

Assiut University

Workshop Protein electrophoresis and immunoblot (Western blot)

By Dr. Abo Bakr Eltayeb

> March 27-28 2011

Introduction of protein structure and isolation

Protein Function •

Enzymes - proteases, synthetases, polymerases, kinases • Structural tubulin collagen, elastin a-keratin • Transport - serum albumin, hemoglobin, transferrin • Motor - myosin, kinesin, dynein • Storage - ferritin, ovalbumin, calmodulin • Signaling - insulin, nerve growth factor, integrins • Receptor - acetylcholine receptor, insulin receptor, EG recept • Gene regulatory - lactose repressor, homeodomain proteins • Protein synthesized by ribosomal machinery which translate the nucleotide sequence in mRNA into amino acid sequence of protein

Codon Usage Table

	AGA AGG									UUA UUG CUA
GCC	CGC	1020320		5-4:54:5		110745768	GGC	107806 (H)	AUA	CUC
GCG GCU	CGG CGU	GAC GAU	AAC AAU	UGC UGU	GAA GAG	CAA CAG	GGG GGU	CAC CAU	AUC AUU	CUG CUU
Ala	Arg	Asp	Asn	Cys	Glu	Gln	Gly	His	lle	Leu
A	R	D	N	C	Е	Q	G	H		

ĸ	М	F	Р	S	in the	W.	Y	V	
Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val	stop
AAG	AUG	UUU	CCU	UCU	ACU	UGG	UAU	GUU	UGA
ΑΑΑ		UUC	CCG	UCG	ACG		UAC	GUG	UAG
			000	UCC	ACC			GUC	UAA
			CCA	UCA	ACA			GUA	
				AGU					
				AGC					

Amino acid composition Side chain Basic Amino Acid Structure: \boldsymbol{R} The side chain, R, varies for each of the 20 amino acids Carboxyl

group

group

We group the amino acids into three general groups: Hydrophobic Charged (positive/basic & negative/acidic) Polar

Proteins are chains of amino acids

Polymer – a molecule composed of repeating units

Amino Acids

AMINO ACI	AMINO ACID SIDE CHAIN		 AMINO ACID			SIDE CHAIN		
Aspartic acid	Asp	D	negative	Alanine	Ala	А	nonpolar	
Glutamic acid	Glu	Е	negative	Glycine	Gly	G	nonpolar	
Arginine	Arg	R	positive	Valine	Val	V	nonpolar	
Lysine	Lys	К	positive	Leucine	Leu	L	nonpolar	
Histidine	His	н	positive	Isoleucine	l1e	1	nonpolar	
Asparagine	Asn	N	uncharged polar	Proline	Pro	Р	nonpolar	
Glutamine	G1n	Q	uncharged polar	Phenylalanine	Phe	Р	nonpolar	
Serine	Ser	S	uncharged polar	Methionine	Met	М	nonpolar	
Theonine	Thr	Т	uncharged polar	Tryptophan	Trp	W	nonpolar	
Tyrosine	Tyr	Y	uncharged polar	Cysteine	Cys	С	nonpolar	
	POLAR A	MINO A(CIDS		NPOLAR	AMINO A	CIDS	1

Peptidyl polymers

A few amino acids in a chain are called a *polypeptide*. A *protein* is usually composed of 50 to 400+ amino acids.

Since part of the amino acid is lost during dehydration synthesis, we call the units of a protein *amino acid residues*.

Protein Structure and Function

Protein Structure Primary structure - amino acid sequence.

Secondary structure - formation of a helices and b sheets.

Tertiary structure - the three-dimensional conformation of polypeptide chain. a

Quaternary structure - formation of a protein molecule as complex of more than one a polypeptide chain.

Biology/Chemistry of Protein Structure

Tertiary Structure

Quaternary Structure

Hemoglobin

There are Different Forms of Classification apart from Structural

Biochemical Globular Membrane Fibrous

myoglobin

Collagen

Bacteriorhodopsin

Number & Size Distribution of Cellular Proteins

Protein Folding

Disulfide Bridge – Linking Distant Amino Acids

Hydrogen Bonding And Secondary Structure

Why purify a protein?

Characterize function, activity, structure

Use in assays

Raise antibodies

many other reasons ... -

How pure should my protein be?

Application	Required Purity				
Therapeutic use, <i>in vivo</i> studies	Extremely high > 99%				
Biochemical assays, X-ray crystallography	High 95-99%				
N-terminal sequencing, antigen for antibody production, NMR	Moderately high < 95%				

Separation of proteins based on physical and chemical properties Solubility •

Binding interactions

Surface-exposed hydrophobic residues

Charged surface residues

Protein isolation, concentration, and stabilization

Size exclusion Affinity chromatography Chromatography

Protein detection methods

SDS-PAGE SDS-PAGE
Visual confirmation

UV Spectrophotometry Absorbance @ 280 nm

Colorimetric Techniques Color change proportional to [protein] Bradford, Lowry, BCA

References and additional Reading

Branden and Tooze (1999) Introduction to Protein Structure (2nd Edition) Garland Publishing. *An excellent introduction* Richardson (1981) The Anatomy and Taxonomy of Protein Structure Adv. Protein Chem. 34: 167-339 *Good historical perspective* C. Branden, J. Tooze. "Introduction to Protein Structure." Garland Science Publishing, 1999.

C. Chothia, T. Hubard, S. Brenner, H. Barns, A. Murzin. "Protein Folds in the All- β and ALL- α Classes." Annu. Rev. Biophys. Biomol. Struct., 1997, 26:597-627.

G.M. Church. "Proteins 1: Structure and Interactions." Biophysics 101: Computational Biology and Genomics, October 28, 2003.

C. Hadley, D.T. Jones. "A systematic comparison of protein structure classifications: SCOP, CATH and FSSP." Structure, August 27, 1999, 7:1099-1112.

S. Komili. "Section 8: Protein Structure." Biophysics 101: Computational Biology and Genomics, November 12, 2002.

D.L. Nelson, A.L. Lehninger, M.M. Cox. "Principles of Biochemistry, Third Edition." Worth Publishing, May 2002.

Amersham Biosciences "Protein purification handbook." 18-1132-29, Edition AC. Go to following URL and download pdf of Protein Purification Handbook: http://www4.gelifesciences.com/aptrix/upp01077.nsf/Content/orderonline handbooks

J.S.C. Olson and John Markwell. "Assays for Determination of Protein Concentration." *Current Protocols in Protein Science* (2007) 3.4.1-3.4.29 http://media.wiley.com/CurrentProtocols/0471111848/0471111848-sampleUnit.pdf

Alan Williams. "Chromatofocusing." *Current Protocols in Protein Science* (1995) 8.5.1-8.5.10 <u>http://mrw.interscience.wiley.com/emrw/9780471140863/cp/cpps/article/ps0805/current/pdf</u>

D.L. Nelson and M.M. Cox. <u>Lehninger Principles of Biochemsitry</u>. W.H. Freeman and Co., New York. Chapter 3.3 (fourth or fifth edition) (2005 and 2008 respectively).

More in-depth reading: Scopes, Robert, K. <u>Protein Purification: Principles and Practice (Third</u> <u>Edition</u>). Springer-Verlag New York, Inc. (1994).

Protein Expression: Stevens, R.C Structure 8 (2000) R177-R185.

www.genwaybio.com (click on: Support/FAQs and Answers/Protein Expression)

Affinity Purification: Arnau, J., Lauritzen, C., Petersen, G.E., Pedersen, J. *Prot. Expr. Purif.* 48 (2006) 1-13.

Affinity Purification: Lichty, J.J. et al. Prot. Expr. Purif. 41 (2005) 98-105.

Affinity Purification: Waugh, D.S. TRENDS Biotech. 23 (2005) 316-320.

