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Abstract: During the mandatory acidification process in the oil and gas industry, carbon steel un-

fortunately suffers significant corrosion damage. From this perspective, for the first time a new ionic 

liquid called 1-(2-(4-bromophenyl)-2-oxoethyl)-4-(tert-butyl)pyridin-1-ium bromide (ILB) has been 

used as an effective inhibitor for the carbon steel corrosion in aggressive HCl solution (15%) at 298 

K. The experiments were managed with a number of different chemical and electrochemical tech-

niques including weight loss, potentiodynamic polarization (PDP), and impedance spectroscopy 

(EIS). ILB has good inhibitory performance as an acidizing corrosion inhibitor for carbon steel even 

at low dosing levels of 1 × 10−3 M. The findings were promising as an inhibition efficiency of about 

97% was achieved when ILB was added at low concentrations to the corrosive media. EIS results 

showed a significant rise in charge transfer resistance (Rct) values with increasing doses of ILB. PDP 

studies confirmed that ILB is a mixed type and obey Langmuir adsorption isotherm with chemical 

nature. The metal surface morphologies were inspected using a Scanning Electron Microscope 

(SEM) and an Atomic Force Microscope (AFM). Additionally, Density Functional Theory (DFT) and 

Molecular Dynamic Simulation (MDS) indicates that ILB molecules function as inhibitors more suc-

cessfully. There is a high degree of concordance between practical and theoretical studies. 

Keywords: carbon steel; oil well acidization; acid corrosion; ionic liquid inhibitor; DFT;  

surface morphology; SEM; AFM; EIS 

 

1. Introduction 

The oil and gas sector are growing as a result of increased oil and gas extraction, 

which makes it necessary to rebuild both new and old oil wells [1–4]. In petroleum wells, 

chloride salts can be found dissolved in formation water or dispersed in crude oil. For-

mation water is subsurface water created as a byproduct of crude oil production. Most oil 

and gas fields often inject producing wells with high concentrations of acid solutions 

(40−60% vol), a procedure known as acidizing. This acidifying process dissolves rocky 

soil, minerals, and foreign material in the well’s soil, producing channels and enhancing 

oil and gas productivity. Acid inclusion raises reservoir permeability by eroding mineral 

rocks [5]. On the other hand, integrated acid results in severe monetary loss and tubular 
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steel corrosion [6–8]. The corrosion inhibitors are certain molecules composed of lone 

pairs of electrons, a high electron cloud of aromatic rings, double and triple bond conju-

gations, and additional adsorption centers [9]. These adsorption centers generate both an 

adsorbed layer and a metal orbital coordinating bond [10]. According to a literature re-

view, the oil and gas industry frequently seeks corrosion inhibitors such as Schiff base, 

quaternary ammonium salts, and other inhibitors [11,12]. However, educating about the 

importance of protecting the environment from long-present dangerous inhibitors is only 

partially effective [13,14]. A further study was conducted in order to create non-toxic, en-

vironmentally friendly corrosion inhibitors, such as surfactant, biological extract, ionic 

liquid, and others [15–22]. Ionic liquids (ILs) have attracted the attention of scientists in 

recent years as potential corrosion inhibitors for specific metals and alloys. Ionic liquids 

are usually salts of organic anions (such as pyrrolidinium, imidazolium, or pyridinium) 

and inorganic cations (such as chloride, bromide, or iodide). Ionic liquids’ remarkable 

qualities as long-lasting, environmentally benign chemicals with the ability to dissolve a 

variety of inorganic and organic components are the reason for their expanding applica-

tion. Ionic solutions based on imidazolium have become popular in recent years as corro-

sion inhibitors in acidic settings. ILs are utilized widely due to their non-toxicity, low m.p., 

and liquid condition at ambient temperature [23]. Due to their capacities to form micelles 

and lower interfacial tension of aqueous wetting, which enables simple adsorption of cor-

rosion-inhibitors molecules, ILs have recently emerged as a significant grade of corrosion 

mitigation [24,25]. Furthermore, intermolecular synergy and inhibitor adhesion on the 

metal surface are made possible by cation and anionic groups [26]. However, acidification 

is the most efficient way to increase production and explore for oil, but it is very corrosive 

to the metal. Therefore, in the current study we present for the first time a novel, potent 

and non-toxic corrosion inhibitor of ionic liquid based pyridinium (ILB) in a very strong 

acidic environment (15% HCl),  i.e., in real conditions. The choice of ILB in particular is 

based on many advantages, the most important of which is that it is an environmentally 

friendly corrosion inhibitor, and its chemical composition is unique.  In addition, it is ef-

fective in lowering acidic media concentrations. The results of this work confirm the high 

efficiency of this type of material in resisting corrosion of steel, which may open the way 

for real practical application. 

2. Experimental 

2.1. Materials 

The composition of the carbon steel specimens used in this research is as follows: 

10.73% Cr, 7% Ni, 7% Si, 4.55% Al, and the rest is Fe. The carbon steel dimensions for the 

weight loss measurements were 7.0 cm × 2.0 cm × 0.2 cm. To get the electrochemical data, 

a carbon steel electrode with a surface area of 1 cm2 was used. Prior to the trial, the steel 

samples were absorbed, polished, washed with distilled water, and then treated with a 1:1 

combination of ethanol and acetone. The 15% HCl aggressive solution was produced us-

ing analytical grade HCl. The ionic liquid 1-(2-(4-bromophenyl)-2-oxoethyl)-4-(tert-bu-

tyl)pyridin-1-ium bromide (ILB) that was the subject of the investigation was supplied 

from Sigma-Aldrich company. Figure 1 shows the molecular structure of ILB. 
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Figure 1. Chemical structure of ILB. 

2.2. Weight Loss Measurements 

The ASTM standard is applied when conducting tests on weight loss [27]. In each 

weight loss experiment, steel coupon specimens with dimensions of 7 cm × 2 cm × 0.3 cm 

were used. After immersion duration (8 h), the weight loss of steel in aggressive solution 

(measured in mg cm2) with and without the presence of various concentrations of ILB 

inhibitor was determined. The samples’ surfaces were cleaned by repeatedly washing the 

corrosion product in bi-distilled water, followed by drying. The following equations were 

used to determine the corrosion rate (CR), surface coverage (θ), and inhibition efficiency 

(IEWL %) [28]: 

𝐶𝑅 =
∆𝑊

𝑆𝑡
 (1) 

𝜃 =
𝐶𝑅 − 𝐶𝑅𝑖𝑛ℎ

𝐶𝑅
 (2) 

𝐼𝐸𝑊𝐿 (%) = 𝜃 × 100 (3) 

where, CR and CRinh are the rates of steel corrosion in the aggressive solution in the ab-

sence and presence of various ILB concentrations, respectively. ΔW, S, and t signify the 

weight loss (mg), carbon steel surface area (cm2), and immersion time (h), respectively. 

2.3. Electrochemical Investigation 

An Origalys potentiostat supported with Origa Master was used to conduct and cal-

culate the electrochemical outcomes. The employed three-electrode cell arrangement used 

carbon steel as the working electrode, calomel as the reference electrode, and Pt-wire as 

the counter electrode. The steel electrode was left in the aggressive solution for 30 min. to 

get an equilibrium potential. The EIS tests used a range of frequencies, from 105 to 10−2 Hz 

with 10 mV of potential. Similar to this, potentiodynamic polarization tests were deter-

mined by measuring the steel substrate at a rate of 0.1 mVs−1 between a potential range of 

±250 mV. 

2.4. Theoretical Calculations 

Recent developments in the study of organic molecule-mediated corrosion inhibition 

processes have shown the utility of quantum chemical calculations. On the probability of 

electron transfer between the molecules that are adsorbed and the Fe surface, they provide 

helpful relationships. It is the relationship between the effectiveness of the molecular 

shapes under investigation. When analyzing the connection between inhibition effective-

ness and electronic structure, DFT analysis is used because it is simple, quick, and accu-

rate. This part of the work examines the molecular and electronic structures of the ILB 

molecule to show the relationship between the molecular structure of this compound and 
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its inhibitory effectiveness. As theoretical parameters, it was possible to determine the en-

ergies of the lowest unoccupied and highest occupied molecular orbitals (ELUMO & EHOMO), 

the energy gap (ΔE = ELUMO − EHOMO), hardness (η), electronegativity (χ), softness (σ), and 

the fraction of transferred electrons (ΔN). These descriptors are included with the accom-

panying equations [29]. 

𝐼 = −𝐸𝐻𝑂𝑀𝑂 (4) 

𝐴 = −𝐸𝐿𝑈𝑀𝑂 (5) 

𝜒 =
𝐼 + 𝐴

2
 (6) 

𝜂 =
𝐼 − 𝐴

2
 (7) 

𝜎 =
1

𝜂
 (8) 

∆𝑁 =
(𝜒𝐹𝑒 − 𝜒𝐼𝑛ℎ)

2(𝜂𝐹𝑒 − 𝜂𝐼𝑛ℎ)
 (9) 

The DFT/B3LYP method, the 6-311G*(d,p) basis set, and the Gaussian 09 software pack-

age were used to calculate the ILB molecule calculations. The adsorption behavior of the ILB 

inhibitor molecule on the Fe(110) surface was examined using molecular dynamic (MD) 

models. Using the programme Material Studio 2020, MD simulations were carried out. 

2.5. Surface Analysis 

The surface image of the film created on carbon steel in the absence and presence of 

an optimum concentration of ILB inhibitor in the aggressive solution for an 8-h immersion 

time was captured and studied using SEM equipment. For the 3-D image, AFM micro-

graphic analysis was used to quantify the surface roughness of metal after it was im-

mersed in an aggressive electrolyte in the presence and absence of ionic liquid for approx-

imately 8 h. 

3. Result and Discussion 

3.1. Electrochemical Impedance Spectroscopy (EIS) 

Figure 2a–c depicts the Nyquist plots along with the associated Bode plots, and the 

equivalent chemical circuit of carbon steel in the aggressive solution without and with 

ILB, respectively. The width of the capacitive loop of the Nyquist plots widens as the ILB 

concentration increases, as shown in Figure 2a. As a result, as the ILB concentration in-

creases, so does the charge transfer resistance (Rct), increasing the effectiveness of the in-

hibition [30]. This is because any active reaction sites on the steel surface are covered by 

ILB molecules, preventing them from coming into contact with the strong solution. On the 

Nyquist graphs, the typical charge transfer-controlled corrosion reaction process is de-

picted as a single depressed capacitive semicircle with the center under the real line. As 

shown in Figure 2b, increasing ILB concentration results in a wide and broad shift in the 

Bode modulus impedance, indicating a delay in the corrosion process. As shown in Figure 

2c, the circuit model Rs (QRct) was fitted to the gathered data set with (Rs) which stands 

for solution resistance, (Rct) for charge transfer resistance, and (Q) for constant phase ele-

ment (CPE). The non-perfect semi-circle nature of Nyquist plots is caused by a rough frac-

tal surface, which is associated with the formation of an absorbed inhibitor layer as well 

as corrosion products [31]. As a result, the capacitance provided by the constant phase 

element (CPE) is denoted by the following relationship [32]: 
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𝑍𝐶𝑃𝐸 =
1

𝑌𝑜(𝑗𝜔)𝑛
 (10) 

𝑍𝐶𝑃𝐸  stands for CPE impedance, while 𝑌𝑜, n, and j represent the scale and proponent of 

CPE, accordingly (√−1). Similar to that, f (Hz) is the frequency, and ω = 2πf. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. EIS curves for carbon steel in the aggressive solution in the absence and presence of various 

concentrations of ILB at 298 K: (a) Nyquist, (b) Bode, and (c) equivalent chemical circuit. 
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Table 1 displays the data obtained from EIS experiments at 298 K. In order to deter-

mine the inhibitory efficiency (IEEIS, %) derived from the impedance measurements, the 

following expression was used [33]: 

𝜂𝐸𝐼𝑆 =
𝑅𝑐𝑡(𝑖𝑛ℎ.) − 𝑅𝑐𝑡

𝑅𝑐𝑡(𝑖𝑛ℎ.)
× 100 (11) 

where, 𝑅𝑐𝑡 and 𝑅𝑐𝑡(𝑖𝑛ℎ.) are the charge transfer resistances of a carbon steel electrode in the 

aggressive acid solution without and with the examined inhibitor. Table 1 demonstrates that 

Rct values were greatly increased as the ILB concentration was increased. It is possible that 

the protective layer deposition on the steel surface, which creates barriers for charge trans-

ports, is what causes the observed rise in Rct values with rising ILB concentrations. Given 

that the estimates for the n parameter range from 0.79 to 0.89, it is most probable that the 

ILB adsorption process has reduced the heterogeneity of the steel surface [34]. 

Table 1. Electrochemical impedance parameters of carbon steel in the aggressive acid solution and 

in the presence of different concentration of ILB at 298 K. 

ILB Conc. (M) Rs (Ω cm2) Y0 × 10−4 (Ω−1sn cm−2) n Rct (Ω cm2) ηEIS (%) 

0 0.8 1.85 0.79 6 – 

1 × 10−5 1.3 6.47 0.82 14 57.1 

5 × 10−5 1.8 5.66 0.86 36 83.3 

1 × 10−4 2.0 3.72 0.87 89 93.3 

5 × 10−4 1.9 4.65 0.88 131 95.4 

1 × 10−3 2.1 5.32 0.89 280 97.9 

3.2. Potentiodynamic Polarization Study 

The potentiodynamic polarization (PDP) profiles of carbon steel in the aggressive so-

lution, without and with varying concentrations of ILB, are shown in Figure 3. The result-

ing polarization curves were used to evaluate the values of corrosion potential (Ecorr), cor-

rosion current densities (icorr), as well as cathodic and anodic Tafel slopes (βc & βa). The 

values of inhibition efficiencies (ηPDP) were calculated via the following equation [35]: 

𝜂𝑃𝐷𝑃 =
𝑖𝑐𝑜𝑟𝑟 − 𝑖𝑐𝑜𝑟𝑟(𝑖𝑛ℎ.)

𝑖𝑐𝑜𝑟𝑟
× 100 (12) 

𝑖𝑐𝑜𝑟𝑟   and 𝑖𝑐𝑜𝑟𝑟(𝑖𝑛ℎ.)  represent the current densities of steel corrosion without and with 

ILB, respectively. Table 2 summarizes these parameters at 298 K. The value of icorr was set 

to decrease while ηPDP increased as ILB concentration increased. This demonstrated that 

the protective effect of ILB molecules on carbon steel became greater as the inhibitor con-

centration increased. At a concentration of 1 × 10−3 M ILB, the highest corrosion inhibition 

efficiency was 97.3%. 
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Figure 3. Potentiodynamic polarization curves of carbon steel in the aggressive solution in the ab-

sence and presence of various concentrations of ILB at 298 K. 
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inhibitor [36]. Additionally, Table 2 shows that when the ILB was added, the values of 

both βc and βa scarcely changed, indicating that the hydrogen-evolution mechanism did 

not change. This could be as a result of the ILB molecule coating the carbon steel surface, 
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Table 2. Potentiodynamic polarization parameters of carbon steel in the aggressive solution in the 

absence and presence of various concentrations of ILB at 298 K. 
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Table 3 shows the projected CR and ηWL values using the weight loss technique at 

various ILB concentrations at 298 K. Table 3 demonstrates that increasing ILB results in a 

decrease of the CR value. The weight loss data in Figure 4 is consistent with expectations 

because increasing the ILB dosage results in increased molecule adsorption on the carbon 
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of carbon steel. ILB’s ability to be inhibitive in the corrosive HCl solution reflects their 

powerful ability to form bonds with steel. 

Table 3. Weight loss parameters of carbon steel in the aggressive solution in the absence and pres-

ence of various concentrations of ILB at 298 K. 

ILB Conc. (M) CR (mg cm−2 h−1) θ ηWL (%) 

0 14.2 ̶ ̶ 

1 × 10−5 6.7 0.526 52.6 

5 × 10−5 2.2 0.842 84.2 

1 × 10−4 1.2 0.914 91.4 

5 × 10−4 1.0 0.927 92.7 

1 × 10−3 0.9 0.935 93.5 

 

Figure 4. Plots of CR of carbon steel in the aggressive solution and ηWL (%) of ILB versus ILB con-

centration (C) at 298 K. 

3.4. Adsorption Isotherms Study 

Frumkin, Temkin, Freundlich, and Langmuir adsorption isotherms were used to in-

vestigate ILB adsorption on the carbon steel surface in the aggressive HCl solution. The 
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Figure 5. Adsorption isotherms’ models: (a) Temkin, (b) Freundlich, (c) Frumkin, (d) Langmuir, for 

various ILB concentrations on the surface of carbon steel in the aggressive HCl solution at 298 K. 
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3.5. Theoretical Studies 

3.5.1. DFT Calculations 

A quantum chemical calculation was performed to investigate the effect of electronic 

properties and molecular structure on the inhibition effectiveness of the ILB inhibitor and 

to confirm the experimental data obtained from gravimetric and electrochemical experi-

ments [42]. Figure 6 depicts the optimized molecular structure provided by atomic num-

bering and the frontier molecular orbital density distributions (HOMO and LUMO) of ILB 

inhibitor provided by the B3LYP/6-31*G (d,p) method. The electron density of the HOMO 

is distributed at the tertiary butyl pyridinium fragment, while the LUMO is distributed at 

the other fragment of bromophenyl-oxoethyl, as shown in Figure 6. Table 4 displays the 

calculated quantum parameters of the ILB molecule. The EHOMO values of ILB arehigh 

(−5.606 eV) while the ELUMO value (−1.930 eV) is low, confirming the experimentally ob-

tained inhibition efficiency. The presence of a higher electron density of an aromatic ring 

and lone pair of heteroatoms (O and N atoms) results in a high value of EHOMO (−5.606 eV). 

The energy gap (ΔEGAP) is a critical parameter that reveals an inhibitor molecule’s activity 

[43]. The low ΔEGAP value (3.676 eV) indicates higher reactivity and facilitates organic mol-

ecule adsorption on the steel surface, resulting in higher inhibition performance. The re-

duction of ΔEGAP and ELUMO, as well as the increase of EHOMO, imply an increase in inhibitor 

efficiency [44]. Additionally, the softness (σ) is a crucial characteristic that can reveal the 

inhibitor compounds’ capacity for adsorption. These can forecast the inhibitor com-

pounds’ strong affinity for adsorption, which is consistent with the findings of the exper-

iments [45]. The ability of electrons to transfer from an inhibitor to a metal is measured by 

the value of ΔN. The value of ΔN, on the other hand, does not represent the actual number 

of electron transfers; rather, it represents a potential. Electrons are transported from the 

adsorbent molecules to the Fe atoms on the metallic surface if ΔN is positive. This happens 

when two different electronegative systems react. According to Table 4, the calculated 

value of ΔN is 0.879, indicating that the inhibitor molecules have a strong tendency to 

donate electrons to the metal’s vacuum orbital [46]. 

The electron density surfaces generate the ESP, which is an important factor in defin-

ing the electrophilic and nucleophilic regions of the molecule [47]. Different colors deter-

mine the ESP of the ILB molecule, as shown in Figure 6. The red region represents the 

strongest repulsion, while the blue region represents the partially positive charge and the 

strongest attractions, the light blue region represents electron deficiency, the yellow re-

gion indicates that this part is slightly electron-rich, and the green region is neutral [48]. 

This demonstrates that ILB molecules have a strong affinity for metal surfaces and are 

resistant to electrophilic attack in general. This theoretical discovery supports and con-

firms the experimental findings. 
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Figure 6. Equilibrium configurations, HOMO, LUMO, and ESP plots for ILB. 

Table 4. Quantum chemical parameters calculated for ILB molecule. 

Theoretical Parameters ILB 

EHOMO (eV) −5.606 

ELUMO (eV) −1.930 

ΔE (eV) 3.676 

Ionization (I) (eV) 5.606 

Affinity (A) (eV) 1.930 

Absolute electronegativity (χ) (eV) 3.768 

Global hardness (η) (eV) 1.838 

Softness (σ) 0.544 

ΔN 0.879 

3.5.2. Molecular Dynamic Simulation (MDS) 

MD simulations were performed to better understand the inhibitory process on the 

metal surface and to identify the low adsorption energy (Eads) sites on the ions’ surfaces. 

This enabled researchers to identify ILB’s preferential adsorption. These techniques are 

frequently used to identify preferred adsorption sites on metal surfaces [49,50]. The sim-

ulation results, as well as the ILB molecule adsorption equilibrium configurations on the 

Fe surface, are shown in Figure 7. The inhibitor’s adsorption orientation on the Fe surface 

was nearly flat, as shown in Figure 7. MD simulations reveal that the adsorption energy 

(Eads) of ILB molecules is −13585.43 kcal mol−1. ILB molecules demonstrate their high effi-

cacy in preventing corrosion in steel by forming a strong chemical bond between the mol-

ecules and the Fe(110) surface. They also highlighted the effects of electronic transmission 

from the adsorbate to the substrate and dipole interactions [51,52]. 
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Figure 7. The optimized adsorption configuration of ILB molecule on Fe(1 1 0) plane. 

3.6. Surface Characterization 

3.6.1. Scanning Electron Microscopy (SEM) Measurements 

The most well-known and commonly used surface analytical tool for surface charac-

terization is the scanning electron microscope (SEM). Sharp surface pictures are often pro-

duced as a result of SEM analysis [53]. SEM micrographs of blank carbon steel surface 

inhibited with 1 × 10−3 M of ILB after 8 h of immersion are shown in Figure 8. The SEM 

image of the blank carbon steel surface (Figure 8a) revealed pits and cracks generated by 

an aggressive HCl attack on the metal, as well as extensively corroded and damaged areas. 

Despite this, SEM scans indicate that the inhibited carbon steel’s surface (Figure 8b) is 

quite smooth. Because of the molecules’ adsorption on the metal surface, the surfaces of 

steel specimens are smoother in the presence of ILB molecules [54]. 

 

Figure 8. SEM images of carbon steel surfaces after 8 hours of immersion in: (a) aggressive HCl 

solution and, (b) aggressive HCl solution with 1 × 10−3 M of ILB 298 K. 

3.6.2. Atomic Force Microscopy (AFM) Measurements 

AFM is a powerful technique that is currently being utilised to investigate how in-

hibitors effect metal corrosion in a variety of electrolytic media [55]. Figure 9 depicts im-

ages taken with an atomic force microscope (AFM) of carbon steel surface before and after 

it was exposed to 1 × 10−3 M ILB for 8 h. When the metal surface was carefully examined, 

it was discovered to be completely corroded and destroyed (Figure 9a). This finding sug-

gests that free aggressive HCl corrosion in the control solution had a substantial impact 
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on the metal surface. The surface roughness of the blank steel specimen was calculated to 

be 341 nm on average. However, in the AFM micrographs, the surface contour of the in-

hibited specimens seems quite smooth (Figure 9b). For the carbon steel samples inhibited 

with ILB molecules, the computed average surface roughness was 112 nm. The morphol-

ogies of the inhibited carbon steel specimens’ surface significantly improved, proving that 

the inhibitor molecules under study create a shielding surface layer that protects the metal 

from the aggressive HCl solution and prevents corrosion [56]. 

 

Figure 9. AFM images of carbon steel surfaces after 8 h of immersion in: (a) aggressive HCl solution, 

and (b) aggressive HCl solution with 1 × 10−3 M of ILB at 298 K. 

3.7. Comparison with Previous Studies 

The studied ILB corrosion inhibitor’s efficacy for steel surface was compared to that 

of those previously reported. Table 5 details the inhibitor structure, corrosive solution, 

optimum inhibitor concentration, and inhibition efficacy as determined by several exper-

imental methodologies [57−59]. ILB has a strong corrosion inhibition efficiency, which is 

visible even at low concentrations. This demonstrates that ILB has numerous potential 

uses in acid corrosion protection. 

Table 5. Comparison the corrosion inhibition efficiency of studied ILB with other ILs obtained for 

steel in acidic media. 

Inhibitors Medium Conc. (M) η (%) Ref 

1-hexyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl) imide 
1 M HCl 

3 × 10−4 

70.2 [57] 

N-triethyl methylammonium acetate 70.4 [58] 

1-Vinyl-3-butylimidazolium Bromide 

1 M H2SO4 

85.4 

[59] 
1-Vinyl-3-octadecylimidazolium Bromide 90.1 

1-Vinyl-3-docosylimidazolium Bromide 83.2 

1-Vinyl-3-dodecylimidazolium Bromide 94.4 

ILB 15% HCl  97.5  

4. Conclusions 

Weight loss, electrochemical (EIS & PDP), and computational techniques were used 

to investigate the performance of the ionic liquid ILB as a potential corrosion inhibitor for 

carbon steel corrosion in aggressive HCl solution (15%) at 298 K. The inhibition efficiencies 
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evaluated from EIS, PDP, and WL tools were found to be: 97.9%, 97.3%, and 93.5%, re-

spectively. ILB has good inhibitory performance as an acidizing corrosion inhibitor for 

carbon steel even at low dosing levels of 1 × 10−3 M. The ILB inhibitory action was set to 

be a mixed-type inhibitor. The Langmuir adsorption isotherm model is used to describe 

the adsorption of the ILB molecule. DFT can help ILB improve its inhibitory performance. 

The adsorption process was spontaneous. The results of both experimental and theoretical 

studies were agreed, which concluded that ILB is an effective green corrosion inhibitor for 

carbon steel in HCl media. 
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