Skip to main content

Artificial neural network validation of MHD natural bioconvection in asquare enclosure : entropic analysis and optimization

Research Abstract

Thisstudynumericallyinvestigatesinclinedmagneto-hydrodynamicnaturalconvectioninaporouscavityfilledwithnanofluid containinggyrotacticmicroorganisms.Thegoverningequationsarenondimensionalizedandsolvedusingthefinitevolume method. The simulations examine the impact of keyparameters suchas heat source lengthandposition, Peclet number, porosity,andheatgeneration/absorptiononflowpatterns, temperaturedistribution,concentrationprofiles,andmicroorganism rotation.Resultsindicatethatextendingtheheatsourcelengthenhancesconvectivecurrentsandheattransferefficiency,while optimizing the heat sourceposition reduces entropygeneration.Higher Peclet numbers amplify convective currents and microorganismdistribution complexity.Variations inporosityandheat generation/absorption significantly influence flow dynamics. Additionally, the artificial neural networkmodel reliably predicts themeanNusselt andSherwood numbers ( ) Nu Sh & ,demonstratingitseffectiveness for suchanalyses.Thesimulationresults reveal that increasingtheheat source lengthsignificantlyenhancesheat transfer, asevidencedbya15%increaseinthemeanNusseltnumber.

Research Date
Research Department
Research Journal
Acta Mechanica Sinica
Research Year
2024