Principles of DNA Amplification & Sequencing.

Prof. Dr. Hamdy M. El-Aref Assiut Univ., Fac. of Agric. Genetics Dept.

DNA Polymerase binds at the primer

Cattcgggatccaga

CGGGATCCAGACATTCGGGATCCAGA

6

G C NUG A 11 C AAPICGGGATCCA **C C A A C I A G**

liotect Lab

> DNA Polymerase moves along DNA strand adding extra nucleotides

Biotechnolo Lab

> GGUUGAATTCGGGATCCAGACATTCGGGATCCAGA GGAAGUAGUU

Biotechnolo Lab

GGUUGUAGIUA

Biotechnolo Lab

> **© © II II © M II © M ATTCTGGATCCAGACATTCGGGATCCAGA © © M M © II M © II I M A**

Biotechnol Lab

<u>G</u><u>G</u><u>I</u><u>I</u><u>G</u><u>A</u><u>A</u><u>T</u><u>C</u><u>G</u><u>G</u><u>A</u><u>T</u><u>C</u><u>G</u><u>G</u><u>A</u><u>T</u><u>C</u><u>G</u><u>G</u><u>G</u><u>A</u><u>A</u><u>C</u><u>A</u><u>T</u><u>C</u><u>G</u><u>G</u><u>A</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u><u>C</u><u>A</u>

Biotechnol Lab

> **© © II II © M II © M ATTCGGGATCCAGACATTCGGGATCCAGA © © M M © II M © II I M M © ©**

Biotechnol Lab

> **© © II II © M II © M ATTCGGGATCCAGACAT, CGGGATCCAGA © © M M © II M © II I M M © CG**

Biotechnol Lab

> **© © II II © M II © M ATTCGGGATCCAGACATT**GGGGATCCAGA **©** © M M © II M © II I A M © © © G

Biotechnol Lab

 ©
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •</t

Biotechnol Lab

> **© © II II © A II © A A T T C G G G A T C C A G A C A T T C C G G A T C C A G A © © A A © II A © II T A A G C G G T A**

Biotechnol Lab

 Image: Image:

Biotechnol Lab

Biotechnol Lab

Image: Image:

Biotechnol Lab

 G
 II
 II

Biotechnol Lab

 Image: Image:

Biotechnol Lab

 ©
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Biotechnol Lab

> © © II II © A II © A ATTCGGGATCCAGACAT CCGGGATCCAGA © © A A © II A © II I A A GCCCII A GCIIG IIG II

Biotechnol Lab

> <mark>© © III © A II © A</mark>ATTCGGGATCCAGACATTCGGGATCCAGA CCAACTTAGGCGCTAGGTGTG

Biotechnol Lab

> **<u>©</u>©III<u>©</u>ATTCGGGATCCAGACATTCGGATCCAGA <u>C</u>©AACTTCGGGCTAGGTGTGTAA**

Biotechnol Lab

> **© © II II © MATTCGGGATCCAGACATTCG-GATCCAGA © © MAC II A CIII AAGEECIAGEIGIGIA**

Biotechnol Lab

 ©
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Biotechno Lab

> **<u>G</u>GUUGA**ATTCGGGATCCAGACATTCGGGATCCAGA <u>C</u>CAGAGCGCCAGACATTCGGGGCCAGA <u>C</u>CAGGCGCCAGACATTCGGGGCGCCAGA

MODERN DNA SEQUENCING

Sequencing" means finding the order of nucleotides on a piece of DNA

 Nucleotide order determines Amino acid order, and by extension, protein structure and function (proteomics)

 An alteration in a DNA sequence can lead to an altered or non functional protein, and hence to a harmful effect in a plant or animal

Methods of DNA Sequencing

Sanger Method DNA sequencing by enzymatic synthesis Nobel Prize 1958, seq.of insulin Nobel Prize 1980, DNA seq.

Maxam-Gilbert Method DNA sequencing by chemical degradation Nobel Prize 1980, DNA sequence

Modern sequencing equipment uses the principles of the Sanger technique

➢ Direction of replication 5[`]→ 3[`]
 ➢ DNA has proofreading

Termination during Replication

DNA SEQUEN CE 3'	G	С	A	Т	Т	G	G	G	A	A	С	С
PRIMER 5'	С	G	Т	A								
NO OF BASES	1	2	3	4	5	6	7	8	9	10	11	12

G terminated

CGTA ACCTTG CGTA ACCTTGG

Aterminated

CGTAA

Tterminated

CGTAACC T CGTAACC T T

Cterminated

CGTAAC CGTAACC CGTAACCC

GGTTGATCGGGA

Biotechnol Lab

> **Series of pieces** of DNA of ځا different lengths each \٧ labelled with a fluorescent dye 5 Δ ' Ğ Δ G G Δ $|\Delta\rangle$ (CΔ G Δ Δ Δ ح

Biotect Lab

Biotect Lab

Biotect Lab

liotect

DNA sequencing: Importance

- Location of genes.
- Location of coding region.
- Location of promoters, start codons and terminators.
- The nature and distribution of specific DNA sequences such as:
 - STRs (Short Tandem Repeats).
 - VNTR (Variable Number of Tandem Repeats)
 - SNP (Single Nucleotide Polymorphism)

 SNPs account for about 90% of all human genetic variation and are believed to occur every 100 to 300 bases along the 3-billion-base human genome.

- Approximately 5 million of the ~10 million human SNPs have been catalogued.
- SNPs may occur in exons (coding regions), introns (non coding regions between exons) and intergenic regions (regions between genes).
- SNPs may lead to coding or amino acid sequence changes (non-synonymous) or they may leave the sequence unchanged (synonymous)

DNA sequencing: Importance

- Gene and protein.
 - Function
 - Structure
 - Evolution

Genome-based diseases-

- Genetic disorders
- Genetic predispositions to infection
- Diagnostics
- Therapies

