

Assiut University Faculty of Pharmacy

Course Specification

<u>1-Basic Information</u>

Title:Kinetic principles in dosage form designCode: MPT 052Level: Level: M. of Pharm. Sci. (Pharmaceutics) year 2Department: PharmaceuticsUnit:2 Hour/weekLecture: Two hours per week Tutorial Practical:Total: 2hr/weekYear: 2015-2016

2- Aims of Course

This course aims to establish a deep and specialized knowledge of the concepts and principles of pharmacokinetics and their applications with the purpose of improving the design and evaluation of drug delivery systems, and the therapeutic management of patients.

The impact of pharmacokinetics on therapy is explored to help understand clinical variability to drug response.

3- Intended Learning Outcomes of Course(ILOs)

a- Knowledge and Understanding: The graduate should be able to:

a8-Define basics and principles of pharmacokinetics. a8-Define the pharmacokinetic model of a specified drug and factors affecting it.

b- Intellectual Skills: The graduate should be able to:

b10- Illustrate how to trace drugs in different tissues and body compartments.

- b2- Suggest possible solutions to overcome problems of drug absorption, metabolism, elimination and interactions with other drugs.
- b12-Analyze and evaluate medications effects on patients based on their pharmacokinetics.

Quality Assurance Unit

c- Professional and practical Skills:

The graduate should be able to:

c10- Use pharmacokinetic information to estimate drug dose and protocol of therapy.

- c12-Apply equations to calculate drug concentration on different tissues and compartments.
- c12- Calculate amount of drug accumulated in the body and how to eliminate it.

d- General and Transferable Skills: The graduate should be able to:

d6-Communicate efficiently with the medical team. d1-Use different information sources to solve medication problems. d15- Offer advice related to therapeutic plan.

Course Contents

Торіс	No.	of	Lecture	Tutorial	/
	hours			Practical	
Pharmacokinetic parameters after I.V. dose					
(plasma data)					
Pharmacokinetic parameters after I.V. dose					
(urine data)					
Pharmacokinetic parameters after extravascular					
administration, e.g. oral dose.					
Pharmacokinetic parameters after I.V. multiple					
dosing					
Non-linear pharmacokinetics (introduction)	2				
Characters associated with non-linearity.	2				
Saturable enzymatic elimination process.					
Drug elimination by capacity limited					
pharmacokinetics					
Chronopharmacokinetics					
Circadian rhythms and drug response					
Non- linear pharmacokinetics due to drug					
protein binding.					
Total					

4- Teaching and Learning Methods

- 4.1- lectures
- 4.2- Discussions
- 4.3- Reports

5- Teaching and learning methods for disables

None

6- Student Assessment

a- Student Assessment methods

- 6.1- Small discussions to assessknowledge and understanding
- 6.2- Written final exam to assess knowledge and understanding.

b- Student Assessment Schedule

No.	Assessment	week
1.	Written final exam	In June

c- Weighting of Assessments

No.	Exam.	Mark	%
1.	Mid-Term Examination		
2.	Final-Term Examination	100	100%
3.	Oral Examination		
4.	Practical Examination		
5.	Semester Work		
6-	Other types of assessment		
	Total	100	100%

7- List of References

a- Essential Books (Text Books)

• Niazi S. K., and Brown J. L. (2015). Fundamentals of Modern Bioprocessing. CRC Press.

b-Recommended Books

• ShargelL., Wu-Pong S., and . Yu A.B.C. (2012). Applied Biopharmaceutics and pharmacokinetics. 6th Edition. McGraw-Hill Companies, Inc

8- Facilities Required for Teaching and Learning

.....

Course Coordinator:Dr. Ayat Ahmed Abdel-MonsefAllam

Head of Department: Professor Dr. Mahmoud El-Badry

Date: 7/3/2016

University	Assiut	Course Title	Kinetic principles in dosage form design
Faculty Department	Pharmacy Pharmaceutics	Course Code	MPT 052

Торіс	Week	Knowledge and Understanding	Intellectual Skills	Professional and Practical Skills	General and Transferable Skills
Pharmacokinetic parameters after I.V. dose (plasma data)	1^{st} , 2^{nd}	a8	b10,b2, b12	c10,c12	d6,d1,d15
Pharmacokinetic parameters after I.V. dose (urine data)	3^{rd}	a8	b10,b2, b12	c10,c12	d6,d1,d15
Pharmacokinetic parameters after extravascular administration,	4^{th} , 5^{th}	a8	b10,b2, b12	c10,c12	d6,d1,d15
e.g. oral dose.					
Pharmacokinetic parameters after I.V. multiple dosing	6 th , 7 th	a8	b10,b2, b12	c10,c12	d6,d1,d15
Non-linear pharmacokinetics (introduction)	8 th	a8	b10,b2, b12	c10,c12	d6,d1,d15
Characters associated with non-linearity.	9 th	a8	b10,b2, b12	c10,c12	d6,d1,d15
Saturable enzymatic elimination process.	$10^{\rm th}$, $11^{\rm th}$	a8	b10,b2, b12	c10,c12	d6,d1,d15
Drug elimination by capacity limited pharmacokinetics	12^{th}	a8	b10,b2, b12	c10,c12	d6,d1,d15
Chronopharmacokinetics	13 th	a8	b10,b2, b12	c10,c12	d6,d1,d15
Circadian rhythms and drug response	14^{th}	a8	b10,b2, b12	c10,c12	d6,d1,d15
Non- linear pharmacokinetics due to drug protein binding.	15^{th}	a8	b10,b2, b12	c10,c12	d6,d1,d15

Matrix of the Intended Learning Outcomes (ILOs) of the Course

Course Coordinator: Dr. Ayat Ahmed Abdel-MonsefAllam

Head of Department: Professor Dr. Mahmoud El-Badry

Date: 7/3/2016