

Developing an Efficient Secure Query Processing

Algorithm for Unstructured Data on Encrypted

Databases

Mohamed A. Fouly

Information Systems Dept.

Assiut University

Assiut, Egypt

m.a.fouly@aun.edu.eg

Taysir Hassan A. Soliman

Information Systems Dept.

Assiut University

Assiut, Egypt

Taysirhs@aun.edu.eg

l

Ahmed I. Taloba

Information Systems Dept.

Assiut University

Assiut, Egypt

Taloba@aun.edu.eg

Abstract— A few years ago, information size increased

unexpectedly and a data explosion happened. In this world of

growing information, a change in database generation may also

be required. Historically, we used a structured query language

that works best with structured data. Now, we want to work

with unstructured data as well as with structured data. The

solution is to use not only SQL (NoSQL) database, this means

not only structured query language. Recently, NoSQL databases

are widely used in many organizations. Moreover, the data is

kept in external services like Database as a Service (DaaS),

where server-side and client-side security concerns are created.

Additionally, the database's query processing by several clients

using complicated techniques and a shared resource

environment may lead to ineffective data processing and

retrieval. An effective data processing technique among several

customers can be used to retrieve data in a secure and effective

manner. In this paper, we present an Efficient Secure Query

Processing Algorithm for Unstructured Data (ESQPA_U) for

efficient query processing by applying data compression

techniques before transferring the encrypted results from the

server to clients. We have solved security concerns by using

CryptDB to encrypt a database on the server to protect the data.

Encryption methods have recently been suggested to give

customers secrecy in cloud storage. The queries can be

processed using encrypted data using this technique without

having to first decrypt it. In order to evaluate ESQPA_U

performance, it is contrasted with CryptDB existing query

processing method. According to results, storage space is more

effective and can save up to 57% of its original space.

Keywords— Cloud Computing, CryptDB, Data Compression,

Information Security, MongoDB, and NoSQL Databases

I. INTRODUCTION

The increasing number of applications used in our daily
lives, such as transportation, social media, government
services in many developed countries, and artificial
intelligence in smart cities applications. All of the above
produced a huge amount of large data size, which needs
modern and advanced technologies to store data. NoSQL is a
current-generation database designed to provide scalability for
routing big data. Non-relational databases store records in
unstructured models that are different from structure tables
and the database language is not SQL [1]. Because of the
advanced efficiency of big data solutions in data management.
Processing and storing huge data via traditional technology is
very difficult. NoSQL has pushed developers over the past
decade to start favoring big data databases, such as Apache,
Oracle, and NoSQL databases like Cassandra and MongoDB.
These databases aim to overcome the limitations of relational

databases. Nowadays, large organizations need to change
traditional databases to NoSQL due to unlimited scalability,
excessive overall performance, data distribution, and
availability. It is a high-quality task for organizations to
convert existing databases to NoSQL databases [2,3].
 We can define four different categories of NoSQL
databases, as illustrated in Fig.1: (one) Key/value, which
includes data that is saved and reachable through a completely
unique key that references a value (e.g., DynamoDB, Riak,
Redis, and so on.), (two) Column, just like the key/value pairs,
but the key includes a combination of column, row and a hint
of time used to reference groups of columns (e.g., Cassandra,
BigTable, Hadoop/HBase), (three) document, includes data
are saved in collections that encapsulate all of the data
following a general layout like CSV, XML or JSON (e.g.,
MongoDB, CouchDB) and (four) graph, the graph principle is
implemented and expanding among more than one computer
systems (e.g., Neo4J and GraphBase) [4].

Fig.1. Four Types of NoSQL Databases [5]

In a related context, the term "NoSQL database" was

originally used to describe a free, non-relational database that

did not include a SQL interface in 1998. NoSQL databases

have grown in popularity among corporations and

organizations in recent years because of their efficiency and

effectiveness in processing large volumes of dynamic,

heterogeneous, and frequently unstructured data as shown in

Fig.2.

Fig.2. Features of NoSQL Databases [6]

Particularly, NoSQL databases have the following main

advantages: (one) fast data management and storing

operations; (two) low response time; (three) simple growth;

and (four) inexpensive administration and maintenance costs.

Because of the capabilities stated above, NoSQL databases

better satisfy the needs and requirements of various

businesses [7]. In this work, we present the ESQPA_U, an

efficient secure query processing method for unstructured

data on encrypted NoSQL databases that ensures data

security and efficiency through the respective use of

encryption and compression. Additionally, we develop an

ESQPA_U technique that effectively uses the LZ77 lossless

compression algorithm on the CryptDB server to reduce

storage space. Because it is a fairly straightforward technique

that requires no prior knowledge about the source and doesn't

seem to rely on any assumptions on the source's

characteristics. The LZ77 algorithm takes use of the

likelihood of repetition in text files. Repetition can be

represented as a pointer to a prior occurrence, with the

number of characters that need to match coming after the

pointer [8]. Finally, we put the ESQPA_U algorithm into

operation on the CryptDB platform. When compared to the

currently used server CryptDB, our technique uses up to 57%

less storage space. The effectiveness of the suggested strategy

in terms of space complexity has been demonstrated by

experimental data. We explain the related work in Section II

of the paper, which is our contribution to the effort. The

proposed ESQPA_U method is then discussed in Section III.

We describe the experimental results in Section IV. In

Section V, conclusion and future work are discussed.

II. RELATED WORK

A. Secure Unstructured Data (NoSQL Databases)

 Many methods and model systems have recently been

created to handle query processing over NoSQL databases.

Tian, Xing bang and et al. [9–12] NoSQL databases are a

good option if you need exceptional flexibility, reliability,

high-performance storage, and retrieval. The protection risk

in these databases can be decreased by employing obvious

middleware. The NoSQL database's more advanced version

in order to encrypt pages and enhance the display, MongoDB

uses two different kinds of encryption, including order

revealing encryption and homomorphic encryption. The

security strategy further uses JSON. Good performance

across the board The NoSQL Cassandra database is

additionally utilized in healthcare systems that offer

information security throughout transmission. However, the

confidentiality guarantee may also result in decreased

efficiency.

 Zahid, Anam and et.al [13] proposed an estimation

criterion comprising various protection capabilities for the

evaluation of sharded NoSQL databases. Also, they present a

particular view of the security capabilities provided through

NoSQL databases and analyze results with an appreciation of

the proposed estimation criteria.

 M. Zhang and et.al [14] on the NoSQL Cassandra

database, a brand-new compressed encrypted data storage

format has been suggested. It boosts throughput while

simultaneously enhancing system performance, much like the

previous strategy. It supports range and key-valve queries.

 Also, W. Zhengy, F. Liy, Raluca Ada Popay, Ion Stoicay,

and R. Agarwal [15] first big data key-value store that

combines compression and encryption was introduced.

MiniCrypt additionally provides an experimental objective

fact about data compression tendencies in addition to a

collection of distributed database methodologies for

retrieving, changing, combining, and splitting encrypted

packs while maintaining consistency and efficiency.

B. Secure Structured Data

In one of the studies, CryptDB created by Popa, is the most
well-known practical encrypted system [16, 17]. The system
is made up of three interrelated components: clients, a proxy
server, and a database server. With the help of multiple
encryption algorithms and a method known as "onion layers",
CryptDB encrypted different database columns. The proxy
server sits between the users and the primary database server
to protect the data. It encrypts the users' original-text queries
before sending the encrypted text to the database server. The
server sends the decoded structure to the intermediary server
after packing the data, receiving the encoded answer from the
database, and sending it back to the users, as shown in Fig.3.

Fig.3. CryptDB System Employs Techniques for Encryption Using Onion

Layers [16]

A.I. Taloba, M.A. Fouly, and T. Soliman in [18] before
transferring It was recommended an Efficient Secure Query
Processing Algorithm (ESQPA) for request handling
effectively so that users may receive encrypted results from
the server. They have solved security concerns by utilizing
CryptDB to encrypt a database on the server to protect the
data. Encryption methods have recently been suggested to
give customers secrecy in cloud storage. This method does not
require decryption of the encrypted data before processing the
queries. They evaluated ESQPA's performance in comparison
to CryptDB's existing query processing algorithm. According
to the results, storage space efficiency is higher and can save
up to 63% of the available space.
 Likewise, H. Naser-Eddin and A. Darwesh in [19] It was
also suggested to use object-oriented programming to create,
modify, and destroy objects on the CryptDB encrypted
database system. They employed the Java programming
language. The SQL query is incorporated into this object, so
the developer can call it without having to write it each time.

C. Encryption Then Compression (ETC) Method

 The main idea of Demertzis, Talapatra, and Papamanthou

[20] was to create the encrypted searchable indices first, then

compress the original text indexes to make them smaller. The

technique uses any current Searchable Encryption technique

as a black box and any number of lossless data compression

techniques without compromising security.

 Finally, ETC approach was created in a study by M.

Kumar and A. Vaish [21]. Utilizing the decomposition of

singular values, the images are encrypted. Huffman coding

was applied in this case to make up for the loss of the

compressed data. Compared to the Compression-Then-

Encryption (CTE) method, ETC improved the compression

exhibition and the picture class.

III. PROPOSED METHOD

In this section, the proposed work ESQPA_U is applied to
the CryptDB architecture, as shown in Fig.4. Clients,
MongoDB as a document-based NoSQL database, CryptDB
proxy server, and MySQL server are the four interconnected
parts of the system. use several encryption algorithms, often
known as "onion layer" encryption approaches, to encrypt
table columns. The middle server receives the user's
original text request and routes it between the user and the
MySQL database server. After receiving and encrypting the
original text, the encoded requests are subsequently sent to the
MySQL database server.

A. Lempel-Ziv 77(LZ77) Data Compression Technique [22]

Lempel-Ziv 77 refers to the initial Lempel-Ziv
compression technique for sequence data. The previously
encoded sequence contains a portion that resembles a
dictionary. The encoder uses a sliding window to thoroughly
review the input sequence. The window is divided into two
sections. The encoded sequence is kept in a search buffer, and
the stream sequence from the coding site to the end of the input
stream is recorded in a look-up table.

Fig.4. Proposed ESQPA_U Algorithm as Flow Diagram

LZ77 Compression Algorithm. Pseudocode of lossless

compression LZ77. Input: stream of byte (S = b1b2... bn).

Output: a triple with the letters "o," "l," and "c," where "o"

denotes the offset to the match, "l," the length of the match,

and "c," the next character to be encoded.

step1: Make a search and look-ahead buffer out of a series of

bytes.

step2: While (look-Ahead Buffer is not empty)

step3: Obtain a pointer to the longest match (o, l).

step4: if (l > 0) then Output (o, longest match l, c), move the

window by (l+1) positions along.

step5: else Output (0, 0, first symbol c in the look-ahead

buffer), move the window by 1 character along.

step6: Go to step3 if the buffer is not empty.

B. Creation Database and Collections

 Algorithm1. Pseudocode of creation database and

collections. Creation_Database_Collection DB= set of

collections (C1, C2, …, Ci): database and collection creation

in MongoDB server. Input: DB name, Collection C = set of

documents (D1, D2, …, Dj). Output: Database and Documents

in Collection are Created, then convert to records in a table.

User application

step1: Enter database name db_name.

step2: Enter collection name c_name.

step3: Insert the data for each document Dj as JSON or CSV

format in the NoSQL MongoDB server.

NoSQL MongoDB

step1: Store unstructured data, then convert data into

documents in the collection.

step2: Export documents into the transformation tool in order

to transform each document Dj in collection Ci to record in a

table.

CryptDB Proxy Server

step4: Use a transformation tool to convert client-entered

plain-text data into encrypted data.

step5: Send data that is encrypted to the DBMS server.

DBMS Server

step6: Apply the LZ77 algorithm to compress encrypted data,

then store the reduced encoded data.

C. ESQPA_U Algorithm

 Algorithm2. Pseudocode of ESQPA_U algorithm.

Algorithm ESQPA_U (Q): An Efficient and Secure Query

Processing for Unstructured Data on Encrypted CryptDB

System. Input: query Q as a selection command. Output: as a

query result, a response from the CryptDB server to the user

application.

User application

step1: To execute an encrypted database, create a plain text

selection command query (Q).

CryptDB Proxy Server

step2: Encrypts a data query that was submitted by the user

in plain text.

step3: Transmits a secure request to the DBMS server.

DBMS Server

step4: Executes the LZ77 decoding to decompress encrypted

stored data.

step5: A middle server receives the findings of an encoded

query that was executed on cipher text.

CryptDB Proxy Server

step6: Delivers the client the decrypted query result after

decrypting it.

IV. EXPERIMENTAL RESULTS

In this section, two similar database servers, CryptDB and

MongoDB, a document-based NoSQL database are

compared to the suggested ESQPA_U data server. On an Intel

R Core (TM) i7-3770 3.4 GHz CPU with 32 GB of RAM, the

C++ programming language is used to implement ESQPA_U

for the experiments. ESQPA_U is evaluated on three real

large-scale datasets in Table I.

Table I: Datasets Information

Dataset
Number of

keys

Number of

documents

Reddit 5 48.2 thousand

Brazilian 2 3 million

Arxiv 14 3.3 million

A. Reddit Posts – Ukraine and Economy (UE) Dataset

Description [23]

 Reddit posts about Ukraine and Russia war and how it

affects the economy. This data is about Ukraine war news

from Reddit and how the war in Ukraine affects the global

economy. This dataset was collected based on some Reddit

pages, such as 'Ukraine', 'world news', 'Ukrainian Conflict',

'RussiaUkraineWar2022', and 'UkraineWarVideoReport'.

The dataset contains 320 documents and five primary keys,

defined as follows:

1. Id: An identification number that distinguishes each

object from the other.

2. Subreddit: Text showing the name of the country

supported by the user.

3. Title: Text explaining the user's economic view of

the Russian-Ukrainian war.

4. Selftext: Text of encouragement or criticism of war.

5. Score: Evaluation number for the order of writings.

B. Brazilian Legal Proceedings (BLP) Dataset Description

[24]

 Each legal proceeding in Brazil is certainly one of three

feasible categories of status: (one) archived proceedings,

(two) active proceedings, and (three) suspended proceedings.

The three possible categories are given in a particular on spot

in time, which can be temporary or permanent. Furthermore,

they have decided by using the courts to arrange their

workflow, which in Brazil may additionally attain lots of

simultaneous instances according to the judge. Constructing

machine Learning models to organize legal cases according

to their status can help public and commercial entities

manage large collections of legal cases, providing

improvements in size and efficiency.

 In this dataset, each hearing is composed of a number of

concise documents called "motions" that are drafted in

Portuguese by the court's management team. Although not

usually, the motions deal with the proceedings and their legal

standing. This data consists of two datasets: one with 6449

court cases, each with a person and a number of different

motions that have been identified by attorneys, and the other

with over three million unlabeled motions. Among the

classified information, 47.14 percent is archived (class 1),

45.23 percent is active (class 2), and 7.63 percent is

suspended (class 3). The datasets they utilize are typical

samples from the two biggest state courts, the primary (Sao

Paulo) and the secondary (Rio de Janeiro). State courts

manage the most variable kinds of instances throughout

Brazil and are accountable for 80% of the total amount of

proceedings. Consequently, these datasets are excellent

representations of a totally significant portion of using

language and expressions in Brazilian legal vocabulary.

Regarding the labeled dataset, the key "-1" denotes the latest

text while "-2" is the second latest, and so on.

C. Arxiv-Metadata-Oai-Snapshot Dataset Description [25]

 For nearly 30 years, ArXiv has served the public and

research groups by offering open access to scholarly articles,

from the large branches of physics to the various

subdisciplines of computer science to the entirety in between.

Examples include math, statistics, electrical engineering,

quantitative biology, and economics. This rich corpus of

information offers significant, but once in a while

overwhelming depth.

 Effective information extraction is essential in these times

of particular international problems. They provide a free,

open pipeline on Kaggle to the system-readable ArXiv

dataset—a collection of 1.7 million articles—that will help

make the ArXiv more accessible. This dataset contains

important data such as full-text PDFs, summaries, paper

titles, writers, classifications, and more. They seek to

empower new use instances that may enable the exploration

of richer system learning strategies that incorporate multi-

modal capabilities toward programs like data analysis,

document recommendation systems, category estimation, co-

citation connections, knowledge graph generation, and

keyword extraction interfaces. A JSON-formatted

description file is provided with this dataset. Each paper has

a record in this file, containing:

1. Id: The paper can be accessed using an ArXiv ID.

2. Submitter: The person who submitted the essay.

3. Authors: The people who wrote the paper.

4. Title: The paper's title.

5. Comments: Extra information, such as the number of

pages and figures.

6. Journal-ref: Details on the journal in which the paper

was published.

7. Doi: Digital Object Identifier

8. Report-no: A unique number assigned to each

reviewer report.

9. Categories: The ArXiv system's categories and tags.

10. License: A list of licenses for paper publications.

11. Abstract: The paper's abstract.

12. Versions: A version history.

13. Update_date: The date of the paper last modified.

14. Authors_parsed: Abbreviation of authors' names.

Table II and Fig.5 display an illustration of the ESQPA_U

algorithm in action. The suggested algorithm's performance is
assessed and contrasted with those currently used in
MongoDB and CryptDB servers, whose capacity is expressed
in gigabytes.

Table II: On Real Datasets, Numerical Findings for the Storage Space used
by MongoDB, CryptDB, and our Algorithm ESQPA_U

Dataset
MongoDB

server

CryptDB

server

ESQPA_U

server

Com.

Ratio

Reddit 0.12 G 0.46 G 0.2 G 56%

Brazilian 1.62 G 4.3 G 2.1 G 51%

Arxiv 3.17 G 9.7 G 4.2 G 57%

Fig.5. Relationship Between Storage and Real Datasets for Three
Database Servers

Table III and Fig.6 demonstrate the ESQPA_U algorithm's
illustrative execution time in seconds. A comparison is made
between the suggested algorithm's execution time and that of
the servers used by MongoDB and CryptDB.

Table III: Execution Time for Real Datasets in the ESQPA_U, CryptDB, and
MongoDB Servers

Dataset
MongoDB

server

CryptDB

server

ESQPA_U

server

Reddit 174 s 1465 s 1784 s

Brazilian 1035 s 18430 s 23746 s

Arxiv 2176 s 21725 s 25320 s

0

2

4

6

8

10

12

Reddit Brazilian Arxiv

S
to

ra
g

e
 s

p
a

ce
 o

f
se

rv
e

r
 (

G
B

)

Dataset

MongoDB

server

CryptDB

server

ESQPA_U

server

Fig.6. Relationship Between Time and Real Datasets for These Three
Database Servers.

As shown in Fig.5, the capacity of ESQPA_U is 51% smaller
than that of the CryptDB server. As seen in Fig. 6, Execution
at ESQPA_U takes a tiny bit longer than it does at CryptDB.
This is because after the data has been encrypted, data
compression and decompression operations are performed.
The order of the processes is mostly responsible for a
relatively small rise in run time. According to [26,27], the
complexity of LZ77 compression is divided by the order-
preserving encryption difficulty O (n log n). The performance
analysis of the ESQPA_U is built using O (m). As a result, the
ESQPA_U's time complexity is O (m*n log n). However, the
advantage of saving server storage space makes it possible to
accept a brief increase in time. Lastly, the test results reveal
that our strategy is superior and perfect for space conservation.
Additionally, to being incredibly space-efficient when used
with encrypted database management systems, this feature has
the advantage of being intuitive.

V. CONCLUSION

The major goal of this work was to keep secure and
effective data retrieval while minimizing space consumption.
The ESQPA_U algorithm, which lessens space complexity,
was created to demonstrate this. The ESQPA_U approach
uses less storage space than existing servers like CryptDB and
MongoDB, a document-based NoSQL database, and can save
up to 57% of their combined capacity. Because of the time
required for compression and decompression, the execution
time was a little bit longer than with the previous techniques.
However, our suggested approach did a good job of saving
space. By reducing the total processing time with the help of
cutting-edge algorithms and novel techniques, In our
upcoming work, we want to improve how quickly queries are
processed on encrypted databases.

REFERENCES

[1] Meier, Andreas, and Michael Kaufmann. SQL & NoSQL databases.

Berlin/Heidelberg, Germany: Springer Fachmedien Wiesbaden,
(2019).

[2] RAMZAN, Shabana, et al. Intelligent data engineering for migration to
NoSQL based secure environments. IEEE Access, 7: pp. 69042-69057,
(2019).

[3] Matallah, Houcine, Ghalem Belalem, and Karim Bouamrane,
Comparative study between the MySQL relational database and the
MongoDB NoSQL database, International Journal of Software Science
and Computational Intelligence (IJSSCI), pp. 38-63, (2021).

[4] Maté, Alejandro, et al. Improving security in NoSQL document
databases through model-driven modernization, Knowledge and
Information Systems 63.8, pp. 2209-2230, (2021).

[5] https://oracle-patches.com/en/databases/nosql-case-studies

[6] https://www.complexsql.com/difference-between-sql-and-nosql

[7] Sabrina Sicari, Alessandra Rizzardi, Alberto Coen-Porisini, Security
and privacy issues and challenges in NoSQL databases, Computer
Networks, Volume 206,108828, ISSN 1389-1286, (2022)

[8] S. M. Choudhary, A. S. Patel and S. J. Parmar, Study of LZ77 and
LZ78 Data Compression Techniques. International Journal of
Engineering Science and Innovative Technology (IJESIT) Volume 4,
Issue 3, May (2015).

[9] X. Tian,B. Huang,M. Wu, A Transparent Middleware for Encrypting
Data in MongoDB. IEEE Workshop on Electronics, Computer and
Applications, (2014).

[10] M.W. Grim,A.T. Wiersma, F. Turkmen, Security and Performance
Analysis of Encrypted NoSQL Databases. February 12, (2017).

[11] M. Ahmadian, F. Plochan, Z. Roessler, and D. C. Marinescu,
SecureNoSQL: An approach for secure search of encrypted nosql
databases in the public cloud. International Journal of Information
Management, vol. 37, no. 2, pp. 63-74, (2017).

[12] S. Saha,T. Parbat,S. Neogy, Designing a Secure Data Retrieval
Strategy Using NoSQL Database. Springer International Publishing,
ICDCIT 2017, LNCS 10109, pp. 235–238, (2017).

[13] ZAHID, Anam; MASOOD, Rahat; SHIBLI, Muhammad Awais.
Security of sharded NoSQL databases: A comparative analysis. In:
2014 conference on information assurance and cyber security
(CIACS). IEEE, p. 1-8, (2014).

[14] M. Zhang,S. Qi,M. Miao,F. Zhang, Enabling Compressed Encryption
for Cloud Based Big Data Stores. Springer Nature Switzerland,CANS
2019, LNCS 11829, pp. 270–287, (2019).

[15] W. Zhengy, F. Liy, R. A. Popay, Ion Stoicay and R. Agarwal,
MiniCrypt: Reconciling Encryption and Compression for Big Data
Stores. EuroSys ’17 April 23-26, Belgrade, Serbia, (2017).

[16] Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H,
CryptDB: protecting confidentiality with encrypted query processing.
In: Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, pp. 85–100. ACM, New York. (2011).

[17] A. Kumar, M. Hussain, Secure Query Processing Over Encrypted
Database Through CryptDB. Springer Nature Singapore Pte Ltd.
(2018).

[18] A.I. Taloba, M.A. Fouly, T. Soliman, Developing an Efficient Secure
Query Processing Algorithm on Encrypted Databases using Data
Compression, Information Sciences Letters, 12 (1) (2023), pp. 1-8.

[19] Hebah H. O. Nasereddin and Ali Jawdat Darwesh , An Object Oriented
Programming on Encrypted Database System (CryptDB) . Talent
Development & Excellence, Vol.12, No.1, pp. 5140 - 5146, (2020).

[20] I. Demertzis, R. Talapatra and Ch. Papamanthou, Efficient Searchable
Encryption Through Compression. Proceedings of the VLDB
Endowment, Vol. 11, No. 11, (2018).

[21] M. Kumar, A. Vaish, An efficient encryption-then-compression
technique for encrypted images using SVD. Digital
SignalProcessing60, pp. 81–89, (2016).

[22] S. M. Choudhary, A. S. Patel and S. J. Parmar, Study of LZ77 and LZ78
Data Compression Techniques. International Journal of Engineering
Science and Innovative Technology (IJESIT) Volume 4, Issue 3, May
(2015).

[23] https://www.kaggle.com/datasets/dsxavier/reddit-posts-ukraine-and-
economy/metadata

[24] Felipe Maia Polo, Itamar Ciochetti and Emerson Bertolo, Predicting
Legal Proceedings Status: Approaches Based on Sequential Text Data.
2003.11561, (2021).

[25] https://www.kaggle.com/datasets/Cornell-University/arxiv

[26] T. Bell, Better OPM/L Text Compression. In IEEE Transactions on
Communications, vol. 34, no. 12, pp. 1176-1182, December 1986, doi:
10.1109/TCOM.1986.1096485.

[27] F. Kerschbaum, A. Schröpfer, Optimal Average-Complexity Ideal-
Security Order-Preserving Encryption. CCS’14, November 3–7,
Scottsdale, Arizona, USA, (2014).

0

5

10

15

20

25

30

Reddit Brazilian Arxiv

T
im

e
 i

n
 s

e
co

n
d

s
 (

 x
1

0
0

0
)

Dataset

MongoDB server CryptDB serevr ESQPA_U server

