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Abstract 

From quasi t-norms and quasi t-conorms we give methods to generate new quasi t-norms 
and new quasi-t-conorms. Furthermore, between ∧ (resp. ∨) and every quasi t-norm (resp. quasi 

t-conorm) f (resp. )∗f  it is proved the existence of finite sequences of quasi t-norms (resp. quasi t-

conorms) lies between ∧ (resp. ∨) and f (resp. ).∗f  Finally, we give some special cases of complete 
residuated lattice valued-logic. 

1. Introduction 

In [6], it was showed a number of examples of existing and proposed t-norms 
and t-conorms and their pictorial representations were made with the aid of a 
computer. Moreover, averaging operators were summarized and their pictorial 
representations were made. In [7], the author proposed quasi t-norms and 
quasi t-conorms which are derived from t-(co)norms and do not necessarily 
satisfy the associativity. Also, compensatory operators were summarized and 
generalized compensatory operators were defined which could be obtained 
from averaging operators. Furthermore, selfdual operators were discussed 
which could be obtained by using t-norms, t-conorms and averaging operators. 
We remark that these methods are valid to generate quasi t-norms and quasi 
t-conorms from old quasi t-norms and quasi t-conorms. Furthermore, we give 
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methods to generate quasi t-norms from quasi t-norms and to generate quasi 
t-conorms from quasi t-conorms. We prove that between ∧ and any quasi 
tnorm ,∧≠f  there exist denumerable number of finite sequences of quasi t-

norms and between ∗f  and ∨, there exist denumerable number of finite 
sequences of quasi t-conorms. Finally, we point out that for each quasi t-norm 

〉〈 R
fIfIf ,,,,, ∨∧  is a complete residuated lattice valued-logic, where R

fI  is 

the residuated fuzzy implication induced by f. 

Algebraically speaking, t-norms are binary operations on the closed unit 
interval [ ]1,0  such that ([ ] )≤,,1,0 T  is commutative, totally ordered semigroup 
with neutral element [2]. The term triangular norm appeared for the first 
time (with slightly different axioms) in [5]. The following set of independent 
axioms for triangular norms goes back to Schweizer and Sklar [12-16]. 

Definition 1.1. A triangular norm (briefly t-norm) is a binary operation 
T on the unit interval [ ]1,0  which is commutative, associative, monotone and 

has 1 as neutral element, i.e., it is a function [ ] [ ] [ ]1,01,01,0: →×T  such that 
for all [ ] :1,0,, ∈zyx  

(T1) ( ) ( ),,, xyTyxT =  

(T2) ( ( )) ( ( ) ),,,,, zyxTTzyTxT =  

(T3) ( ) ( )zxTyxT ,, ≤  whenever ,zy ≤  

(T4) ( ) .1, xxT =  

Since a t-norm is an algebraic operation on the unit interval [ ],1,0  some 
authors (e.g., in [8]) prefer to use an infix notation like yx ∗  instead of the 
prefix notation ( )., yxT  In fact, some of the axioms (T1)-(T4) then look more 
familiar: for all [ ] :1,0,, ∈zyx  

(T1) ,xyyx ∗=∗  

(T2) ( ) ( ) ,zyxzyx ∗∗=∗∗  

(T3) zxyx ∗≤∗  whenever ,zy ≤  

(T4) .1 xx =∗  
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Throughout this paper, we shall consistently use both prefix and infix notations. 
Since t-norms are obviously extensions of the Boolean conjunction, they are 
usually used as interpretations of the conjunction ∧ in [0, 1]-valued and fuzzy 
logics. There exist uncountable many t-norms. In [3, Section 4] some 
parameterized families of t-norms are presented which are interesting from 
different points of view. The following are the four basic t-norms [4], namely, 
the minimum ,MT  the product ,PT  the Łukasiewicz t-norm ,LT  and the drastic 
product ,DT  which are given, respectively: 

( ) ( ),,min, yxyxTM =  

( ) ,, yxyxTP ⋅=  

( ) ( ),1,0max, −+= yxyxTL  and 

( ) ( ) [ [ [ [
( )⎩

⎨
⎧ ×∈

=
.otherwise,min

,1,01,0,if0
,

yx
yx

yxTD  

These four basic t-norms are remarkable for several reasons. The drastic 
product DT  and the minimum MT  are the smallest and the largest t-norm, 
respectively (with respect to the pointwise order). The minimum MT  is the 
only t-norm where each [ ]1,0∈x  is an idempotent element, whereas the 
product PT  and the Łukasiewicz t-norm LT  are prototypical examples of two 
important subclasses of t-norms, namely, of the classes of strict and nilpotent 
t-norms, respectively. It should be mentioned that the t-norms ,,, LpM TTT  

and DT  were denoted by WM ,, ∏  and Z, respectively, in [16]. 

The boundary condition (T4) and monotonicity (T3) were given in their 
minimal form. Together with (T1) it follows that, for all [ ],1,0∈x  each t-norm 
satisfies: 

( ) ( ) ,00,,0 == xTxT  

( ) .,1 xxT =  

Therefore, all t-norms coincide on the boundary of the unit square [ ] [ ].1,01,0 ×  
The monotonicity of a t-norm T in its second component (T3) is, together with 
commutativity (T1), equivalent to the (joint) monotonicity in both components, 
i.e., to ( ) ( )2211 ,, yxTyxT ≤  whenever 21 xx ≤  and .21 yy ≤  
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Definition 1.2. A function [ ] [ ] [ ]1,01,01,0: →×f  which satisfies, for all 
[ ],1,0,, ∈zyx  the properties (T1), (T3) and (T4) is called a quasi-t-norm. 

Clearly, each t-norm is a quasi-t-norm, but not vice versa. For example, 
( ) ( )yxyxyxyxQ −+=,  is a quasi-t-norm, but it is not t-norm because it does 

not satisfy (T2). Also, all quasi-t-norms coincide on the boundary of the unit 
square [ ] [ ].1,01,0 ×  As we stated before, (T4) and (T3) together with (T1) 
implies ( ) ( ) ( ) .,1,00,,0 xxTxTxT ===  Furthermore, ( ) ( )2211 ,, yxTyxT ≤  
whenever 21 xx ≤  and .21 yy ≤  The authors in [4] gave the following definition. 

Definition 1.3. If for two quasi-t-norms 1T  and ,2T  we have ( ) ≤yxT ,  
( )yxT ,2  for all ( ) [ ] [ ],1,01,0, ×∈yx  we say that 1T  is weaker than 2T  or, 

equivalently, that 2T  is stronger than 1T  and we write .21 TT ≤  

Since quasi-t-norms are just functions from the unit square into the unit 
interval, the comparison of quasi-t-norms is done in the usual way, i.e., 
pointwise. In [4] triangular conorms were introduced as dual operations of 
t-norms. The authors in [6] gave the following an independent axiomatic 
definition. 

Definition 1.4. A triangular conorm (t-conorm for short) is a binary 
operation [ ] [ ] [ ]1,01,01,0: →×S  satisfies for any [ ] :1,0,, ∈zyx  

(S1) ( ) xxS =0,  (existence of a unit 0); 

(S2) ( ) ( )yxSyxSxx ,, ′′≤′⇒′′≤′  (monotonicity); 

(S3) ( ) ( )xySyxS ,, =  (commutativity); 

(S4) ( ( )) ( ( ) )zyxSSzySxS ,,,, =  (associativity); 

(S5) ( ) 1,1 =xS  (existence of 1). 

From an algebraic point of view, a t-conorm defines a semigroup on [ ]1,0  with 
a unit 0 and a zero 1 and the semigroup operation is order preserving and 
commutative. 

The following are the four basic t-conorms. The maximum ,MS  the probabilistic 
sum ,PS  the Lukasiewicz t-conorm or the bounded sum ,LS  and the drastic 
sum ,DS  which are given by, respectively. 
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( ) ( ),,max, yxyxSM =  

( ) ,, yxyxyxSP ⋅−+=  

( ) ( ),1,min, yxyxSL +=  and 

( )
( ) ] ] ] ]

( )⎩
⎨
⎧ ×∈

=
.otherwise,max

,1,01,0,if1
,

yx
yx

yxSD  

The t-conorms LPM SSS ,,  and DS  were denoted by ∗∗∗ ∏ WM ,,  and ,∗Z  
respectively, in [16]. 

Definition 1.5. The binary operations [ ] [ ] [ ]1,01,01,0:, →×∗ff  are dual 

if and only if for every ( ) [ ] [ ] ( ) ( ).1,11,,1,01,0, yxfyxfyx −−−=×∈ ∗  

Obviously, ( ) ( ) ( )LLPpMM STSTST ,,,,,  and ( )DD ST ,  are pairs of t-norms 
and t-conorms which are mutually dual to each other. 

In fuzzy logics, t-conorms are usually used as an interpretation of the 
disjunction ∨. 

Definition 1.6. A function [ ] [ ] [ ]1,01,01,0: →×∗f  which satisfies for any 
[ ],1,0,, ∈zyx  the properties (S1)-(S3) and (S5) is called a quasi t-conorm. 

For convenience, we make some explanations and conventions of notation 
for complete residuated lattice-valued logic. For details, we refer to [1, 9-11]. 

Definition 1.7. A residuated lattice is an algebric structure ,,,, ∧∨≤= L  
1,0,, ρ⊗  such that: 

(i) 1,0,,,, ∧∨≤L  is a lattice with smallest element 0 and greatest 
element 1; 

(ii) 1,, ⊗L  is an abelian monoid; 

(iii) The binary operation ⊗ is isotone in both variables. That is, for any 
,, 21 Laa ∈  if ,21 aa ≤  then .,, 2121 Lbababbaba ∈⊗≤⊗⊗≤⊗  

(iv) The binary operation ρ is antitone in the first variable and isotone in 
the second one. That is, for any Laa ∈21,  with ,21 aa ≤  then baba ρ≤ρ 12  
and .,21 Lbabab ∈ρ≤ρ  

(v) The adjunction condition cba ≤⊗  if and only if cba ρ≤  holds for 
every .,, Lcba ∈  
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Note that: 

(1) The binary operation ⊗ is interpreted as the product in L. Sometimes 
this operation is also called many-valued conjunction, strong conjunction or 
bold conjunction (to differentiate it from the lattice g. l. b. ∧). 

(2) The operation ρ is called residum (with respect to ⊗). From a logical 
point of view ρ denotes the implication connective. 

(3) The pair ( )ρ⊗,  satisfying the adjunction property (v) is said to be an 
adjoin couple. 

(4) Consider the structure ,1,0,,,,, ⊗≤ ∧∨L  where ⊗ is the product in L. 

Define ( ) { }bxaxbaI ≤⊗= |, ∨  for every ., Lba ∈  ( )baI ,  is the residuated 

implication generated by the product ⊗. The pair ( )I,⊗  is an adjion couple. 

2. Generated Quasi t-Norms and Quasi t-Conorms 

The author in [6] gave many examples of t-norms and t-conorms of which 
we list the most interesting ones in the following table. 

t-norm t-conorm 
(1) (Logical product) ( )yxyx ,min=∧   (1)′ (Logical sum) ( )yxyx ,max=∨  

(2) (Hamacher product) yxyx
yxx
−+

=  (2)′ (Hamacher sum) xy
xyyxyx

−
−+= 1

2  

(3) (Algebraic product) yxyx =⋅  (3)′ (Algebraic sum) yxyxyx −+=+  

(4) (Einstein product) ( )( )yxx
yxyx

−−+
=⋅ 11  (4)′ (Einstein sum) yx

yxyx
+
+=+ 1  

(5) (bounded product) ( )10 −+= yxyx ∨ :  (5)′ (bounded sum) ( )yxyx +=⊕ ∧1  

(6) (drastic product) 
⎪⎩

⎪
⎨

⎧

<
=
=

=
1,,0

1,
1,

yx
xy
yx

yx ∧   (6)′ (drastic sum) 
⎪⎩

⎪
⎨

⎧

>
=
=

=
0,,0

0,
0,

yx
xy
yx

yx ∨�  

(7) (strict t-norm) 

⎥⎦
⎤

⎢⎣
⎡ π+π

π
= − yxyTx 2

1cot2
1cotcot2 1

7  

(7)′ (strict t-conorm) 

⎥⎦
⎤

⎢⎣
⎡ π+π

π
= − yxySx 2

1tan2
1tantan2 1

7  

(8) (nilpotent t-norm)  

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −π+π

π
= − 012

1sin2
1sinsin2 1

8 ∨yxyTx   

(8)′ (nilpotent t-conorm)  

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −π+π

π
= − 012

1cos2
1coscos2 1

8 ∨yxySx

 
(9) (nilpotent t-conorm) 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ π+π

π
= − 12

1cos2
1coscos2 1

9 ∧yxyTx  

(9)′ (nilpotent t-norm) 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ π+π

π
= − 12

1sin2
1sinsin2 1

9 ∧yxySx  
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In the following ∗∗∗ hgf ,,  are the dual of .,, hgf  

Definition 2.1. For any [ ] [ ] [ ],1,01,01,0:,, →×hgf  the binary operations 

[ ] [ ] [ ]1,01,01,0:, ,, →×∗f
hg

f
hg QQ  are defined as follows: 

( ) ( ( ) ( )) ( ) ( ( ) ( )).,,,,,,,,, ,, yxhyxgfyxQyxhyxgfyxQ f
hg

f
hg

∗∗∗∗ ==  

Theorem 2.1. (1) gf ≤  if and only if .∗∗ ≥ gf  

(2) f
hgQ ,  and f

hgQ∗
,  are dual. 

(3) If g and h are quasi t-norms, then ∧
hgQ ,  and ∨

hgQ ,  are quasi t-norms. 

(4) If g and h are quasi t-conorms, then ∧
hgQ ,  and ∨

hgQ ,  are quasi t-conorms. 

(5) If gf ,  and h are quasi t-norms, then f
hgQ ,  is quasi t-norm and f

hgQ∗
,  is 

quasi t-conorms. 

Proof. (1) Suppose that ( ) [ ] [ ].1,01,0, ×∈yx  Then gf ≤  if and only if 
( ) ( )yxgyxf ,, ≤  if and only if ( ) ( )yxgyxf −−≤−− 1,11,1  if and only if 

( ) ( )yxgyxf −−−≥−−− 1,111,11  if and only if ( ) ( )yxgyxf ,, ∗∗ ≥  if and 

only if .∗∗ ≥ gf  

(2) ( ) ( ( ) ( ))yxhyxgfyxQf
hg ,,,,, =  

( ( ) ( ))yxhyxgf ,1,,11 −−−= ∗  

( ( ) ( ))yxhyxgf −−−−−= ∗∗∗ 1,1,1,11  

( ).1,11 , yxQ f
hg −−−= ∗  

(3) We have ( ) ( ) ( ) ( ) ( ) ( ).,,,,,, ,, yxQxyhxygyxhyxgyxQ hghg
∧∧ =∧=∧=  

Also, if ,, 2121 yyxx ≤≤  then ( ) ( ) ( ) ( )22111111, ,,,, yxgyxhyxgyxQ hg ≤=∧ ∧   

( ) ( ).,, 22,22 yxQyxh hg
∧=∧  Furthermore, ( ) ( ) ( ) xxxhxgxQ hg ∧∧ ==∧ 1,1,1,,  

x=  and ( ) ( ) ( ) .0000,0,0,, ===∧ ∧∧ xhxgxQ hg  Hence, ∧
hgQ ,  is quasi 

t-norm. By a similar way, we prove that ∨
hgQ ,  is quasi t-norm. 
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(4) The commutativity and monotonicity of ∧
hgQ ,  and ∨

hgQ ,  are easily 

shown. Now, ( ) ( ) ( ) ( ) ( )0,0,;1111,1,1, ,, xgxQxhxgxQ hghg ==== ∧∧ ∧∧  

( ) ( ) ( ) ( ) ( ) ====== ∨∨ 0,;1111,1,1,;0000, ,, xQxhxgxQxh hghg ∨∨∧∧  

( ) ( ) .0000,0, == ∨∨ xhxg  

(5) (a) Since g and h are commutative and isotone one can have that 
f

hgQ ,  has the same properties. Now, ( ) ( ( ) ( )) ( )1,1,,1,1,, xfxhxgfxQf
hg ==  

x=  and ( ) ( ( ) ( )) ( ) .0,01,,0,0,, === xfxhxgfxQf
hg  

(b) By a similar procedure to (a) we can prove that f
hgQ∗

,  is a quasi t-conorm. 

Remark 2.1. (1) Theorem 2.1(4) strengthen M. Mizumoto result which is 
given as follows: 

For each t-norms f and g and for each t-conorm f
hgQh ,,  is a quasi t-norm and 

f
hgQ∗

,  is a quasi t-conorm. 

(2) Theorem 2.1(2), (3) has a significant meaning if g and h are not 
comparable. 

Theorem 2.2. (1) For each commutative binary operation [ ] [ ]1,01,0: ×f  
[ ]1,0→  we have, 

(a) ,, fQ f =∨∧  (b) .,
∗∗

∨∧ = fQ f  

(2) For each [ ] [ ] [ ]1,01,01,0:, →×hg  such that hg ≤  we have, 

(a) ,, gQ hg =∧  (b) .,
∗∧∗ = gQ hg  

(3) For each [ ] [ ] [ ]1,01,01,0:, →×hf  satisfies the condition: ( ) =1,xf  
( ) ( ) ( ) ,0,00,;0,0; === xgxgxfx  then we have 

(a) ,, gQf
g ≤∨�  (b) .,

∗∗
∨ ≥ gQ f

g �  

(4) If [ ] [ ] [ ],1,01,01,0:, →×hf  satisfies the condition: ( ) ( )xfxxf ,0;1, =  
( ) ( ) ,11,,1;0 === xhxh  then we have 

(a) ,, ⋅∧ =
⋅

∧f
hQ  (b) ., ∨�=∗

∧⋅

f
hQ  
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(5) If [ ] [ ] [ ]1,01,01,0: →×f  such that ( ) ,, xyxf ≤  then for every hg,  
III ×∈  we have 

(a) ;, gQf
hg ≤  (b) .,

∗∗ ≥ gQ f
hg  

(6) If [ ] [ ] [ ],1,01,01,0:, →×hf  such that ( ) ( ) fxyxhyyxh ,,,, ≥≥  is 
commutative and isotone in the second variable, then we have 

(a) ;, fQf
h ≤∧  (b) .,

∗∗
∧ = fQ f

h  

Proof. Since (b) in every statement follow from (a) it suffices to prove (a). 

(1) (a) ( ) ( ).,,, yxyxfyxQ f ∨∧=∨∧  If ,yx ≤  then ( ) ( )yxfyxQ f ,,, =∨∧  

and if ,yx ≥  then ( ) ( ) ( ).,,,, yxfxyfyxQ f ==∨∧  

(2) (a) ( ) ( ) ( ) ( ).,,,,, yxgyxhyxgyxQ hg ==∧ ∧  

(3) (a) If ,0, >yx  then ( ) ( ( ) ) ( ( ) ) ===∨ 1,,,,,, yxgfyxyxgfyxQ f
g ∨��  

( )., yxg  If 0=x  or ,0=y  then ( ) ( ( ) ) ( )yxfyxyxgfyxQ f
g ∨∨ ��� ,0,,,, ==∨  

( ).,0 yxg==  

(4) (a) If ,1, <yx  then ( ) ( ( )) ( ( )) 0,,0,,,, ===
⋅∧

⋅

yxhfyxhyxfyxQ f
h ∧  

.yx
⋅

= ∧  If 1=x  or ,1=y  then ( ) ( ) .1,,, yxyxyxQ f
h ⋅⋅∧ ==

⋅

∧∧  

(5) (a) ( ) ( ( ) ( )) ( ).,,,,,, yxgyxhyxgfyxQ f
hg ≤=  

(6) (a) If ,yx ≤  then ( ) ( ( )) ( ).,,,,, yxfyxhxfyxQ f
h ≥=∧  If ,yx ≥  then 

( ) ( ( )) ( ) ( ).,,,,,, yxfxyfyxhyfyxQ f
h =≥=∧  

Corollary 2.1 (1) For each quasi t-norm f we have (a) ;, fQ f =∨∧  (b) 

.,
∗∗

∨∧ = fQ f  

(2) For each quasi t-norm g and for each quasi t-conorm h we have (a) 
;, gQ hg =∧  (b) .,

∗∧∗ = gQ hg  
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(3) For any quasi t-norms gf ,  we have (a) ;, gQ f
g =∨�  (b) .,

∗
∨ = gQ f

g �  

(4) For each quasi t-norm f and for each quasi t-conorm h we have (a) 
;, ∧=∧

f
hQ  (b) ., ∨�=

⋅
∧
f

hQ  

(5) For each quasi t-norms gf ,  and for each quasi t-conorm h we have (a) 

;, gQf
hg ≤  (b) .,

∗∗ ≥ gQ f
hg  

(6) For each quasi t-norm f and for each quasi t-conorm h we have (a) 
;, fQf

h ≥∧  (b) .,
∗∗

∧ = fQ f
h  

Proof. The proof is obtained from Theorem 2.2 (for (2) we remark that: 
( ) ( ),,, yxgyxyxyxh ≥≥≥ ∧∨  i.e. ).hg ≤  

3. Finite Sequences of Quasi t-Norms Lies Between ∧  and any 
Quasi t-Norms ∧≠f  

Theorem 3.1. Let f be any quasi t-norm with .∧≠f  Then 

(a) ∨∧ ≤=≤≤≤≤≤≤≤= ∨∧∧⊕∧+∧+∧∧∧∨∧
ff

S
ffff

S
ff QQQQQQQQf �� ,,,11,,,,, 97

 

.,,,,11,,,, 79
∗∗

∨∧
∗
∧

∗
∧

∗
+∧

∗
+∧

∗
⊕∧

∗
∧∨∧ =≤≤≤≤≤≤≤= fQQQQQQQQ fff

S
ffff

S
f

��  

(b) .,,,,,, 88
∗∗

∨∧
∗
∧

∗
⊗∧⊕∧∧∨∧ =≤≤≤≤≤= fQQQQQQf ff

S
fff

S
f  

Proof. (a) It follows from Corollary 2.1(1), (3), Theorem 2.1(2) and since 
∨∨ ≥≥≥+≥+≥⊕≥≥ 79 11 SS ��  (see [6]). 

(b) It follows from Corollary 2.1(1), Theorem 2.1(2) and since ∨≥≥⊕ 8S  
(see [6]). 

Theorem 3.2. There exist denumerable number of finite sequences of quasi 
t-norms lies between ∧  and any quasi t-norm ∧≠f  and there exist denumerable 
number of finite sequences of quasi t-conorms lies between any quasi t-conorm 

∨≠∗f  and .∨  

Proof. The first finite sequence 1H  of quasi t-norms lies between ∧  and 

f, and the first finite sequence 1M  of quasi t-conorms lies between ∨  and ∗f  
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are indicated from Theorem 3.1(a) as follows: ,,, 11,,,1 9
fff

S QQQH +∧⊕∧∧=  

ff
S

f QQQ ,,, ,,
7 ∧∧+∧ �  and  .,,,,,

97 ,,11,,,,1
f
S

ffff
S

f QQQQQQM ∗
∧

∗
⊕∧

∗
+∧

∗
+∧

∗
∧

∗
∧= �  It is 

clear that we use 1H  to construct .1M  Now, we use 1M  to construct 2H  and 
use 2H  to construct 2M  as follows: applying Corollary 2.1(5) (a), we obtain 

≤≤≤≤≤≤≤= ∗
∧
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Now, for each ,Nn ∈  there exists 5+n  quasi t-norms lies between ∧  and f, 

and 5+n  quasi t-conorms lies between and ∗f  and .∨  It is clear that this 
statement is true if .1=n  Suppose that this statement is true for any n and 
we prove that this statement is true for .1+n  Suppose 51 ,, += nn ffH …  

and .,, 15
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+= ffM nn …  Thus ≤≤≤≤≤≤= ∗∗
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Theorem 3.3. For any quasi t-norms R
fLfIf ,,,,, ∧∨  is a complete 

residuated lattice valued logic, where R
fL  is the residuated fuzzy implication 

induced by f and defined by: ( )
( )

.sup,
,,

zyxL
yzxfIz

R
f

≤∈
=  

Proof. (1) ∧∨,,I  is a complete lattice whose least and greatest element 
are 0 and 1, respectively. 

(2) f is isotone. 

(3) If ,21 yy ≤  then ( )
( ) ( )

( ).,supsup, 2
,,,,

1
21

yxLzzyxL R
f

yzxfIzyzxfIz

R
f =≤=

≤∈≤∈
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Thus R
fL  is isotone in the second variable. 

(4) 1,, fI  is a commutative monoid because f is commutative and for 
every ( ) .1,, xxfIx =∈  

(5) f and R
fL  are couple as ( ) zyxf ≤,  if and only if ( )xyLx R

f ,≤  because 

( ) zyxf ≤,  if and only if ( ) zxyf ≤,  if and only if ( )., xyLx R
f≤  

Conclusion 

This paper is concerned with triangular norms (t-norms), an important 
notion in the semantics of fuzzy logic. Essentially, a triangular norm provides 
a semantic for fuzzy conjunction from which the other operators can be derived. 

The paper shows the following results: 

(1) Certain simple operations can be used to obtain new t-norms from 
existing ones. 

(2) There are quasi t-norms between any quasi t-norm and the trivial norm 
( ).,min yx  

(3) A certain construction yields a complete residuated lattice valued logic. 
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