Genome sequencing

Prof. Dr. Hamdy M. El-Aref Assiut University, Fac. of Agriculture Genetics Department

Genome sequencing

DNA Cloning Overview

Overview: Dideoxy (Sanger) Method

Sanger Method: Generating Read

- Start at primer (restriction site)
- 2. Grow DNA chain
- 3. Include ddNTPs
- 4. Stops reaction at all possible points
- Separate products by length, using gel electrophoresis

Automatic DNA sequencing

Cloning vectors for genome sequencing

Sequencing vector M13

DNA Cloning and Sequencing with BACs

Sizes of inserts in sequencing vectors

<u>Vector</u>	<u>Size (approx.)</u>	
P1	100 Kb	
YAC	300 -1500 Kb	
BAC	70 - 300 Kb)	
Cosmid	~ 40 Kb	
Plasmid	2 -10 Kb	
M13 or Phagmid	~ 1 Kb	

Genome Sequencing

Genome Sequencing Strategies

1. Clone-by-clone or hierarchical sequencing

2. Shotgun sequencing

Clone-by-clone or hierarchical sequencing strategy

 After constructing a complete physical map, clone by clone sequencing can be started in any specific region.

© 2002 The Center for the Advancement of Genomics (TCAG).

Clone-by-clone or hierarchical sequencing strategy

Advantages:

- **1.** Ability to fill gap and re-sequence the regions.
- 2. Ability to distribute the clones to other labs.
- 3. Ability to check the produced sequence by restriction enzymes

Disadvantages:

- 1. Expensive and time-consuming for construction of the physical map.
- 2. Experienced personnel are required.

VENTER'S SHOTGUN Whole genome shotgun sequencing

- It is a much faster approach, and enabled researchers to speed up the timetable for sequencing enormously.
- The shotgun method was developed by J.
 Craig Venter et al., 1996.

Shotgun Sequencing

genomic segment

cut many times at random (*Shotgun*)

Get one or two reads from each segment

Shotgun Sequencing

- Used to sequence whole genomes
- Steps:
 - DNA is broken up randomly into smaller fragments
 - Dideoxy method produces reads
 - Look for overlap of reads

Fragment Assembly

Overlap reads and extend to reconstruct the original genomic region

Shotgun Sequencing

- Very efficient process for small-scale (~10 kb) sequencing (preferred method)
- First applied to whole genome sequencing in 1995 (*H. influenzae*)
- Now standard for all prokaryotic genome sequencing projects
- Successfully applied to **D**. melanogaster
- Moderately successful for *H. sapiens and other genotypes* ...

Comparison of two sequencing methods

Sequencing Successes

T7 bacteriophage

completed in 1983

Escherichia coli

Sacchoromyces cerevisae completed in 1996 12,069,252 bp, 5800 genes

39,937 bp, 59 coded proteins

Sequencing Successes

Drosophila melanogaster completed in 2000 116,117,226 bp, 13,601 genes

Homo sapiens completed in 2003 3,201,762,515 bp, 31,780 genes

Oryza Sativa (Rice) 430 million base 60,000 genes

Genomes to Date

- 8 vertebrates (human, mouse, rat, fugu, zebrafish)
- 2 plants (arabadopsis, rice)
- 2 insects (fruit fly, mosquito)
- 2 nematodes (C. elegans, C. briggsae)
- 1 sea squirt
- 4 parasites (plasmodium, guillardia)
- 4 fungi (S. cerevisae, S. pombe)
- 200 bacteria and archebacteria
- 1900+ viruses

Sequenced Genomes

http://www.genomenewsnetwork.org/

RNA Alternative Splicing and Gene Function in Eukaryoutes

calcitonin gene

Sequencing strategies

• Whole genome

Rapid re-sequencing of human Ad1: Time trial

- Have sequence of Ad 1.
- In theory, have a minimally tiled set of PCR primers to cover entire 36,001 base genome.
- In theory, have a minimally tiled set of sequencing primers as well.
- Want draft sequence in a minimal time, including primer delivery from a vendor.
- In practice design two parallel sets of minimally tiled PCR primers and amplify two sets.
- In practice, assume 750 base reads--> 48 primers, one direction.
- Compare with consensus: Determine accuracy, timing and evaluate operation.

					1
				7,315	
			14,500	7,300	
		21,600	14,400		
	28,700	21,500			
35,885	28,600				