-B-field characterization and equivalent circuit modeling of a poly SiGe-MEMS based Xylophone Bar Magnetometer

MA Farghaly, V Rochus, X Rottenberg, US Mohammed, HAC Tilmans

Abstract:

This paper reports a quantitative characterization of a poly-SiGe MEMS-based Xylophone Bar Magnetometer (XBM), thereby following a novel characterization method that is based on the measurement of the forward/backward transmission gains S_{21}/S_{21} of the XBM treated as a two-port network. More specifically, this was done through monitoring the absolute amplitude of the resonant peaks of S_{21} and S_{12} with changing magnetic induction B. Also, we present for the first time a novel equivalent circuit for the two-port XBM, modeling effectively the electro-magneto-mechanical behavior of the magnetometer. The experimental measurements showed that poly-SiGe XBM is capable of being a linear magnetic sensor in nT range with a sensitivity $0.1 \text{dB}=\text{mT}$ with an excitation power 5dBm fed to the electrodynamic/electrostatic port and a biasing voltage 14V applied through the sense/drive capacitor.

Published In:

2014 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), NULL, 1-6