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Abstract

This paper considers fuzzifying topologies, a special case of I-fuzzy topologies introduced by Ying. The concepts of fuzzifying
regular derived set, fuzzifying regular interior and fuzzifying regular convergence are studied and some results on above concepts
are obtained. Also, the concepts of fuzzifying completely continuous functions and fuzzifying R-map are introduced and some
important characterizations are obtained. Furthermore, some compositions of fuzzifying continuity with fuzzifying completely
continuous functions and fuzzifying R-map are presented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy topology, as an important research field in fuzzy set theory, has been developed into a quite mature discipline
[7,17,8,9,13,14,19,20]. In contrast to classical topology, fuzzy topology is endowed with richer structure, which, to a
certain extent, is manifested by different ways to generalize certain classical concepts. So far, according to [8], the kind
of topologies defined by Chang [3] and Goguen [5] comprises topologies of fuzzy subsets, which with the underlying
carrier sets, are naturally called L-topological spaces if a lattice L of membership values has been chosen. Loosely
speaking, an L-topological space is a carrier set along an L-topology, a family of its L-subsets (or fuzzy subsets) which
satisfy the basic conditions analogous to those for classical topologies [11].

On the other hand, Hoehle in [6] proposed the terminology L-fuzzy topology for an L-valued mapping on the
traditional powerset P(X) of X satisfying certain conditions. The authors of [10,13–15,19] defined an L-fuzzy topology
to be an L-valued mapping on the L-powerset LX of X satisfying conditions analogous to those of [6].

Recently, with the semantical method of continuous-valued logic, Ying [21–23] defined so-called fuzzifying topolo-
gies. In fact fuzzifying topologies are a special case of the L-fuzzy topologies in [10,15] since all the t-norms on I are
included as a special class of tensor products in these papers.
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Ying uses one particular tensor product, namely Lukasiewicz conjunction. Thus, his fuzzifying topologies are a
special class of all the I-fuzzy topologies considered in the categorical frameworks of [10,15]. Particularly, as the author
[21–24] indicated, by investigating fuzzifying topology we may partially answer an important question proposed by
Rosser and Turquette [16] in 1952, which asked whether there are many valued theories beyond the level of predicate
calculus.

Roughly speaking, the semantical analysis approach transforms formal statements of interest, which are usually
expressed as implication formulas in logical language, into some inequalities in the truth value set by truth valuation
rules, and then these inequalities are demonstrated in an algebraic way and the semantic validity of conclusions is
thus established. So far, there has been significant research on fuzzifying topologies [1,12,17,18,24]. For example,
the concept of regular open set, regular neighborhood system, regular closure and almost continuity in fuzzifying
topological space were introduced and studied [18,24].

In classical mathematics, completely continuous functions and R-map [2,4] have been defined and their properties
have been obtained.

The rest of the paper is organized as follows: in Section 2, we briefly present some concepts and results in fuzzifying
topology, which are used in the sequel. Afterwards, in Section 3, in the framework of fuzzifying topology, the concepts
of regular derived set, regular interior and regular boundary are established, some of their properties are discussed
and some fundamental results in classical topology are generalized. In Section 4, we define the fuzzifying regular
convergence of a net and describe the fuzzifying regular accumulation point, the fuzzifying regular closure of a set, and
in fact the fuzzifying topology of a space in terms of it (Theorem 4.1 (1), (2) and (3)). Also, we prove that if a subnet
of a net S is fuzzifying regular converges to a point x in fuzzifying topological space, then x is a fuzzifying regular
accumulation point of S (Theorem 4.1 (4)). In Section 5, a theory of fuzzifying regular convergence has been built on the
concept of filter. In Section 6, we define the fuzzifying completely continuous function and fuzzifying R-map between
fuzzifying topological spaces. Also, we give a list of conditions (Definitions 6.2 and 6.4), each equivalent to fuzzifying
completely continuous function and fuzzifying R-map (Theorems 6.1 and 6.2). In addition, some compositions of
fuzzifying completely continuous functions and fuzzifying R-map with fuzzifying continuity are presented. In the last
section, the main results obtained are briefly summarized, and a number of related directions are addressed for further
study.

2. Preliminaries

In this section, we offer some concepts and results in fuzzifying topology, which will be used in the sequel. For the
details, we refer to [21–24].

First, we display the Lukasiewicz logic and corresponding set theoretical notations used in this paper. For any formula
�, the symbol [�] means the truth value of �, where the set of truth values is the unit interval [0, 1]. We write � � (a
formula � is valid) if and only if [�] = 1 for every interpretation. The truth valuation rules for primary fuzzy logical
formal and corresponding set theoretical rotations are:

(1) [�] := �(� ∈ [0, 1]), [� ∧ �] := min([�], [�]), [� −→ �] := min(1, 1− [�] + [�]).
(2) If Ã ∈ �(X), where �(X) is the family of all fuzzy subsets of X, then
[x ∈ Ã] := Ã(x).

(3) If X is the universe of discourse, then
[∀x�(x)] := infx∈X [�(x)].

In addition, the truth valuation rules for some derived formulae are

(1) [¬�] := [� −→ 0] = 1− [�],
(2) [�←→ �] := [(� −→ �) ∧ (� −→ �)],
(3) [�∧· �] := [¬(� −→ ¬�)] = max(0, [�] + [�] − 1),

(4) [∃x�(x)] := [¬∀x¬�(x)] = supx∈X [�(x)],
(5) If Ã, B̃ ∈ �(X), then

(a) [Ã ⊆ B̃] := [∀x(x ∈ Ã −→ x ∈ B̃)] = infx∈X min(1, 1− Ã(x)+ B̃(x)),
(b) [Ã ≡ B̃] := [(Ã ⊆ B̃) ∧ (B̃ ⊆ Ã)],
(c) [Ã ≡̇ B̃] := [(Ã ⊆ B̃)∧· (B̃ ⊆ Ã)].
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Second, we give the following definitions and results in fuzzifying topology which are useful in the rest of the present
paper.

Definition 2.1 (Ying [21]). Let X be a universe of discourse, � ∈ �(P (X)) satisfy the following conditions:

(1) �(X) = �(∅) = 1,
(2) for any A, B ∈ P(X), �(A ∩ B)��(A) ∧ �(B),

(3) for any {A� ∈ P(X) : � ∈ �}, �(⋃�∈� A�)�
∧

�∈� �(A�).

Then � is a fuzzifying topology and (X, �) is a fuzzifying topological space.

Definition 2.2 (Ying [21]). The family of all fuzzifying closed sets, denoted by F ∈ �(P (X)), is defined as A ∈ F :=
(X − A) ∈ �, where X − A is the complement of A.

Definition 2.3 (Ying [21]). Let x ∈ X. The neighborhood system of x, denoted by Nx ∈ �(P (X)), is defined as
Nx(A) = supx∈B⊆A �(B).

Definition 2.4 (Lemma 5.2. [21]). The closure Cl(A) or Ā of A defined as
Cl(A)(x) = 1−Nx(X − A).

In Theorem 5.3 [21] Ying proved that the closure Cl : P(X) −→ �(X) is a fuzzifying closure operator (see Definition
5.3 [21]) since its extension Cl : �(X) −→ �(X), Cl(Ã) =⋃�∈[0,1] �Cl(Ã�), Ã ∈ �(X), where Ã� = {x : Ã(x)��}
is the �-cut of A and �Ã = � ∧ Ã(x) satisfies the following Kuratowski closure axioms:

(1) � Cl(∅) = ∅,
(2) for any Ã ∈ �(X), � Ã ⊆ Cl(Ã),

(3) for any Ã, B̃ ∈ �(X), � Cl(Ã ∪ B̃) = Cl(Ã) ∪ Cl(B̃),

(4) for any Ã ∈ �(X), � Cl(Cl(Ã)) ⊆ Cl(Ã).

Definition 2.5 (Ying [22]). For any A ∈ P(X), the interior of A, denoted by Int(A) ∈ �(P (X)), is defined as
Int(A)(x) = Nx(A).

Definition 2.6 (Khedr et al. [12]). For any Ã∈�(X), � Int(Ã) ≡ X − Cl(X − Ã).

Lemma 2.1 (Khedr et al. [12]). If [Ã ⊆ B̃] = 1, then (1) � Cl(Ã) ⊆ Cl(B̃), and (2) � Int(Ã) ⊆ Int(B̃).

Lemma 2.2 (Khedr et al. [12]). Let (X, �) be a fuzzifying topological space. For any Ã ∈ �(X),

(1) � X − Cl(Int(Ã)) ≡ Int(Cl(X − Ã)), and
(2) � X − Int(Cl(Ã)) ≡ Cl(Int(X − Ã)).

Lemma 2.3 (Khedr et al. [12]). If [Ã ⊆ B̃] = 1, then � Cl(Int(Ã)) ⊆ Cl(Int(B̃)).

Definition 2.7 (Ying [23]). Let (X, �) and (Y, �) be two fuzzifying topological spaces. A unary fuzzy predicate C ∈
�(YX) called fuzzifying continuity, is given as

C(f ) := ∀U(U ∈ � −→ f−1(U) ∈ �).

Definition 2.8 (Zahran [24]). The family of all fuzzifying regular open sets, denoted by �R ∈ �(P (X)), is defined as
A ∈ �R := A ≡ Int(Cl(A)), i.e.,

[A ∈ �R] = min

(
inf
x∈A (Int(Cl(A)(x))), inf

x∈X−A
(1− Int(Cl(A)(x)))

)
.

Definition 2.9 (Zahran [24]). The family of all fuzzifying regular closed sets, denoted by FR ∈ �(P (X)), is defined
as A ∈ FR := (X − A) ∈ �R.
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Definition 2.10 (Zahran [24]). Let x ∈ X. The fuzzifying regular neighborhood system of x is denoted by NR
x ∈

�(P (X)) and defined as A ∈ NR
x := ∃B((B ∈ �R) ∧ (x ∈ B ⊆ A)), i.e., NR

x (A) = supx∈B⊆A �R(B).

Theorem 2.1 (Zahran [24]). The mapping NR : X −→ �N(P (X)), x �−→ NR
x , where �N(P (X)) is the set of all

normal fuzzy subsets of P(X) has the following properties:

(1) for any x, A, � A ∈ NR
x −→ x ∈ A,

(2) for any x, A, B, � A ⊆ B −→ (A ∈ NR
x −→ B ∈ NR

x ),
(3) for any x, A, � A ∈ NR

x −→ ∃C((C ∈ NR
x ) ∧ (C ⊆ A) ∧ ∀y(y ∈ C −→ C ∈ NR

y )).

Definition 2.11 (Zahran [24]). The fuzzifying regular closure, denoted by ClR(A) ∈ �(X), is defined as x ∈
ClR(A) := ∀B((B ⊇ A) ∧ (B ∈ FR) −→ x ∈ B), i.e., ClR(A)(x) = infx /∈B⊇A (1− FR(B)).

Lemma 2.4 (Zahran [24]). ClR(A)(x) = 1−NR
x (X − A).

Definition 2.12 (Ying [22]). For any A ⊆ X, the boundary of A, denoted by b(A), is defined as x ∈ b(A) := (x /∈
Int(A) ∧ x /∈ Int(X − A)), i.e., b(A)(x) = min(1− Int(A)(x), 1− Int(X − A)(x)).

Lemma 2.5 (Ying [22]). Cl(A) = A ∪ b(A).

Definition 2.13. The family of all fuzzifying semi-open (resp., pre-open) sets is denoted by �S [12] (resp., �P [1])
∈ �(P (X)), and defined as A ∈ �S = infx∈A Cl(Int(A)(x)) (resp., A ∈ �P = infx∈A Int(Cl(A)(x))).

Definition 2.14. The family of all fuzzifying semi-closed (resp., pre-closed) sets is denoted by FS [12] (resp., FP [1])
∈ �(P (X)), and defined as A ∈ FS = (X − A) ∈ �S (resp., A ∈ FP = (X − A) ∈ �P ).

Lemma 2.6 (Ying [23]). Let C̃, D̃ ∈ �(Y ) and f ∈ YX, then � (C̃ ⊆ D̃) −→ (f−1(C̃) ⊆ f−1(D̃)).

3. Regular open set

The following lemma gives the relationship between the regular open set, the pre-open set and the semi-open set in
fuzzifying topology.

Lemma 3.1. Let (X, �) be a fuzzifying topological space. Then for any A, we have

(1) � A ∈ �R ←→ (A ∈ �P ∧ A ∈ FS),

(2) � A ∈ FR ←→ A ≡ Cl(Int(A)),

(3) � A ∈ FR ←→ (A ∈ �S ∧ A ∈ FP ).

Proof. It is clear. �

Definition 3.1. Let (X, �) be a fuzzifying topological space. The fuzzifying regular derived set of A, denoted by
dR(A) ∈ �(X), is defined as x ∈ dR(A) := ∀B(B ∈ NR

x −→ (B ∩ (A − {x}) �= ∅)), i.e., dR(A)(x) =
infB∩(A−{x})=∅ (1−NR

x (B)).

Lemma 3.2. (1) � dR(A)(x) = 1−NR
x ((X − A) ∪ {x}), and

(2) � dR(∅) ≡ ∅.

Proof. (1) It is similar to the proof of Lemma 5.1 [21].
(2) From (1) above and since NR

x is normal we have

dR(∅)(x) = 1−NR
x ((X − ∅) ∪ {x}) = 1−NR

x (X) = 1− 1 = 0. �

Theorem 3.1. For any A ∈ P(X), � A ∈ FR −→ dR(A) ⊆ A.



A.M. Zahran et al. / Fuzzy Sets and Systems 158 (2007) 409–423 413

Proof.

[dR(A) ⊆ A] = inf
x∈X−A

(1− dR(A)(x))

= inf
x∈X−A

NR
x ((X − A) ∪ {x})

= inf
x∈X−A

NR
x ((X − A))

= inf
x∈X−A

sup
x∈B⊆X−A

�R(B)��R(X − A) = [A ∈ FR]. �

Theorem 3.2. For any x, A,

(1) � ClR(∅) ≡ ∅,
(2) � A ⊆ ClR(A),

(3) � x ∈ ClR(A)←→ ∀B(B ∈ NR
x −→ A ∩ B �= ∅),

(4) � ClR(A) ≡ A ∪ dR(A),

(5) � A ∈ FR −→ A ≡ ClR(A),

(6) � B ≡̇ ClR(A) −→ B ∈ FR.

Proof.
(1) ClR(∅)(x) = 1−NR

x (X − ∅) = 1− 1 = 0.

(2) For any A ∈ P(X) and x ∈ X, if x /∈ A, then NR
x (A) = 0.

If x ∈ A, then ClR(A)(x) = 1−NR
x (X − A) = 1− 0 = 1. Then [A ⊆ ClR(A)] = 1.

(3), (4) are immediate from Lemma 2.4.
(5) From Theorem 3.1 and (4) above we have

� A ∈ FR −→ dR(A) ⊆ A←→ A ≡ A ∪ dR(A)←→ A ≡ ClR(A).

(6) It is similar to the proof of Theorem 2.1 [22]. �

Definition 3.2. Let (X, �) be a fuzzifying topological space and A ⊆ X. The fuzzifying regular interior of A ∈ P(X),

denoted by IntR(A) ∈ �(X), is given as x ∈ IntR(A) := A ∈ NR
x , i.e., IntR(A)(x) = NR

x (A).

Theorem 3.3. Let (X, �) be a fuzzifying topological space. Then for any x, A, B, we have

(1) � IntR(A) ≡ X − ClR(X − A),

(2) � IntR(X) ≡ X,

(3) � IntR(A) ⊆ A,

(4) � B ≡̇ IntR(A) −→ B ∈ �R,

(5) � B ∈ �R ∧ B ⊆ A −→ B ⊆ IntR(A),

(6) � A ∈ �R −→ A ≡ IntR(A),

(7) � x ∈ IntR(A)←→ (x ∈ A) ∧ (x ∈ (X − dR(X − A))).

Proof.
(1) Follows from Lemma 2.4.
(2) IntR(X) = NR

x (X) = 1, because NR
x is normal.

(3) Using Theorem 3.2 (2) and (1) above we have

IntR(A)(x) ≡ (X − ClR(X − A))(x)�(X − (X − A))(x) = A(x).

(4) and (5) are similar to the proof of Theorem 2.2 (1) and (2) [22], respectively.
(6) From (3) above we have

[A ≡ IntR(A)] =min

(
inf
x∈A IntR(A)(x), inf

x∈X−A
(1− IntR(A)(x))

)
= inf

x∈A IntR(A)(x) = inf
x∈A NR

x (A)��R(A) = [A ∈ �R].
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(7) If x /∈ A, then by Theorem 2.1 (1) NR
x (A) = 0. Hence [x ∈ IntR(A)] = 0 = [(x ∈ A)∧ (x ∈ (X−dR(X−A)))].

If x ∈ A, then [x ∈ A] = 1 So,

[(x ∈ A) ∧ (x ∈ (X − dR(X − A)))] = [1− dR(X − A)(x)] = [1− (1−NR
x (A ∪ {x}))]

= [NR
x (A)] = [x ∈ IntR(A)]. �

Definition 3.3. For any A ⊆ X, the fuzzifying regular boundary set of A, denoted bR(A) ∈ �(X), is defined as
x ∈ bR(A) := x ∈ ClR(A) ∧ x ∈ ClR(X − A), i.e.,

bR(A)(x) = min(ClR(A)(x), ClR(X − A)(x)).

Lemma 3.3. For any x, A,

� x ∈ bR(A)←→ (∀B)(B ∈ NR
x −→ (B ∩ A �= ∅) ∧ (B ∩ (X − A)) �= ∅).

Proof. It is similar to the proof of Lemma 2.1 [22]. �

Theorem 3.4. For any A,

(1) � ClR(A) ≡ A ∪ bR(A) and so � A ∈ FR −→ bR(A) ⊆ A,

(2) � IntR(A) ≡ A ∩ (X − bR(A)) and so � A ∈ �R −→ bR(A) ∩ A ≡ ∅.

Proof. (1) If x ∈ A, then from Theorem 3.2 (2) we have [ClR(A)(x)] = [(A ∪ bR(A))(x)] = 1.

If x /∈ A, then

[(A ∪ bR(A))(x)] = [bR(A)(x)] = min(ClR(A)(x), ClR(X − A)(x)) = [ClR(A)(x)].
Therefore, from Theorems 3.1 and 3.2(4) we have

� A ∈ FR −→ dR(A) ⊆ A←→ (A ⊆ A) ∧ (dR(A) ⊆ A)←→ (A ∪ dR(A) ⊆ A)←→ ClR(A) ⊆ A

←→ (A ∪ bR(A)) ⊆ A←→ (A ⊆ A) ∧ (bR(A) ⊆ A)←→ bR(A) ⊆ A.

(2) From Theorem 3.3(1) and (1) above we have

IntR(A) = X − ((X − A) ∪ bR(X − A)) = A ∩ (X − bR(A)).

Also, from Theorem 3.3(6) we obtain

� A ∈ �R −→ IntR(A) ≡ A←→ A ∩ (X − bR(A)) ≡ A←→ A ⊆ X − bR(A)←→ bR(A) ∩ A ≡ ∅. �

4. Regular convergence

Definition 4.1. Let (X, �) be a fuzzifying topological space. The class of all nets in X is denoted by N(X) = {S|S :
D −→ X, where (D, �) is a directed set}.

Definition 4.2. The binary fuzzy predicates �R,∝R∈ �(N(X)×X), are defined as follows:

S �R x := ∀A(A ∈ NR
x −→ S ⊂∼ A), S ∝R x := ∀A(A ∈ NR

x −→ S �∼ A), S ∈ N(X),

where [S �R x] stands for the degree to which S regular converges to x and [S ∝R x] stands for the degree to which x
is a regular accumulation point of S.

Also, ⊂∼ and �∼ are the binary crisp predicates “almost in’’ and “often in’’, respectively.

Definition 4.3. The fuzzy sets,

lim
R

S(x) = [S �R x] and adh
R

S(x) = [S ∝R x]
are called regular limit and regular adherence sets of S, respectively.
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Theorem 4.1. For any x, A, S,

(1) � ∃S((S ⊆ A− {x}) ∧ (S �R x)) −→ x ∈ dR(A),

(2) � ∃S((S ⊆ A) ∧ (S �R x)) −→ x ∈ ClR(A),

(3) � A ∈ FR −→ ∀S(S ⊆ A −→ limR S ⊆ A),

(4) � ∃T ((T < S) ∧ (T �R x)) −→ S ∝R x, where S ⊆ A and T < S stand for S is all in A and T is a subnet of S,

respectively.

Proof. (1) We know that [S �R x] = infS �⊂∼ A (1−NR
x (A)). Also,

[∃S((S ⊆ A− {x}) ∧ (S �R x))] = sup
S∈N(X), S⊆A−{x}

inf
B∈P(X), S �⊂∼ B

(1−NR
x (B)).

Since for any S ∈ N(X) such that S ⊆ A − {x}, one can prove that S � ⊂∼ (X − A) ∪ {x}, as follows: suppose
S ⊂∼ (X − A) ∪ {x}. Then there exist m ∈ D and n ∈ D such that n�m and S(n) ∈ (X − A) ∪ {x}. So, S(n) /∈
X − ((X − A) ∪ {x}) = A− {x}. Thus S �⊆ A− {x}. Therefore,

sup
S∈N(X), S⊆A−{x}

inf
B∈P(X), S �⊂∼ B

(1−NR
x (B)) � sup

S∈N(X), S⊆A−{x}
(1−NR

x ((X − A) ∪ {x}))

= 1−NR
x ((X − A) ∪ {x}) = [x ∈ dR(A)].

(2) If x ∈ A, then the result holds. If x /∈ A, then from (1) above and Theorem 3.2 (4) we have

[ClR(A)(x)] = [dR(A)(x)] � [∃S((S ⊆ A− {x}) ∧ (S �R x))]
= [∃S((S ⊆ A) ∧ (S �R x))],

because A = A− {x}.
(3)

[
∀S(S ⊆ A −→ lim

R
S ⊆ A)

]
= inf

S⊆A
inf

x∈X−A

(
1− inf

S �⊂∼ B

(1−NR
x (B))

)
= inf

S⊆A
inf

x∈X−A
sup

S �⊂∼ B

NR
x (B).

So, from (2) above and Theorem 3.2 (5) we have

[A ∈ FR] � [A ≡ ClR(A)] = [ClR(A) ⊆ A]
= [X − A ⊆ X − ClR(A)] = inf

x∈X−A
(1− ClR(A)(x))

� inf
x∈X−A

(
1− sup

S⊆A

inf
S �⊂∼ B

(1−NR
x (B))

)

= inf
x∈X−A

inf
S⊆A

sup
S �⊂∼ B

NR
x (B)

=
[
∀S
(

S ⊆ A −→ lim
R

S ⊆ A

)]
.

(4) Set �S = {A : S ��∼ A} and 	T = {A : T � ⊂∼ A}. Then for any T < S (for the definition of the subnet see [11]),
one can deduce that �S ⊆ 	T as follows. Suppose T = S ◦K. If S ��∼ A, then there exists m ∈ D such that S(n) /∈ A

when n�m, where � directs the domain D of S. Now, we will show that T � ⊂∼ A. If not, then there exists p ∈ E such
that T (q) ∈ A when q �p, where � directs the domain E of T . Now, for p ∈ E and q �p we have K(q)�m, because
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T < S. Moreover, since S ��∼ A and K(q)�m, we have S(K(q)) /∈ A. But S(K(q)) = T (q) ∈ A. They are contrary.
Hence, �S ⊆ 	T . Therefore

[∃T ((T < S) ∧ (T �R x))] = sup
T <S

inf
T �⊂∼ A

(1−NR
x (A))

= sup
T <S

inf
A∈	T

(1−NR
x (A))� inf

A∈�S

(1−NR
x (A))

= inf
S ��∼ A

(1−NR
x (A)) = [S ∝R x]. �

Lemma 4.1. � (S �R x)←→ ∀A(x ∈ A ∈ �R −→ S ⊂∼ A).

Proof. If B ⊆ A and S � ⊂∼ A then S � ⊂∼ B. Therefore

[S �R x] = inf
S �⊂∼ A

(1−NR
x (A)) = 1− sup

S �⊂∼ A

NR
x (A)

= 1− sup
S �⊂∼ A

sup
x∈B⊆A

�R(B)�1− sup
S �⊂∼ B, x∈B

�R(B)

= inf
S �⊂∼ B, x∈B

(1− �R(B)) = [∀B(x ∈ B ∈ �R −→ S ⊂∼ B)]
= [∀A(x ∈ A ∈ �R −→ S ⊂∼ A)].

Conversely, since NR
x (A)��R(A), then we have

[∀A(x ∈ A ∈ �R −→ S ⊂∼ A)] = inf
S �⊂∼ A, x∈A

(1− �R(A))� inf
S �⊂∼ A

(1−NR
x (A)) = [S �R x]. �

In the following theorem we prove that a universal net in a fuzzifying topological space regular converges to each
of its fuzzifying regular accumulation points.

Theorem 4.2. If S is a universal net, then

� lim
R

S ≡ adh
R

S.

Proof. For any net S ∈ N(X) and any A ∈ P(X) one can obtain that if S � ⊂∼ A, then S ��∼ A. Suppose S is a universal
net in X and S ��∼ A. Then, S ⊂∼ X − A. So, one can deduce that S � ⊂∼ A because S ⊂∼ X − A if and only if there exists
m1 ∈ D such that for every n ∈ D, n�m1, S(n) ∈ X − A if and only if there exists m1 ∈ D such that for every
n ∈ D, n�m1, S(n) /∈ A if and only if S � ⊂∼ A. Hence for any universal net S in X, we have

lim
R

S(x) = inf
S �⊂∼ A

(1−NR
x (A)) = inf

S ��∼ A

(1−NR
x (A)) = adh

R
S(x). �

Theorem 4.3. Let D and Em be directed sets for each m ∈ D. Consider the directed set H = D×∏m∈D Em. Suppose
that S̄ = {s̄(m) : m ∈ D} ∈ N(X), S(m) = {s(m, n) : n ∈ Em} ∈ N(X) and S ◦ R(m, f ) = {S(m, f (m)) : (m, f ) ∈
H } ∈ N(X). Then,

�∀m((m ∈ D) −→ (S(m) �R S̄(m))) ∧ (S̄ �R x) −→ S ◦ R �R x.

Proof. From Lemma 4.1, we have

[∀m((m ∈ D) −→ (S(m) �R S̄(m))) ∧ (S̄ �R x)]
=
(

1− sup
m∈D

sup
S(m) �⊂∼ A, S̄(m)∈A

�R(A)

)
∧
(

1− sup
S̄ �⊂∼ A, x∈A

�R(A)

)

= 1−
((

sup
m∈D

sup
S(m) �⊂∼ A, S̄(m)∈A

�R(A)

)
∨
(

sup
S̄ �⊂∼ A, x∈A

�R(A)

))
.
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Also, we have [S ◦ R �R x] = 1− supS◦R �⊂∼ A, x∈A �R(A). Therefore, the proof is obtained if we can show that

1−
((

sup
m∈D

sup
S(m) �⊂∼ A, S̄(m)∈A

�R(A)

)
∨
(

sup
S̄ �⊂∼ A, x∈A

�R(A)

))
�1− sup

S◦R �⊂∼ A, x∈A
�R(A),

i.e., (
sup
m∈D

sup
S(m) �⊂∼ A, S̄(m)∈A

�R(A)

)
∨
(

sup
S̄ �⊂∼ A, x∈A

�R(A)

)
� sup

S◦R �⊂∼ A, x∈A
�R(A).

Suppose supS◦R �⊂∼ A, x∈A �R(A) > t. Then there exists A◦ such that x ∈ A◦, S ◦ R � ⊂∼ A◦ and �R(A◦) > t. Hence, for
any (m, f ) ∈ H there exists (n, g) ∈ H such that (n, g)�(m, f ) and S ◦ R(n, g) = S(n, g(n)) /∈ A◦. So, for any
m ∈ D, S(m) � ⊂∼ A◦ and we have

Case 1. If there exists m◦ ∈ D such that S̄(m◦) ∈ A◦, then(
sup
m∈D

sup
S(m) �⊂∼ A, S̄(m)∈A

�R(A)

)
∨
(

sup
S̄ �⊂∼ A, x∈A

�R(A)

)
� sup

S(m◦) �⊂∼ A, S̄(m◦)∈A
�R(A)��R(A◦) > t.

Case 2. If for any m ∈ D, S̄(m) /∈ A◦, then S̄ � ⊂∼ A◦. Also,

sup
S̄ �⊂∼ A, x∈A

�R(A)��R(A◦) > t. Hence, we always have

(
sup
m∈D

sup
S(m) �⊂∼ A, S̄(m)∈A

�R(A)

)
∨
(

sup
S̄ �⊂∼ A, x∈A

�R(A)

)
> t. �

5. Regular filter convergence

Definition 5.1. Let F(X) be the set of all filters on X. The binary fuzzy predicates �R,∝R∈ �(F (X) × X), are,
respectively, defined as follows:

K �R x := ∀A(A ∈ NR
x −→ A ∈ K),

K ∝R x := ∀A(A ∈ K −→ x ∈ ClR(A)), K ∈ F(X).

Definition 5.2. The fuzzy sets,

lim
R

K(x) = [K �R x] and adh
R

K(x) = [K ∝R x].
are called regular limit and regular adherence sets of K, respectively.

Theorem 5.1. (1) If S ∈ N(X) and KS is the filter corresponding to S, i.e., KS = {A : S ⊂∼ A}, then

(a) � limR KS = limR S, and
(b) � adhRKS = adhR S.

(2) If K ∈ F(X) and SK is the net corresponding to K, i.e., SK : D −→ X, (x, A) �−→ x, (x, A) ∈ D, where
D = {(x, A) : x ∈ A ∈ K}, (x, A)�(y, B) if and only if A ⊆ B, then

(a) � limR SK = limR K, and
(b) � adhRSK = adhRK.

Proof. (1) For any x ∈ X, we have

(a)
lim
R

KS(x) = inf
A/∈KS

(1−NR
x (A)) = inf

S �⊂∼ A

(1−NR
x (A)) = lim

R
S(x).
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(b)

adh
R

KS(x)= inf
A∈KS

ClR(A)(x) = inf
S ⊂∼ A

(1−NR
x (X − A))

= inf
S ��∼ (X−A)

(1−NR
x (X − A)) = adh

R
S(x).

(2) (a) First we prove that SK ⊂∼ A if and only if A ∈ K. If A ∈ K, then A �= ∅ and so there exists at least an element
x ∈ A. So for (x, A) ∈ D and (y, B) ∈ D such that (y, B)�(x, A), B ⊆ A and so SK(y, B) = y ∈ B ⊆ A. Thus
SK ⊂∼ A.

Conversely, suppose SK ⊂∼ A. Then there exists (y, B) ∈ D such that (z, C)�(y, B) and we have SK(z, C) ∈ A.

So for every z ∈ B, (z, B)�(y, B) and SK(z, B) = z ∈ A implies B ⊆ A. Then A ∈ K. Thus, A /∈ K if and only if
SK ⊂∼ A. Now,

lim
R

SK(x) = [SK �R x] = inf
S �⊂∼ A

(1−NR
x (A)) = inf

A/∈K (1−NR
x (A)) = lim

R
K(x).

(b) First we prove that X−A ∈ K if and only if SK ��∼ A. Suppose SK ��∼ A. Then there exists (z, B) ∈ D such that for
every (y, C) ∈ D with (y, C)�(z, B), SK(y, C) /∈ A. Now, for every x ∈ B, (x, B)�(z, B) and SK(x, B) = x /∈ A,

i.e., B ∩ A = ∅ so B ⊆ X − A and then X − A ∈ K.

Conversely, suppose X−A ∈ K then X−A �= ∅ and thus it contains at least an element x. Now, for any (z, C) ∈ D

such that (z, C)�(x, X − A), one can have that SK(z, C) = z /∈ A. Hence, SK ��∼ A. Now,

adh
R

SK(x) = [SK ∝R x] = inf
SK ��∼ A

(1−NR
x (A)) = inf

X−A∈K ClR(X − A) = inf
B∈K ClR(B)(x) = adh

R
K(x).

�

6. Completely continuous functions and R-map

Definition 6.1. Let (X, �), (Y, �) be two fuzzifying topological spaces. A unary fuzzy predicate CC ∈ �(YX) called
fuzzifying completely continuous functions, is given as follows:

CC(f ) := (∀U)(U ∈ � −→ f−1(U) ∈ �R).

Intuitively, the degree to which f is fuzzifying completely continuous function is

[CC(f )] = inf
U⊆Y

min(1, 1− �(U)+ �R(f−1(U))).

Definition 6.2. Let (X, �), (Y, �) be two fuzzifying topological spaces. For any f ∈ YX, we set
(1) �1(f ) = ∀B(B ∈ FY

� −→ f−1(B) ∈ FX
R ), where FY

� is the set of all fuzzifying closed subset of Y and FX
R is

the set of all fuzzifying regular closed subset of X.

(2) �2(f ) = (∀x)(∀U)(U ∈ Nf (x) −→ f−1(U) ∈ NR
x ), where Nf (x) is the fuzzifying neighborhood system of

f (x) of Y and NR
x is the fuzzifying regular neighborhood system of x of X.

(3) �3(f ) = (∀x)(∀U)(U ∈ Nf (x) −→ ∃V ((f (V ) ⊆ U) ∧ (V ∈ NR
x ))),

(4) �4(f ) = (∀A)(f (ClXR (A)) ⊆ ClY (f (A))),

(5) �5(f ) = (∀B)(ClXR (f−1(B)) ⊆ f−1(ClY (B))),

(6) �6(f ) = (∀A)(f−1(Int(A)) ⊆ IntR(f−1(A))),

(7) �7(f ) = (∀A)(f (bX
R (A)) ⊆ f (A) ∪ b(f (A))),

(8) �8(f ) = (∀x)(∀S)((S ∈ N(X)) ∧ (S �R x) −→ f ◦ S � f (x)).

Theorem 6.1.
(1) � f ∈ CC ←→ f ∈ �1,

(2) � f ∈ CC −→ f ∈ �2,

(3) � f ∈ �2 ←→ f ∈ �i , i = 3, . . . , 6,
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(4) � f ∈ �4 −→ f ∈ �7,

(5) � f ∈ �2 −→ f ∈ �8.

Proof. (1) We prove that � f ∈ CC ←→ f ∈ �1

[f ∈ �1] = inf
B∈P(Y )

min(1, 1− FY
� (B)+ FX

R (f−1(B)))

= inf
B∈P(Y )

min(1, 1− �(Y − B)+ �R(X − f−1(B)))

= inf
B∈P(Y )

min(1, 1− �(Y − B)+ �R(f−1(Y − B)))

= inf
U∈P(Y )

min(1, 1− �(U)+ �R(f−1(U))) = [f ∈ CC].

(2) To prove that f ∈ CC −→ f ∈ �2. Suppose that Nf (x)(U)�NR
x (f−1(U)). Then we obtain that min(1, 1 −

Nf (x)(U)+NR
x (f−1(U))) = 1. Therefore, the result holds. Now, suppose that Nf (x)(U) > NR

x (f−1(U)). We prove
that

min(1, 1−Nf (x)(U)+NR
x (f−1(U)))�CC(f ).

If f (x) ∈ A ⊆ U, then x ∈ f−1(A) ⊆ f−1(U). So

Nf (x)(U)−NR
x (f−1(U)) = sup

f (x)∈A⊆U

�(A)− sup
x∈B⊆f−1(U)

�R(B)� sup
f (x)∈A⊆U

�(A)− sup
f (x)∈A⊆U

�R(f−1(A))

� sup
f (x)∈A⊆U

(�(A)− �R(f−1(A))).

Then 1−Nf (x)(U)+NR
x (f−1(U))� inff (x)∈A⊆U (1− �(A)+ �R(f−1(A))).

So

min(1, 1−Nf (x)(U)+NR
x (f−1(U))) � inf

f (x)∈A⊆U
min(1, 1− �(A)+ �R(f−1(A)))

� inf
V∈P(Y )

min(1, 1− �(V )+ �R(f−1(V ))) = CC(f ).

Hence,

inf
x∈X inf

U∈P(Y )
min(1, 1−Nf (x)(U)+NR

x (f−1(U)))�[f ∈ CC].

(3) We will prove that � f ∈ �2 ←→ f ∈ �3. From Theorem 2.1 (2) we have

sup
V∈P(X),f (V )⊆U

NR
x (V ) = sup

V∈P(X),V⊆f−1(U)

NR
x (V ) = NR

x (f−1(U)).

Then,

�3(f )= inf
x∈X inf

U∈P(Y )
min(1, 1−Nf (x)(U)+ sup

V∈P(X),f (V )⊆U

NR
x (V ))

= inf
x∈X inf

U∈P(Y )
min(1, 1−Nf (x)(U)+NR

x (f−1(U)) = �2(f ).

(4) We will prove that � f ∈ �4 ←→ f ∈ �5. First, for any B ⊆ Y one can deduce that

[f−1(f (ClXR (f−1(B)))) ⊇ ClXR (f−1(B))] = 1, [ClY (f (f−1(B))) ⊆ ClY (B)] = 1

and [f−1(ClY (f (f−1(B)))) ⊆ f−1(ClY (B))] = 1.

So, from Lemma 2.6 we have

[ClXR (f−1(B)) ⊆ f−1(ClY (B))] � [f−1(f (ClXR (f−1(B)))) ⊆ f−1(ClY (B))]
� [f−1(f (ClXR (f−1(B)))) ⊆ f−1(ClY (f (f−1(B))))]
� [f (ClXR (f−1(B))) ⊆ ClY (f (f−1(B)))],
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Therefore,

�5(f ) = inf
B∈P(Y )

[ClXR (f−1(B)) ⊆ f−1(ClY (B))]
� inf

B∈P(Y )
[f (ClXR (f−1(B))) ⊆ ClY (f (f−1(B)))]

� inf
A∈P(X)

[f (ClXR (A)) ⊆ ClY (f (A))] = �4(f ).

Second, for each A ⊆ X, there exists B ⊆ Y, such that f (A) = B, and f−1(B) ⊇ A.

Hence, [ClXR (f−1(B)) ⊆ f−1(ClY (B))]�[ClXR (A) ⊆ f−1(ClY (f (A)))]. So,

�4(f ) = inf
A∈P(X)

[ClXR (A) ⊆ f−1(ClY (f (A)))]
� inf

B∈P(Y ),B=f (A)
[ClXR (f−1(B)) ⊆ f−1(ClY (B))]

� inf
B∈P(Y )

[ClXR (f−1(B)) ⊆ f−1(ClY (B))] = �5(f ).

(5) We prove that � f ∈ �5 ←→ f ∈ �2.

�5(f )= inf
B∈P(Y )

[ClXR (f−1(B)) ⊆ f−1(ClY (B))]
= inf

B∈P(Y )
inf
x∈X min(1, 1− (1−NR

x (X − f−1(B)))+ (1−Nf (x)(Y − B)))

= inf
B∈P(Y )

inf
x∈X min(1, 1−Nf (x)(Y − B)+NR

x (f−1(Y − B)))

= inf
U∈P(Y )

inf
x∈X min(1, 1−Nf (x)(U)+NR

x (f−1(U))) = �2(f ).

(6) We prove that � f ∈ �6 ←→ f ∈ �2.

�6(f )= inf
A⊆Y

inf
x∈X min(1, 1− Int(A)(f (x))+ IntR(f−1(A))(x))

= inf
A⊆Y )

inf
x∈X min(1, 1−Nf (x)(A)+NR

x (f−1(A))) = �2(f ).

(7) From Lemma 2.5 we have

�7(f ) = [(∀A)(f (bX
R (A)) ⊆ f (A) ∪ b(f (A)))]

= [(∀A)(f (ClXR (A) ∩ ClXR (X − A)) ⊆ ClY (f (A)))]
� [(∀A)(f (ClXR (A)) ⊆ ClY (f (A)))] = �4(f ).

(8) We prove that [�2(f )]�[�8(f )], it suffices to show that for any x ∈ X and S ∈ N(X),

min(1, 1− [S �R x] + [f ◦ S � f (x)])�[�2(f )],
because

[�8(f )] = inf
x∈X inf

S∈N(X)
min(1, 1− [S �R x] + [f ◦ S � f (x)]).

In fact, if [S �R x]�[f ◦ S � f (x)], it is obvious. Assume [S �R x] > [f ◦ S � f (x)]. Since f ◦ S � ⊂∼ B implies
S � ⊂∼ f−1(B), then

[S �R x] − [f ◦ S � f (x)] = inf
A∈P(X), S �⊂∼A

(1−NR
x (A))− inf

B∈P(Y ), f ◦S �⊂∼B

(1−Nf (x)(B))

� inf
B∈P(Y ), f ◦S �⊂∼B

(1−NR
x (f−1(B)))− inf

B∈P(Y ), f ◦S �⊂∼B

(1−Nf (x)(B))

� sup
B∈P(Y ), f ◦S �⊂∼B

(Nf (x)(B)−NR
x (f−1(B))),
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So,

min(1, 1− [S �R x] + [f ◦ S � f (x)]) � inf
B∈P(Y ),f ◦S �⊂∼B

min(1, 1−Nf (x)(B)+NR
x (f−1(B)))

� inf
x∈X inf

U∈P(Y )
min(1, 1−Nf (x)(U)+NR

x (f−1(U))) = [�2(f )].

�

Remark 6.1. In crisp setting, one can have � f ∈ CC −→ f ∈ C.

But this statement may not be true in general in fuzzifying topology as illustrated by the following counterexample.

Counterexample 6.1. Let X = {a, b, c} and � be a fuzzifying topology on X defined as �(X) = �(∅) = �({a}) =
�({a, c}) = 1, �({b}) = �({a, b}) = 0 and �({c}) = �({b, c}) = 1

8 . Consider the identity function f from (X, �) onto
(X, �) where � is a fuzzifying topology on X defined as follows:

�(A) =
{

1, A ∈ {X,∅, {a, b}},
0 otherwise.

So, we have [CC(f )] = 1
8 > 0 = [C(f )].

Definition 6.3. Let (X, �), (Y, �) be two fuzzifying topological spaces. A unary fuzzy predicate CR ∈ �(YX) called
fuzzifying R-map is given as follows:

CR(f ) := (∀U)(U ∈ �R −→ f−1(U) ∈ �R).

Intuitively, the degree to which f is fuzzifying R−map is

[CR(f )] = inf
U⊆Y

min(1, 1− �R(U)+ �R(f−1(U))).

Definition 6.4. Let (X, �), (Y, �) be two fuzzifying topological spaces. For any f ∈ YX, we set
(1) �1(f ) = ∀B(B ∈ FY

R −→ f−1(B) ∈ FX
R ), where FX

R and FY
R is the set of all fuzzifying regular closed subset

of X and Y, respectively.
(2) �2(f ) = (∀x)(∀U)(U ∈ NR

f (x) −→ f−1(U) ∈ NR
x ), where NR

x is fuzzifying regular neighborhood system of x

of X and NR
f (x) is fuzzifying regular neighborhood system of f (x) of Y.

(3) �3(f ) = (∀x)(∀U)(U ∈ NR
f (x) −→ ∃V ((f (V ) ⊆ U) ∧ (V ∈ NR

x ))),

(4) �4(f ) = (∀A)(f (ClXR (A)) ⊆ ClYR(f (A))),

(5) �5(f ) = (∀B)(ClXR (f−1(B)) ⊆ f−1(ClYR(B))),

(6) �6(f ) = (∀A)(f−1(IntR(A)) ⊆ IntR(f−1(A))),

(7) �7(f ) = (∀A)(f (bX
R (A)) ⊆ f (A) ∪ bR(f (A))),

(8) �8(f ) = (∀x)(∀S)((S ∈ N(X)) ∧ (S �R x) −→ f ◦ S �R f (x)).

Theorem 6.2.
(1) � f ∈ CR ←→ f ∈ �1,

(2) � f ∈ CR −→ f ∈ �2,

(3) � f ∈ �2 ←→ f ∈ �i , i = 3, . . . , 6,

(4) � f ∈ �4 −→ f ∈ �7,

(5) � f ∈ �2 −→ f ∈ �8.

Proof. It is similar to the proof of Theorem 6.1. �

Remark 6.2. In crisp setting, one can have � f ∈ CC −→ f ∈ CR.

But this statement may not be true in general in fuzzifying topology as illustrated by the following counterexample.



422 A.M. Zahran et al. / Fuzzy Sets and Systems 158 (2007) 409–423

Counterexample 6.2. Let X = {a, b, c} and � be a fuzzifying topology on X defined as �(X) = �(∅) = 1, �({a}) =
�({a, b}) = 1

8 , �({b}) = 1
3 and = �({c}) = �({a, c}) = �({b, c}) = 1

4 . Consider the function f from (X, �) onto (X, �),
where � is a fuzzifying topology on X defined as �(X) = �(∅) = 1, �({a}) = 1

3 , �({b}) = �({c}) = �({a, c}) =
�({b, c}) = 1

4 and �({a, b}) = 1
2 . And the function f is defined as f (a) = b, f (b) = c and f (c) = a.

So, we have [CC(f )] = 5
6 > 3

4 = [CR(f )].

7. Decompositions of fuzzy continuity in fuzzifying topology

Theorem 7.1. Let (X, �), (Y, �), (Z, 
) be three fuzzifying topological spaces. For any f ∈ YX, g ∈ ZY ,

(1) � CC(f ) −→ (C(g) −→ CC(g ◦ f )), and
(2) � C(g) −→ (CC(f ) −→ CC(g ◦ f )).

Proof.
(1) If [C(g)]�[CC(g ◦ f )], the result holds, if [C(g)] > [CC(g ◦ f )], then

[C(g)] − [CC(g ◦ f )] = inf
v∈P(Z)

min(1, 1− 
(v)+ �(g−1(v)))

− inf
v∈P(Z)

min(1, 1− 
(v)+ �R((g ◦ f )−1(v)))

� sup
v∈P(Z)

(�(g−1(v))− �R((g ◦ f )−1(v)))

= sup
v∈P(Z)

(�(g−1(v))− �R(f−1(g−1(v))))

� sup
u∈P(Y )

(�(u)− �R(f−1(u)))

Therefore,

[C(g) −→ CC(g ◦ f )] = min(1, 1− [C(g)] + [CC(g ◦ f )])
� inf

u∈P(Y )
min(1, 1− �(u)+ �R(f−1(u))) = [CC(f )].

(2)

[C(g) −→ (CC(f ) −→ CC(g ◦ f ))] = [C(g) −→ ¬(CC(f )∧· ¬(CC(g ◦ f )))]
= [¬(C(g)∧· ¬¬(CC(f )∧· ¬(CC(g ◦ f ))))]
= [¬(C(g)∧· CC(f )∧· ¬(CC(g ◦ f )))]
= [¬(CC(f )∧· C(g)∧· ¬(CC(g ◦ f )))]
= [¬(CC(f )∧· ¬¬(C(g)∧· ¬(CC(g ◦ f ))))]
= [CC(f ) −→ ¬(C(g)∧· ¬(CC(g ◦ f )))]
= [CC(f ) −→ (C(g) −→ CC(g ◦ f ))]. �

Theorem 7.2. Let (X, �), (Y, �), (Z, 
) be three fuzzifying topological spaces. For any f ∈ YX, g ∈ ZY ,

(1) � CR(f ) −→ (C(g) −→ CR(g ◦ f )), and
(2) � C(g) −→ (CR(f ) −→ CR(g ◦ f )).

Proof. It is similar to the proof of Theorem 7.1. �
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8. Concluding remarks

This paper is a continuation of [18,24]. In the framework of fuzzifying topology, we introduced the concepts of
regular derived set, regular interior, regular boundary, regular convergence, completely continuous function and R-
map, studied some of their properties and some fundamental results in classical topology were generalized. In Theorem
4.3, we considered the class of all functions S such that S(m, n) is defined whenever m belongs to a directed set D
and n belongs to a directed set Em and supposed that S(m, n) is a member of a fuzzifying topological space, we could
find a net R such that S ◦ R regular converges to existed iterated limit. We proved by counterexamples that some
statements, which are true in classical topology, are not true in fuzzifying topology (counterexamples 6.1 and 6.2).
To conclude, we hope to point out that another continuation of this paper is to deal with regular separation axioms
and nearly compactness in fuzzifying topological spaces. Further, we hope to study this work and paper [24] in the
framework of bifuzzy topological spaces mentioned in [21].
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