Skip to main content

MHD natural convection around “plus” shape of circular barriers under local thermal non‑equilibrium condition inside a wavy porous cavity saturated with Al2O3‑Cu/water

Research Abstract

At the current model, MHD natural convection has been numerically inspected around five circular thermal gates subjected to the non-Fourier heat flux. Streamlines experience many twists due to the addressed heat sources. In other words, streamline vortices appear as agitated groups through the cavity. When the frequency of the wavy sides increases, streamlines heaviness disperses widely, and the convection is enforced. Besides, given that there is no leading line for the force’s action, the buoyancy force style exhibits peculiar behavior. Particularly, the convection regime is greatly supported by the heat generation parameter. In addition, the hybrid nanofluid provides a good chemical inertness for the electrical and thermal conductivity as to the molecular structure of the fluid particle. On the other hand, by lowering the heat exchange rate regardless of fluid flow behavior, the local thermal non-equilibrium condition …

Research Date
Research Journal
International Journal of advanced Engineering and Applied Mathematics
Research Year
2024