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ON DECOMPOSITION OF CONTINUITY

T. NOIRI (Yatsushiro) and O. R. SAYED (Assiut)

Abstract. The main purpose of this paper is to introduce the concepts of
η-sets, ηζ-sets, η-continuity and ηζ-continuity and to obtain a decomposition of
continuity.

1. Introduction

Tong [20] introduced the notions of A-sets and A-continuity in topolog-
ical spaces and established a decomposition of continuity. In [21], he also
introduced the notions of B-sets and B-continuity and used them to obtain
a new decomposition of continuity. Recently, Ganster and Reilly [9] have
improved Tong’s decompostion result and provided a decomposition of A-
continuity. A year later Ganster and Rielly [8] improved Tong’s result [20]
replacing A-continuity with LC-continuity and gave a decomposition of A-
continuity. Quite recently, Przemski [18] has obtained some decompostions
of continuity and weak continuity. Various decompositions of generalized
types of continuous functions are given in [5, 6, 7, 10, 22].

In this paper, we introduce the notions of η-sets, ηζ-sets, η-continuity
and ηζ-continuity and obtain another decomposition of continuity.

2. Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y )
always mean topological spaces on which no separation axioms are assumed.
For A ⊂ X, the closure, the interior, the boundary, the α-closure and the
α-interior of A in X are denoted by A, Int A, FrA, Clα(A) and Intα(A),
respectively.
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The following definitions are all notions of generalized open sets used
throughout this paper.

Definition 2.1. A subset A of a space X is called:
(1) a preopen set [15] if A ⊂ IntA and a preclosed set if IntA ⊂ A,
(2) a semi-open set [12] if A ⊂ IntA and a semi-closed set if IntA ⊂ A,

(3) an α-open set [17] if A ⊂ Int IntA and an α-closed set if IntA ⊂ A,

(4) a β-open set [1] (=semi-preopen set [2]) if A ⊂ IntA, and a β-closed
set(=semi-preclosed set) if Int IntA ⊂ A,

(5) a regular open set if A = Int A and a regular closed set if A = IntA,
(6) an AB-set [5]

(
= AB(X)

)
if A = U ∩N , where U is open and N is

semi-regular, i.e. IntN ⊂ N ⊂ IntN ,
(7) a C-set [10] if A ∈ C(X) = {U ∩N : U ∈ τ , Int IntN ⊂ N},
(8) an A-set [20] if A ∈ A(X) = {U ∩N : U ∈ τ , N = IntN},
(9) a B-set [19] if A ∈ B(X) = {U ∩N : U ∈ τ , Int N ⊂ N},

(10) an LC-set [4] if A ∈ LC(X) = {U ∩N : U ∈ τ,N = N},
(11) an A7-set [22] if A ∈ A7(X) = {U ∩N : U ∈ τ , IntN ⊂ N},
(12) a generalized α-closed [14] (written as gα-closed) in X if Clα(A) ⊂ U

whenever A ⊂ U and U is open in X.
(13) nowhere dense [6] if IntA = ∅.
(14) an NDB-set [6] if A has nowhere dense boundary.

Definition 2.2. A function f : (X,τ)→ (Y,σ) is said to be α-continuous
[16] (resp. pre-continuous [15], semi-continuous [12], β-continuous [1], A7-
continuous [22], A-continuous [20], B-continuous [19], AB-continuous [5],
LC-continuous [8]) if for each V ∈ σ, f−1(V ) is an α-open set (resp. preopen
set, semi-open set, β-open set, A7-set, A-set, B-set, AB-set, LC-set). The
function f : (X, τ) → (Y, σ) is said to be α-irresolute [13] if for each α-open
set V in Y , f−1(V ) is an α-open set in X.

3. η-sets and ηζ-sets

Definition 3.1. A subset A of a topological space (X, τ) is called an η-
set (resp. an ηζ-set) if A = U ∩N , where U is open and N is α-closed (resp.
clopen) in (X, τ). The collection of all η-sets (resp. ηζ-sets) in (X, τ) will be
denoted by η(X) (resp. ηζ(X)).

The following implications are clear:
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ηζ(X) // A(X) //

��

LC(X)

��
η(X) //

��

A7(X)

��
AB(X) // B(X) // C(X)

Fig. 1

The converse of implications in Fig. 1 are not true as shown in the fol-
lowing examples.

Example 3.1. Let X = {a, b, c} and τ =
{
∅, {a}, X

}
. Set A = {c}. It

is easily observed that A ∈ η(X) but A 6∈ AB(X), A 6∈ LC(X).

Example 3.2. Let X = {a, b, c, d} and τ =
{
∅, {a}, {b}, {a, b}, X

}
. Set

A = {b, c}. It is easily observed that A ∈ AB(X) but A 6∈ η(X). Also, set
B = {b, c, d}. It is easily observed that B ∈ A(X) but B 6∈ ηζ(X). Set C =
{a, c}. One can deduce that C ∈ AB(X) but C 6∈ A7(X).

Example 3.3. Let X = {a, b, c, d} and τ =
{
∅, {a}, {b, c}, {a, b, c}, X

}
.

Set A = {a, b}. It is easily observed that A ∈ A7(X) but A 6∈ B(X).
Remark 3.1. From the previous examples one can deduce that η-set and

AB-set are independent.
Theorem 3.1. For a subset A of a topological space (X, τ), the following

are equivalent:
(1) A is an η-set.
(2) A = U ∩ Clα(A) for some open set U .
Proof. (1) ⇒ (2). Since A is an η-set, then A = U ∩F , where U is open

and F is α-closed. So, A ⊂ U and A ⊂ F . Hence, Clα(A) ⊂ Clα(F ). There-
fore, A ⊂ U ∩ Clα(A) ⊂ U ∩ Clα(F ) = U ∩ F = A. Thus, A = U ∩ Clα(A).

(2) ⇒ (1). It is obvious because Clα(A) is α-closed.
Theorem 3.2. Let A be a subset of a topological space (X, τ). If A ∈

η(X), then Clα(A)−A is α-closed, A ∪
(
X − Clα(A)

)
is α-open and A j

Intα (A ∪
(
X − Clα(A)

)
).

Proof. First, if A ∈ η(X), then from Theorem 3.1 we have that A = U
∩ Clα(A) for some open set U . Therefore,

Clα(A)−A = Clα(A)−
(
U ∩ Clα(A)

)
= Clα(A) ∩ (X −

(
U ∩ Clα(A)

)
)
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= Clα(A) ∩ ((X − U) ∪
(
X − Clα(A)

)
)

=
(

Clα(A) ∩ (X − U)
)
∪ (Clα(A) ∩

(
X − Clα(A)

)
)

=
(

Clα(A) ∩ (X − U)
)
∪ ∅ = Clα(A) ∩ (X − U)

which is α-closed.
Second, since Clα(A)−A is α-closed, then X − (Clα(A)−A) is α-open.

Therefore, X−(Clα(A)−A) = X−
(

Clα(A)∩(X−A)
)

= A∪
(
X−Clα(A)

)
.

Finally, sinceA ∪
(
X − Clα(A)

)
is α-open, then A j A ∪

(
X − Clα(A)

)
= Intα (A ∪

(
X − Clα(A)

)
).

However, the converse of the above Theorem 3.2 need not be true as seen
in the following example.

Example 3.4. Let X = {a, b, c, d} and τ =
{
∅, {b, d}, {b, c, d}, X

}
. Set

A = {a, b, d}. It is easily observed that Clα(A)−A = {c} is α-closed and
A ∪

(
X − Clα(A)

)
= A is α-open but A 6∈ η(X).

Theorem 3.3. For a subset A of a topological space (X, τ), the following
are equivalent:

(1) A is α-closed.
(2) A is an η-set and gα-closed.
Proof. (1) ⇒ (2). This is obvious.
(2) ⇒ (1). Since A is an η-set, then A = U ∩Clα(A), where U is an open

set in X. So, A ⊂ U and since A is gα-closed, then Clα(A) ⊂ U . Therefore,
Clα(A) ⊂ U ∩ Clα(A) = A. Hence, A is α-closed.

Theorem 3.4. For a subset A of a topological space (X, τ) the following
are equivalent:

(1) A is open.
(2) A is an ηζ-set.
(3) A is α-open and an A-set ([20, Theorem 3.2]).
(4) A is pre-open and an A-set.
(5) A is α-open and an η-set.
(6) A is α-open and locally closed ([9, Theorem 2]).
(7) A is pre-open and locally closed ([9, Theorem 2]).
(8) A is pre-open and an η-set.
(9) A is pre-open and a B-set ([21, Proposition 9]).
Proof. (1) ⇒ (2). Since A is open and A = A ∩X, where X is clopen,

then A is an ηζ-set.
(2) ⇒ (3) and (3) ⇒ (4) are trivial.
(4) ⇒ (5). Since A is an A-set, then A is semi-open [6]. Now, A is both

semi-open and pre-open and hence α-open [7]. The second part is trivial.
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(5) ⇒ (6). Since A is an η-set, then A = U ∩ Clα(A), where U is

open. Therefore, since A is β-open, Clα(A) = (A ∪ IntA) = (IntA) = IntA
= Clα(A). Hence, Clα(A) is closed and A is locally closed.

(6) ⇒ (7), (7) ⇒ (8) and (8) ⇒ (9) are trivial.
(9) ⇒ (1). See Tong [21].

Theorem 3.5. For a subset A of a topological space (X, τ), the following
are equivalent:

(1) A is an A-set.
(2) A is semi-open and an η-set.
(3) A is β-open and locally closed.
(4) A is β-open and an η-set.

Proof. (1) ⇒ (2). This is trivial.
(2) ⇒ (3). Since A is an η-set, then A = U ∩ Clα(A), where U is

open. Also, since A is semi-open and so β-open, then Clα(A) = (A ∪ IntA)

= (IntA) = IntA = Clα(A). Hence, Clα(A) is closed and A is locally closed.
(3) ⇒ (4). This is trivial.
(4) ⇒ (1). Since A is an η-set, then A = U ∩ Clα(A), where U is open.

Also, since A is β-open, then Clα(A) = IntA. So, Int
(

Clα(A)
)

= Int(IntA)

= IntA = Clα(A). Hence, Clα(A) is regular closed and A is an A-set.

Theorem 3.6. For a subset A of a topological space (X, τ), the following
are equivalent:

(1) A is α-closed.
(2) A is pre-closed and an η-set.
(3) A is pre-closed and a B-set.
(4) A is pre-closed and an NDB-set.

Proof. (1) ⇒ (2). Every α-closed set is pre-closed. Since A = A ∩X,
where A is α-closed and X is open, then A is an η-set.

(2) ⇒ (3). Every η-set is a B-set.
(3) ⇒ (4). Every B-set is an NDB-set [6].
(4) ⇒ (1). Let A be an NDB-set and B = X −A. Then Int FrB = ∅

and IntFrB = ∅. Therefore, IntFrB = Int (B ∩X −B) = IntB ∩ IntX −B

= Int B ∩ (X − IntB) = ∅. So, IntB ⊂ IntB. Since B is pre-open, then
B ⊂ IntB ⊂ IntB. Therefore, B is semi-open and hence A is α-closed.

Theorem 3.7. For a space X, the following are equivalent:
(1) X is indiscrete.
(2) The η-sets in X are only the trivial ones.
(3) The ηζ-sets in X are only the trivial ones.
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Proof. (1) ⇒ (2). If A is an η-set, then A = U ∩B, where U is open
and B is α-closed. If A 6= ∅, then U 6= ∅ and by (1) U = X. Thus A = B

and so A ⊃ IntA = IntX = X. Hence, A = X.
(2) ⇒ (3). Every ηζ-set is an η-set.
(3) ⇒ (1). Since every open set is an ηζ-set, then by (3) the open sets in

X are only the trivial ones, i.e., X is indiscrete.
Theorem 3.8. For a space X, the following are equivalent:
(1) X is discrete.
(2) Every subset of X is an ηζ-set.
Proof. (1) ⇒ (2). By (1) any subset A of X is clopen. Hence, A is an

ηζ-set.
(2) ⇒ (1). By (2) every singleton {x} of X is an ηζ-set and hence open.

Thus X is discrete.

4. η-continuity and ηζ-continuity

Definition 4.1. A function f : (X,τ)→ (Y,σ) is said to be η-continuous
(resp. ηζ-continuous) if the preimage of every open subset of Y is an η-set
(resp. an ηζ-set) in X.

The following diagram shows how η-continuity and ηζ-continuity are re-
lated to some similar types of generalized continuity.

ηζ-continuity // A-continuity

��

// LC-continuity

��
η-continuity

��

// A7-continuity

��
AB-continuity // B-continuity // C-continuity

Fig. 2

None of the implications in Fig. 2 is reversible as the following examples
show.

Example 4.1. Let X = {a, b, c, d}, τ =
{
∅, {d}, {b, c}, {b, c, d}, X

}
and

σ =
{
∅, {a, b},X

}
. The identity function f : (X, τ) → (X,σ) is A7-continu-

ous but not B-continuous.
Example 4.2. Let X = {a, b, c}, τ =

{
∅, {a}, {b}, {a, b}, X

}
and σ ={

∅, {b, c}, X
}

. The identity function f : (X, τ) → (X, σ) is A-continuous
but not ηζ-continuous.
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Example 4.3. Let X = {a, b, c}, τ =
{
∅, {a}, {a, b}, X

}
and σ =

{
∅,

{b, c}, X
}

. The identity function f : (X, τ) → (X, σ) is LC-continuous but
not A-continuous.

Example 4.4. Let X = {a, b, c, d}, τ =
{
∅, {a}, {b}, {a, b}, X

}
and σ ={

∅, {a, c}, X
}

. The identity function f : (X, τ) → (X, σ) is AB-continuous
but not A7-continuous.

Example 4.5. Let X = {a, b, c}, τ =
{
∅, {a}, X

}
and σ =

{
∅, {c}, X

}
.

The identity function f : (X, τ) → (X, σ) is η-continuous but neither LC-
continuous nor AB-continuous.

Remark 4.1. From the previous examples we can see that η-continuity
and AB-continuity are independent.

Theorem 4.1. Let f : (X, τ) → (Y, σ) be a continuous and α-irresolute
function. If B is an η-set in (Y, σ), then f−1(B) is an η-set in (X, τ).

Proof. Let B be an η-set in (Y, σ). Then B = U ∩ F , where U is open
in (Y, σ) and F is α-closed in (Y, σ). Therefore, f−1(B) = f−1(U ∩ F ) =
f−1(U)∩ f−1(F ). Since f is continuous, then f−1(U) is open in (X,τ). Also,
since f is α-irresolute, then f−1(F ) is α-closed in (X, τ). Hence, f−1(B) is
an η-set in (X, τ).

Theorem 4.2. For a function f : (X, τ) → (Y, σ), the following condi-
tions are equivalent:

(1) f is continuous.
(2) f is ηζ-continuous.
(3) f is α-continuous and A-continuous ([20, Theorem 4.1]).
(4) f is pre-continuous and A-continuous ([9, Theorem 4]).
(5) f is α-continuous and η-continuous.
(6) f is α-continuous and LC-continuous ([9, Theorem 4]).
(7) f is pre-continuous and LC-continuous ([9, Theorem 4]).
(8) f is pre-continuous and η-continuous.
(9) f is pre-continuous and B-continuous ([21, Proposition 11]).

Proof. From Theorem 3.4, the proof is immediate.

Theorem 4.3. For a function f : (X, τ) → (Y, σ), the following condi-
tions are equivalent:

(1) f is A-continuous.
(2) f is semi-continuous and η-continuous.
(3) f is β-continuous and LC-continuous.
(4) f is β-continuous and η-continuous.

Proof. From Theorem 3.5, the proof is immediate.
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