

Principles of Real Time PCR

Ameer Effat M. Elfarash

Dept. of Genetics Fac. of Agriculture, Assiut Univ. aelfarash@aun.edu.eg

Types of PCR

Univers,

Technique	Abbreviation	Quantitative	Template
Polymerase chain reaction	PCR	No	DNA
Reverse transcriptase polymerase chain reaction	RT-PCR	No	RNA
Real-time polymerase chain reaction	qPCR	Yes	DNA
RT-PCR / qPCR combined technique	qRT-PCR	Yes	RNA

Univers

Biotechnology

CONDITION 2				
Gene				
GENE NOT EXPRESSED				
NO mRNA				
No sanas				
PRODUCT				

Why qPCR?

Technique	Abbreviation	Quantitative	Template
Polymerase chain reaction	PCR	No	DNA
Reverse transcriptase polymerase chain reaction	RT-PCR	No	RNA
Real-time polymerase chain reaction	qPCR	Yes	DNA
RT-PCR / qPCR combined technique	qRT-PCR	Yes	RNA

Biotechnology

Why qPCR?

Gene expression analysis

- Cancer research
- Drug research

Disease diagnosis and management

- Viral quantification
- Food testing
 - Percent GMO food
 - Animal and plant breeding
 - Gene copy number

and University

How does PCR work?

We describe the position of the lines with a value that represents the cycle number where the trace crosses a threshold.

This is called the cycle threshold "Ct Value".

Biotechnolo

Ct values are directly related to the starting quantity of DNA, by way of the formula:

Conventional PCR problem

Cycle Number

Agarose gel electrophoresis following PCR

Real-Time PCR

Biotechnolo

- Real-Time PCR a specialized technique that allows a PCR reaction to be visualized "in real time" as the reaction progresses.
- Quantitative PCR relies on the principal that the quantity of target at the start of the reaction is proportional to amount of product produced during the exponential phase

How to measure the PCR product?

Initial DNA strand

First PCR cycle

Second PCR cycle

Third PCR cycle

Fourth PCR cycle

Any increase in fluorescence level can be plotted onto a graph and easily interpreted

Unive

Biotechnology

We describe the position of the lines with a value that represents the cycle number where the trace crosses a threshold.

This is called the cycle threshold "Ct Value".

Ct values are directly related to the starting quantity of DNA, by way of the formula:

Quantitative PCR – in depth

Major assay types
Hydrolysis probes
Basis of TaqMan® chemistry
Uses two primers and an internal hydrolysis probe
Most commonly used for fish health diagnostics

SYBR ® green dye

- Increased fluorescence when bound to dsDNA
- Slightly lower specificity
- Costs less

Biotechnolog

May not be as sensitive as the 5' nuclease assays

BackMan vs TaqMan

Depusil TUKI Moola!

TaqMan

UN Universi

J Univers

Taqman vs. SYBR Green

TaqMan Probe

Advantages:

Biotechnolog

- Increased specificity
- Use when the most accurate quantitation of PCR product accumulation is desired.
- Option of detecting multiple genes in the same well (multiplexing).

Disadvantages:

• Relative high cost of labeled probe.

SYBR Green

- Advantages:
- Relative low cost of primers.
- No fluorescent-labeled probes required.
- Disadvantages:
- Less specific only primers determine specificity.
- Specific and non-specific double-stranded PCR products generate the same fluorescence signal upon binding SYBR Green I dye.
 Not possible to multiplex multiple gene targets.

