Silica nanoparticles sensitize human multiple myeloma cells to snake (Walterinnesia aegyptia) venom-induced apoptosis and growth arrest.

Sayed D, Al-Sadoon MK, Badr G.

Abstract:

BACKGROUND: Multiple myeloma (MM), an almost incurable disease, is the second most common blood cancer. Initial chemotherapeutic treatment could be successful; however, resistance development urges the use of higher toxic doses accompanied by hematopoietic stem cell transplantation. The establishment of more effective treatments that can overcome or circumvent chemoresistance has become a priority. We recently demonstrated that venom extracted from Walterinnesia aegyptia (WEV) either alone or in combination with silica nanoparticles (WEV+NPs) mediated the growth arrest and apoptosis of prostate cancer cells. In the present study, we evaluated the impact of WEV alone and WEV+NP on proliferation and apoptosis of MM cells. In the present study, we evaluated the impact of WEV alone and WEV+NP on proliferation and apoptosis of MM cells. METHODS: The impacts of WEV alone and WEV+NP were monitored in MM cells from 70 diagnosed patients. The influences of WEV and WEV+NP were assessed with flow cytometry analysis. RESULTS: WEV alone and WEV+NP decreased the viability of MM cells. Using a CFSE proliferation assay, we found that WEV+NP strongly inhibited MM cell proliferation. Furthermore, analysis of the cell cycle using the propidium iodide (PI) staining method indicated that WEV+NP strongly altered the cell cycle of MM cells and enhanced the induction of apoptosis. CONCLUSIONS: Our data reveal the biological effects of WEV and WEV+NP on MM cells that enable these compounds to function as effective treatments for MM.

Published In:

Oxid Med Cell Longev