

### Troubleshooting of Real Time PCR

Biotechnolo

Ameer Effat M. Elfarash

Dept. of Genetics Fac. of Agriculture, Assiut Univ. amir\_effat@yahoo.com



















### What is Real-Time PCR used for?

- Gene expression analysis
- Disease diagnosis and management
  - Viral quantification
- Food testing
  - Percent GMO food
- Animal and plant breeding
  - Gene copy number





Biotechnolog

### **Types of PCR**

I Univers

Biotechnolog Lab



| Technique                                       | Abbreviation | Quantitative | Template |  |
|-------------------------------------------------|--------------|--------------|----------|--|
| Polymerase chain reaction                       | PCR          | No           | DNA      |  |
| Reverse transcriptase polymerase chain reaction | RT-PCR       | No           | RNA      |  |
| Real-time polymerase chain reaction             | qPCR         | Yes          | DNA      |  |
| RT-PCR / qPCR combined technique                | qRT-PCR      | Yes          | RNA      |  |



### Avoiding Contamination

Biotechnolo



Sample preparation, reaction mixture assemblage should be performed in separate areas.

A Laminar Flow Cabinet with a UV lamp is recommended for preparing the reaction mixture.

New gloves should be used for DNA/RNA purification.

The use of tips with filters for both sample and reaction mixture preparation

> Autoclaving of all buffers is recommended.

# How to avoid problems with genomic DNA?



 Always include a DNase I purification step in the RNA isolation procedure

Included in the kit used here

Biotechnology

### **Experiment design**



#### Blank reaction

Biotechnolo

- Controls for contamination
- Contains all reagents except DNA template

#### Negative control reaction

- Controls for specificity of the amplification reaction
- Contains all reagents and a DNA template lacking the target sequence

#### **Positive control reaction**

- Controls for sensitivity
- Contains all reagents and a known target-containing DNA template
- HKG (House keeping gene)
- Make at least 3 replicates













## Housekeeping Genes



## Highly conserved genes that must be continually expressed in all tissues of organisms to maintain essential cellular functions.

| Gene                      | Genomic structure / pseudogenes                                     | Regulation e.g.                                                                                       |
|---------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| ß-actin                   | multigene family; > 20 genes; 1 active locus<br>20 pseudogenes      | <ul><li>↑: hormones of tyroid gland</li><li>↑: stomach tumor</li></ul>                                |
| γ-actin                   | multigene family; pseudogenes                                       |                                                                                                       |
| GAPDH                     | multigene family; 10-30 genes; > 200 in mouse<br>mostly pseudogenes | <ul><li>↑: lung, pancreatic, colon cancer</li><li>↑: insulin, EGF</li></ul>                           |
| 5.8S,18S, 28S RNA         | pseudogenes                                                         |                                                                                                       |
| ß2-microglobulin          | no pseudogenes                                                      | 1: Non-Hodgkin lymhoma<br>abnormal expression in tumors                                               |
| G6PDH                     | no pseudogenes                                                      | <ul> <li>↑: kidney, stomach tumor</li> <li>↑: hormones, oxidant stress,<br/>growth factors</li> </ul> |
| PBGD                      | no pseudogenes                                                      |                                                                                                       |
| aldolase                  | pseudogenes                                                         |                                                                                                       |
| HPRT                      | pseudogenes                                                         |                                                                                                       |
| U3, U8,                   | Pseudogenes                                                         |                                                                                                       |
| ornithin<br>decarboxylase |                                                                     | ↑: tumors                                                                                             |



Sample 2





|             | Sample 1 | Sample 2 |  |  |  |  |
|-------------|----------|----------|--|--|--|--|
| HKG         | 5        | 10       |  |  |  |  |
| Target Gene | 20       | 20       |  |  |  |  |













For convenience, we typically view the derivative (slope) of the actual melt curve data.



The resulting graph looks like a chromatogram, with peaks that represent different PCR products.



These PCR products melt at a higher temperature, and are likely to be the main PCR product.



### Standard curves



#### Serial dilutions of known sequences used for 'metering' of unknown concentrations



Biotechnolo





Use at least 5 concentrations for a standard curve



 Use serial dilutions that are one order of magnitude apart 1:10, 1:100, 1:1000,...



## PCR itself as a problem



The PCR reaction

Biotechnolog

- Template
- Conditions

#### The operator

- Pipetting errors
- Setting up reactions
- Wrong PCR programs
- The Thermal cycler



### **No Amplification**

Biotechnolog



- Missing a master mix component(Repeat the experiment)
- Sample degradation (*Do a different cDNA prep Test a positive control*)
- Machine not calibrated for dye (Calibrate the instrument)



### Unexpected PCR Efficiency Lower efficiency (<85%)



Incorrect dilutions causing errors in standard curve



- Sample inhibition

Biotechnolo



### **Unexpected PCR Efficiency**



- Higher efficiency (>110%)
  - Incorrect dilutions causing errors in standard curve
  - Genomic DNA contamination
  - Incomplete DNase treatment
  - Primers Dimer

#### primer dimers



Primer-dimers interferes with quantitation

Biotechnolo

- Identifying primer-dimers: melting curve analysis
  - Pure, homogenous PCR products produce a single, sharply defined melting curve with a narrow peak. Primer dimers melt at relatively low temperatures and have broader peak





#### Primer dimers and misprime:

Biotechnolog

- Annealing temp. too low (dimers) or too high (misprime).
- excess primers

5'

Design primers carefully

Primer 1

Size is the sum of two primer lengths.



Primer 2

G 3'

C 3'

Misprime

5′

Primer dimers

### How to avoid primer/dimers?



General approaches

Biotechnol

- Reduce delays in workflow
- Optimize primer
- Increase the annealing temperature Reduce annealing time to 1-5 sec.
- Use hot start
- Reduce number of cycles, e.g. to 40



### **Delayed Ct.....**

#### Master mixes can make a difference





### **Scattered Replicates**

• Pipetting errors

Biotechnolo

Incorrectly set baseline

Replicates ideally should not be more than 0.5 Ct apart







## Biotechnology

### **Unexpected Signal...**



• Positive NTC:

#### maybe master mix got contaminated

- Assay design
- Positive –RT -> gDNA contamination
   Incomplete DNase treatment







- Annealing temperature
  - starting approximately 5°C below calculated T<sub>m</sub>

#### Extension time

Biotechnolog

- every 1kb of amplicon: 1 minute (Is it always true?)

#### Number of cycles

- 25-40 cycles

|  |    |   |   |   |   |   |   |   | _ |   |   |   |  |
|--|----|---|---|---|---|---|---|---|---|---|---|---|--|
|  | e, | e | - | - | - | - | - | - | - | m | - | - |  |
|  |    |   |   |   |   |   |   |   |   |   |   |   |  |
|  |    |   |   |   |   |   |   |   |   |   |   |   |  |
|  |    |   |   |   |   |   |   |   |   |   |   |   |  |
|  |    |   |   |   |   |   |   |   |   |   |   |   |  |
|  |    |   |   |   |   |   | 1 | - |   | - |   |   |  |
|  |    |   |   |   |   |   |   |   |   |   |   |   |  |
|  |    |   |   |   |   |   |   |   |   |   |   |   |  |
|  |    |   |   |   |   |   |   |   |   |   |   |   |  |

#### Not optimized





#### Well optimized

