Specific Heat and Electrical Resistivity of Pure and Doped Lithium-Ammonium Sulphate Single Crystals

M. A. Gaffar, A. Abu El-Fadl and Galal A. Mohamed

Abstract:

The temperature dependence of the specific heat C_p and the electrical resistivity ρ of pure lithium-ammonium sulphate (LAS) single crystals along the three principal crystallographic directions is investigated in the 300-500 K temperature range. The transition energy ΔQ and the number of both elementary (No) and thermally excited (Ne) dipoles are calculated. It appears that only a small fraction of the total number of dipoles is capable of being thermally excited in the ferroelectric phase. The correlation between the C_p data and the spontaneous polarization P_s is verified. The J-E characteristics indicate the possibility of space charge effects at low measuring fields. Anomalous behaviours before and at the transition point is observed. Thermal annealing is found to be necessary for reproducible results. The temperature dependence of ρ along the polar axis yields the values $\Delta E = 0.54$ and 1.48 eV and $\Delta E = 1.95$ eV for the energy activating the charge transport mechanisms in the ferro- and the paraelectric phases, respectively. A pre-transition phenomenon is observed while measuring both C_p and ρ along the a- and the b-axes. The mechanism of electrical conduction in the measuring range is discussed. Along the polar axis C_p of LAS crystals doped with either Cu^{2+}, Co^{2+}, Ni^{2+} or Mn^{2+} is measured in the same temperature range. Above T_c, the temperature range through which log C_p is linearly proportional to $(T - T_c)$ is wider than that predicted theoretically. The transition energy, the fraction Ne/No and P_s are also calculated for doped crystals

Published In:

Physica B, Vol. 205, pp. 274-284