DD 

Nguyen [89] adopted a fully convolutional network for the ICDAR2019 dataset and reported an F1-

Score of 91.0% at 80% IoU in 2022. Meanwhile, J Li [69] implemented the Vanilla Transformer 

architecture on the same dataset and achieved a remarkable F1-Score of 97.00% at 80% IoU in 2022. 

SA Siddiqui [117] proposed the use of a Deformable CNN on the Mormot dataset, achieving an F1-

Score of 

89.5% at 50% IoU in 2018. On the TableBank dataset, M Agarwal [5] employed the Cascade mask 

RCNN and reported a 98.6% F1-Score at 55% IoU in 2021. On the RVL-CDIP dataset, P Riba [106, 

107] utilized a Graph NN in 2019 and 2022, achieving F1-Scores of 21.5% and 39.60%, 

respectively. He also implemented the Graph Attention Neural Networks (GAT) in 2022 for the same 

dataset, reporting a consistent F1-Score of 39.60%. 

On the TNCR dataset, The Faster R-CNN model has achieved good performance in TD compared 

with Cascade-RCNN and Cascade Mask-RCNN in most of the backbones. We have trained the 

Faster R-CNN model with L1 Loss [130] with Resnet-50 for bounding box regression. As shown in 

Tables 7 and 8, it achieves an f1-score of 0.921. Resnet-101 backbone achieves the highest F1 score 

over 50% to 65%, ResNeXt-101-64x4d achieves the highest F1 score over 70% to 95%, and 

ResNeXt101-64x4d achieves the highest F1 score over 50%:95% of 0.786. Resnet-50 backbone 

with 1× Lr schedule achieves the lowest performance over 50% to 60% IoUs. Also, the Resnet-50 

backbone 

with L1 Los achieves the lowest performance from 65% to 95% IoUs and also achieves the lowest 

performance over 50%:95%. HRNets Faster R-CNN detector with various backbone structures with 

combinations of Lr Schedule. The HRNetV2p-W18 with 1× Lr Schedule backbone shows a low 
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performance compared with other backbones. it achieves an f1 score of 0.770. It achieves 3.2% less 

than HRNetV2p-W18 with 2× Lr Schedule. HRNetV2p-W40 with 1× Lr Schedule backbone 

achieves better performance over 50% to 85% IoUs and HRNetV2p-W40 with 2× Lr Schedule 

backbone achieves better performance over 90% and 95% IoUs. HRNetV2p-W18 with 2× Lr 

Schedule backbone achieves an f1 score of 0.802 over 50%:95%. HRNetV2p-W32 with 1× Lr 

Schedule backbone share the same performance over 50% to 60%. 

Also, on the TNCR dataset, We implemented Mask R-CNN [41] to use R-CNN for table objects 

in an image and also for performing object segmentation for each ROI. As seen in Table 7, Mask R-

CNN shows good performance in our dataset in precision, recall, and F1 score for all backbones. 

Resnet-101 backbone has achieved the highest F1 score of 0.774 over 50%:95% and maintains the 

highest F1 score at various IoUs. ResNeXt-101-32x4d achieves the lowest performance over 50% 

to 95% IoUs and also achieves an f1 score of 0.512 over 50%:95%. ResNeXt-101-64x4d also 

achieves the lowest performance at various IoUs except for 95% IoU. 

This comparative analysis underscores the dynamic nature of TD research. From basic methods 

to sophisticated CNN frameworks, the trajectory has been marked by innovation and integration. 

With continual advancements, the quest for the ideal TD algorithm, one that marries precision with 

robustness across diverse challenges, continues. 

6.2 TR Results 

Recognizing structured data from tables in images and documents involves accurately identifying 

components like rows and headers across diverse formats. Various methods have been developed to 

enhance this recognition, with evaluations often conducted on the widely-used ICDAR dataset, 

which includes table images and XML-based ground truth data. These methods are assessed based 

on precision, recall, F1-scores, and the IoU metric, which measures the accuracy of area predictions 

compared to the actual data. The research on TR has progressed from Fully Convolutional 

Table 9. TSR 
Approach Dataset Method  IoU Year 

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 50%:95% 

S Schreiber 

[109] ICDAR2013 Fully CNN 
Precision 

Recall 
95.93 
87.36 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2017 

   F1-

Score 
91.44 - - - - - - - - - -  

SA Siddiqui 

[115] ICDAR2013 Deformable CNN 
Precision 

Recall 
93.19 
93.08 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2019 

   F1-

Score 
92.98 - - - - - - - - - -  

W Xue [134] ICDAR2013 
Graph NN + 

weights depending 

on distance 

Precision 

Recall 
F1-

Score 

92.6 

44.7 
60.3 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 2019 

SS Paliwal 

[94] ICDAR2013 fully CNN 
Precision 

Recall 
92.15 
89.87 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2019 

   F1-

Score 
90.98 - - - - - - - - - -  

SA Khan [57] ICDAR2013 Bi-directional RNN 
Precision 

Recall 
96.92 
90.12 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2019 

   F1-

Score 
93.39 - - - - - - - - - -  

C Tensmeyer 

[124] ICDAR2013 
Dilated 

Convolutions + 

Fully CNN 

Precision 

Recall 
F1-

Score 

95.8 

94.6 
95.2 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 2019 

Z Chi [14] ICDAR2013 Fully CNN 
Precision 

Recall 
88.5 
86.0 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2019 

   F1-

Score 
87.2 - - - - - - - - - -  



305:36 M. Kasem et al. 

ACM Comput. Surv., Vol. 56, No. 12, Article 305. Publication date: October 2024. 

Á Casado-

García [11] ICDAR2013 Mask R-CNN 
Precision 

Recall 
- 
- 

- 
- 

70.0 
97.0 

- 
- 

70.0 
97.0 

- 
- 

70.0 
97.0 

- 
- 

47.0 
65.0 

- 
- 

- 
- 2020 

   F1-

Score 
- - 81.0 - 81.0 - 81.0 - 54.0 - -  

S Raja [101] ICDAR2013 
Object Detection 

Methods 
Precision 

Recall 
92.7 
91.1 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2020 

   F1-

Score 
91.9 - - - - - - - - - -  

KA Hashmi 

[38] ICDAR2013 
Object Detection 

Methods 
Precision 

Recall 
95.37 
95.56 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2021 

   F1-

Score 
95.46 - - - - - - - - - -  

S Raja [102] ICDAR2013 
Object Detection 

Methods 
Precision 

Recall 
93.3 
91.5 

- 
- 

93.0 
90.8 

- 
- 

80.0 
79.1 

- 
- 

63.8 
62.4 

- 
- 

29.1 
28.4 

- 
- 

- 
- 2022 

   F1-

Score 
92.4 - 91.9 - 79.5 - 63.1 - 28.7 - -  

D Prasad [97] ICDAR2019 
Object Detection 

Methods 
Precision 

Recall 
- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2020 

   F1-

Score 
- - 43.8 - 35.4 - 19.0 - 3.6 - -  

Y Zou [147] ICDAR2019 Fully CNN 
Precision 

Recall 
- 
- 

- 
- 

18.79 
10.07 

- 
- 

- 
- 

- 
- 

1.71 
0.92 

- 
- 

- 
- 

- 
- 

- 
- 2021 

   F1-

Score 
- - 13.11 - - - 1.19 - - - -  

X Zheng [145] ICDAR2019 
Object Detection 

Methods 
Precision 

Recall 
- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 2021 

   F1-

Score 
54.8 - 38.5 - - - - - - - -  

S Raja [102] ICDAR2019 
Object Detection 

Methods 
Precision 

Recall 
86.4 
84.2 

- 
- 

82.2 
78.7 

- 
- 

64.1 
62.5 

- 
- 

40.4 
37.6 

- 
- 

17.5 
13.8 

- 
- 

- 
- 2022 

   F1-

Score 
85.3 - 80.4 - 63.3 - 38.9 - 15.4 - -  

S Raja [102] UNLV 
Object Detection 

Methods 
Precision 

Recall 
86.4 
84.2 

- 
- 

84.9 
82.8 

- 
- 

73.5 
71.1 

- 
- 

55.8 
53.2 

- 
- 

17.3 
14.8 

- 
- 

- 
- 2022 

   F1-

Score 
85.3 - 83.9 - 72.3 - 54.5 - 16.0 - -  

C Ma [78] SciTSR Spatial CNN 
Precision 

Recall 
- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

99.4 
99.1 

- 
- 

- 
- 2022 

   F1-

Score 
- - - - - - - - 99.3 - -  

Networks (CNN) to more advanced techniques involving Deformable CNNs, Graph Neural 

Networks, Bi-directional RNNs, and Object Detection Methods. As shown in Table 9 for instance, 

methods proposed by S Schreiber [109] (2017) and SS Paliwal [94] (2019) relied heavily on Fully 

CNN. In contrast, SA Siddiqui [115] (2019) introduced deformable structures into CNN, and W 

Xue[134] (2019) combined Graph Neural Networks with weight dependencies based on distances. 

Precision, recall, and F1-score are the primary metrics to evaluate performance. For instance, SA 

Khan [57] (2019) achieved an impressive precision of 96.92% on the ICDAR2013 dataset using 

Bidirectional RNNs. However, achieving high precision and recall simultaneously can be 

challenging. As seen by W Xue [134] (2019), while the precision was high at 92.6%, the recall was 

considerably low at 44.7%, reflecting the method’s difficulty in detecting all relevant table regions. 

IoU offers a multi-threshold evaluation. As seen in Table 9, while many studies reported metrics 

at the IoU of 50%, Á Casado-García [11] (2020) provided insights into performance across a wide 

range of IoU thresholds, from 60% to 90%. While most studies utilized the ICDAR2013 dataset, 

recent works like D Prasad [97] (2020) and Y Zou [147] (2021) have started using the ICDAR2019 

dataset, potentially due to its updated and more challenging set of table images. It’s intriguing to 

note the diversity in methods. For instance, Á Casado-García [11] (2020) used Mask R-CNN, a 

method predominantly known for its application in general object detection. On the other hand, 
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Table 10. Open Source Code for Most of the Studies Articles in TD and TSR 

Article Model Year Framework Link 
Z Chi [14] SciTSR 2019 Pytorch https://github.com/Academic-Hammer/SciTSR 

D Prasad [97] CascadeTabNet 2020 Pytorch https://github.com/DevashishPrasad/CascadeTabNet 
Á Casado-García 

[11] 
- 2020 mxnet https://github.com/holms-ur/fine-tuning 

M Li [70] TableBank 2020 Pytorch, Detectron2 https://github.com/doc-analysis/TableBank 
S Raja [101] TabStructNet 2020 tensorflow https://github.com/sachinraja13/TabStructNet.git 

X Zhong [146] PubTabNet 2020 - https://github.com/ibm-aur-nlp/PubTabNet 
M Agarwal [5] CDeC-Net 2021 PyTorch https://github.com/mdv3101/CDeCNet 

C Tensmeyer [124] (2019) introduced dilated convolutions into Fully CNN, indicating continuous 

innovations in network architectures for the task. TR is a dynamic field, facing challenges in 

achieving both high precision and recall, particularly at strict IoU thresholds. The diversity and 

complexity of tables in DDs highlight the need for models that can adapt to various structures. 

Despite these challenges, the progress shown in evaluations using the ICDAR dataset suggests 

promising directions for future research in this area. 

6.3 Open Source Code 

Several open-source frameworks for creating generic deep learning models, most of which are 

written in Python, are available online, including TensorFlow, Keras, PyTorch, and MXNet.The 

open-source projects for TD and structure recognition are summarized in Table 10. Many of the 

authors have also made open-source implementations of their proposed models available. 

TensorFlow and PyTorch are the most often utilized frameworks in these open-source projects. 

7 CONCLUSION AND FUTURE WORKS 

In the field of document analysis, table analysis is a significant and extensively researched problem. 

The challenge of interpreting tables has been dramatically transformed, and new standards have 

been set thanks to the use of deep learning ideas. As we said in the article’s main contribution 

paragraph in the Introduction section, we have addressed several current processes that have 

advanced the process of information extraction from tables in document pictures by implementing 

deep learning concepts. We have discussed methods that use deep learning to detect, identify, and 

classify tables. We have also shown the most and least well-known techniques that have been used 

to detect and identify tables, respectively. all of the datasets that are publicly accessible and their 

access details have been compiled. On numerous datasets, we have presented a thorough 

performance comparison of the methodologies that have been addressed. On well-known datasets 

that are freely accessible to the public, state-of-the-art algorithms for TD have produced almost 

flawless results. Once the tabular region has been identified, the work of structurally segmenting 

tables and then recognizing them follows. 

One potential area for future work in the field of TD using deep learning is the integration of 

additional document structure information into the models. Currently, many deep learning methods 

for TD primarily rely on the visual cues of tables within documents. However, incorporating 

supplementary details about the document’s structure, such as identifying header rows and columns, 

could significantly enhance the model’s performance. 

Another promising direction for future research involves the exploration of more sophisticated 

deep learning architectures tailored for TD tasks. For instance, investigating the application of 

advanced techniques such as CNNs or RNNs hold promise in further enhancing the model’s 

accuracy and robustness. 

https://github.com/Academic-Hammer/SciTSR
https://github.com/DevashishPrasad/CascadeTabNet
https://github.com/holms-ur/fine-tuning
https://github.com/doc-analysis/TableBank
https://github.com/sachinraja13/TabStructNet.git
https://github.com/ibm-aur-nlp/PubTabNet
https://github.com/mdv3101/CDeCNet
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Furthermore, addressing the challenges posed by variations in table formatting and layout is a 

crucial area for future investigation. Tables exhibit diverse formats, making it essential to develop 

methods that can robustly detect tables in various layouts. Overcoming these challenges 

will undoubtedly lead to substantial improvements in the overall performance of TD models. 
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