

Gene cloning (an overview)

Biotechnolo

Ameer Effat M. Elfarash

Dept. of Genetics Fac. of Agriculture, Assiut Univ. aelfarash@aun.edu.eg

DEFINITION

Gene cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms.

Biotechnolog

Lab

In the second second

What is cloning used for?

Agricultural

Biotechnolog

Genes coding for traits such as frost, pest or drought resistance can be genetically transformed into plants

Crop is infected by European corn borer

Pest dies when feeding on any plant part

Medical

Biotechnolog Lab

Production of human proteins to treat genetic diseases

Protein	Disease/Disorder
Human insulin	Diabetes mellitus
Human Growth Hormone	Deficiency in children
Erythropoietin	Anemia
DNase I	Cystic fibrosis
Human antibody blocker	Asthma

Environmental

 Bacteria can be genetically transformed with genes enabling them to digest oil spills or remove pollutants from the environment

CLONING PROCESS

CLONING PROCESS

- DNA isolation and Target Gene Amplification
- Cut Target Gene and Plasmid
- Ligation
- > Transformation
- Cellular Screening
- > Protein Expression

STEP 1. DNA isolation and PCR

Biotechnolog Lab

Polymerase Chain Reaction (PCR)

Biotechnolog

PCR is used to:

 Specifically amplify the target gene
Introduce the recognition site of the Restriction enzyme

Plasmid DNA isolation

- Multi cloning site.
- Selection marker.
- Promoter.

oligo		% cleavage	
	sequence	2h	20h
BamHI	C <u>GGATCC</u> G	10	25
	CG <u>GGATCC</u> CG	>90	>90
	CGC <u>GGATCC</u> GCG	>90	>90
EcoRI	G <u>GAATTC</u> C	>90	>90
	CG <u>GAATTC</u> CG	>90	>90
	CCG <u>GAATTC</u> CGG	>90	>90
HindIII	CAAGCTTG	0	0
	CC <u>AAGCTT</u> GG	0	0
	CCC <u>AAGCTT</u> GGG	10	75
NcoI	C <u>CCATGG</u>	0	0
C	ATG <u>CCATGG</u> CATG	50	75
Ndel GGGT	TTT <u>CATATG</u> AAACCC	0	0
GGAAT	FTC <u>CATATG</u> GAATTCC	75	>90

STEP 2. DIGESTION

STEP 4. TRANSFORMATION

- The process of transferring exogenous DNA into cells is call "transformation"
- There are basically two general methods:
 - chemical method utilizing CaCl2
 - electroporation

STEP 5. GROWTH ON AGAR PLATES

Growing Culture

Spread transformed bacterial cells on the LB plate with selection drug and grow overnight.

Detection of the right cloning

Screen colonies on agarose gel

Screening with PCR

Blue white screening

Conformation with DNA Sequencing

 We will transform bacteria (<u>E. coli</u>), giving it the ability to produce the Pyocin S5 protein from *Pseudomonas aeruginosa*

Biotechnolo

Primers Amplifying Target DNA

Biotechnology

Lab

