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Some covering properties in semantic method
of continuous valued logic1
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Abstract. In this paper, some characterizations of fuzzifying semi-compactness are given, including characterizations in terms of
nets and semi-subbases. Lastly, several characterizations of locally semi-compactness in the framework of fuzzifying topology
are introduced and the mapping theorems are obtained.
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1. Introduction and preliminaries

In 1952, Rosser and Turquette [12] proposed emphat-
ically the following problem: If there are many-valued
theories beyond the level of predicate calculus, then
what are the detail of such theories? As an attempt
to give a partial answer to this problem in the case of
point-set topology, M. S. Ying in 1991–1993 [16–18]
used a semantical method of continuous-valued logic
to develop systematically fuzzifying topology. Briefly
speaking, a fuzzifying topology on a set X assigns to
each crisp subset of X a certain degree of being open,
other than being definitely open or not. Roughly speak-
ing, the semantical analysis approach transforms formal
statements of interest, which are usually expressed as
implication formulas in logical language, into some
inequalities in the truth value set by truth valuation
rules, and then these inequalities are demonstrated in
an algebraic way and the semantic validity of con-
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clusions is thus established. There are already more
than 100 papers in fuzzifying topology published in
the last two decades, we guess. But only a few papers
can properly use the semantic method introduced in
the original papers of Ying, which we strongly believe,
can provide more delicate characterization of fuzzifying
topological structure. So far, there has been significant
research on fuzzifying topologies [1, 6, 7, 13–15]. For
example, Ying [19] introduced the concepts of compact-
ness and established a generalization of Tychonoff’s
theorem in the framework of fuzzifying topology. In
[15] the concept of local compactness in fuzzifying
topology is introduced and some of its properties are
established. Generalized open sets play a very important
role in General Topology and they are now the research
topics of many topologists worldwide. Indeed a sig-
nificant theme in General Topology and Real Analysis
is the study of variously modified forms of continu-
ity, separation axioms etc. by utilizing generalized open
sets. One of the most well-known notions and also an
inspiration source is the notion of semi-open [9] sets
introduced by N. Levine. The introduction of semi-open
sets raised many basic general topological questions,
which has thus far led to a productive study in which
many new mathematical tools have been added to the
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general topology tool box, many new properties have
been defined and examined, many new gems have been
discovered for old properties, additional associated sets
and associated topologies have been introduced, exam-
ined, and utilized, and, very importantly, additional
basic general topological questions continue to arise.
Semi-compactness (or s-compactness [11]) in General
Topology was studied in [2–5]. We have no refer-
ences for locally semi-compactness. In [6] the concepts
of fuzzifying semi-open sets and fuzzifying semi-
continuity were introduced and studied. Furthermore,
two extensions of semi-open sets and semi-continuity
in fuzzifying topology were introduced in [1]. Depend-
ing on these types of semi-open sets, four types of
irresolute functions are introduced and studied in fuzzi-
fying topology. Also, the authors in [7] introduced some
concepts of fuzzifying semi-separation axioms and clar-
ified the relations of these axioms with each other as
well as the relations with other fuzzifying separation
axioms.

Based in the concept of semi-open set of N. Levine
[9], this paper introduces its generalization for fuzzi-
fying topology of M. S. Ying [16–18], and studies
respective concepts of semi-(sub)base and (local) semi-
compactness. Additionally, it provides the notion of
fuzzifying irresolute map. Thus we fill a gap in the
existing literature on fuzzifying topology. All of the
contributions in General Topology in this paper which
are not referenced may be original.

For any formula ϕ, the symbol [ϕ] means the truth
value of ϕ, where the set of truth values is the unit inter-
val [0, 1] and the only designated value is 1. We write
� ϕ if [ϕ] = 1 for any interpretation. Also, �(X) is the
family of all fuzzy sets in X. The truth valuation rules
for primary fuzzy logical formulae and corresponding
set theoretical notations are:

(a) (i) [α] = α(α ∈ [0, 1]);
(ii) [ϕ ∧ ψ] = min([ϕ], [ψ]);

(iii) [ϕ → ψ] = min(1, 1 − [ϕ] + [ψ]).
(b) If Ã ∈ �(X), then [x ∈ Ã] := Ã(x).
(c) IfX is the universe of discourse, then [∀xϕ(x)] :=∧

x∈X
[ϕ(x)].

In addition the truth valuation rules for derived
formulae are:

(a) [¬ϕ] := [ϕ → 0] = 1 − [ϕ];
(b) [ϕ ∨ ψ] := [¬(¬ϕ ∧ ¬ψ)] = max([ϕ], [ψ]);
(c) [ϕ ↔ ψ] := [(ϕ → ψ) ∧ (ψ → ϕ)];
(d) [ϕ⊗ ψ] := [¬(ϕ → ¬ψ)] = max(0, [ϕ] +

[ψ] − 1).

This means that [α] ≤ [ϕ → ψ] ⇔ [α] ⊗ [ϕ] ≤ [ψ];

(e) [∃xϕ(x)] := [¬∀x¬ϕ(x)] := ∨
x∈X

[ϕ(x)];

(f) If Ã, B̃ ∈ �(X), then
(i) [Ã ⊆ B̃] := [∀x(x ∈ Ã → x ∈ B̃)] =∧

x∈X
min(1, 1 − Ã(x) + B̃(x));

(ii) [Ã ≡ B̃] := [Ã ⊆ B̃] ∧ [B̃ ⊆ Ã].

We now give some definitions and results in fuzzifying
topology, which are useful in the rest of the present
paper.

Definition 1.1. [16]. Let X be a universe of discourse,
and τ ∈ �(P(X)) satisfy the following conditions:

(1) τ(X) = τ(∅) = 1;
(2) ∀A,B ∈ P(X), τ(A ∩ B) ≥ τ(A) ∧ τ(B);
(3) ∀{Aλ ∈ P(X) : λ ∈ �}, τ(

⋃
λ∈�

Aλ) ≥ ∧
λ∈�

τ(Aλ).

Then τ is a fuzzifying topology and (X, τ) is a fuzzify-
ing topological space.

Definition 1.2. [16]. (1) The family of all fuzzify-
ing closed sets, denoted by z ∈ �(P(X)), is defined
as A ∈ z := (X− A) ∈ τ, where X− A = Ac is the
complement of A.

(2) The neighborhood system Nx ∈ �(P(X)) of x ∈
X is defined as Nx(A) = ∨

x∈B⊆A
τ(B).

(3) The interior A◦ or Int(A) of A ⊆ X is defined as
Int(A)(x) = Nx(A).

(4) The closure Cl(A) or Ā of A is defined as
Cl(A)(x) = 1 −Nx(X− A).

Definition 1.3. [6] (1) The family of all fuzzifying
semi-open sets, denoted by τS ∈ �(P(X)), is defined as
follows: A ∈ τS := ∀x(x ∈ A → x ∈ Cl(Int(A))), i.e.,
τS(A) = ∧

x∈A
Cl(Int(A))(x).

(2) The family of all fuzzifying semi-closed sets,
denoted by zS ∈ �(P(X)), is defined as A ∈ zS :=
X− A ∈ τS.

(3) The fuzzifying semi-neighborhood system of a
point x ∈ X is denoted by NS

X

x (or NSx ) ∈ �(P(X)) and
defined as NSx (A) = ∨

x∈B⊆A
τS(B).

(4) The fuzzifying semi-closure of a set A ⊆ X,

denoted by ClS ∈ �(X), is defined as ClS(A)(x) =
1 −NSx (X− A).

(5) If (X, τ) and (Y, σ) are two fuzzifying topologi-
cal spaces and f ∈ YX, the unary fuzzy predicate CS ∈
�(YX), called fuzzifying semi-continuity, is given as
CS(f ) := ∀B(B ∈ σ → f−1(B) ∈ τS). Intuitively, the
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degree to which f is semi-continuous is [CS(f )] =∧
B⊆X

min(1, 1 − σ(B) + τS(f−1(B))).

Definition 1.4. [12] If (X, τ) is a fuzzifying topolog-
ical space and N(X) is the class of all nets in X, then
the binary fuzzy predicates �S,∝S∈ �(N(X) ×X) are
defined as T �S x := ∀A(A ∈ NSXx → T ⊂̃A), T ∝S

x := ∀A(A ∈ NSXx → T �̃A),where "T �S x" , "T ∝S

x" stand for "T semi-converges to x" , "x is a semi-
accumulation point of T ", respectively; and "⊂̃", "�̃"
are the binary crisp predicates "almost in","often in",
respectively. The degree to which x is a semi-adherence
point of T is adhST (x) = [T ∝S x].

In the following, we always assume � be the class
of all fuzzifying topological spaces.

Definition 1.5. [7] A unary fuzzy predicate T S2 ∈ �(�),
called fuzzifying semi-Hausdorffness, is given as fol-
lows:

T S2 (X, τ) = ∀x∀y((x ∈ X ∧ y ∈ X ∧ x /= y) →
∃B∃C(B ∈ NSx ∧ C ∈ NSy ∧ B ∩ C = φ)), i.e.,

[T S2 (X, τ)]=
∧

x,y∈X,x /= y

∨
B,C∈P(X),B∩C=φ

(NSx (B),NSy (C)).

Definition 1.6. [19] (1) A unary fuzzy predicate

 ∈ �(�), called fuzzifying compactness, is given as
follows: 
(X, τ) := (∀�)(K◦( �, X) −→ (∃℘)((℘ ≤
�) ∧K( ℘,A) ⊗ FF (℘))) and ifA ⊆ X, then 
(A) :=

(A, τ/A). For K, K◦ (resp. ≤ and FF ) see [16, Defi-
nition 4.4] (resp. [16, Theorem 4.3] and [19, Definition
1.1 and Lemma 1.1]).

(2) A unary fuzzy predicate fI ∈ �(�(P(X))), called
fuzzy finite intersection property, is given as fI(�) :=
∀℘((℘ ≤ �) ∧ FF (℘) → ∃x∀B(B ∈ ℘ → x ∈ B)).

Definition 1.7. [14]. (1) A fuzzifying topological space
(X, τ) is said to a be fuzzifying S-topological space if
τS(A ∩ B) ≥ τS(A) ∧ τS(B).

(2) A binary fuzzy predicate KS ∈ �(�(P(X)) ×
P(X)), called fuzzifying semi-open covering, is given
as KS( �, A) := K( �, A) ⊗ (� ⊆ τS).

(3) A unary fuzzy predicate 
S ∈ �(�), called
fuzzifying semi-compactness, is given as follows:
(X, τ) ∈ 
S := (∀�)(KS( �, X) −→ (∃℘)((℘ ≤ �) ∧
K( ℘,X) ⊗ FF (℘))) and if A ⊆ X, then 
S(A) :=

S(A, τ/A).

Definition 1.8. [14]. A unary fuzzy predicate LC ∈
�(�), called fuzzifying local compactness, is given

as follows: (X, τ) ∈ LC := (∀x)(∃B)((x ∈ Int(B) ⊗

(B, τ/B)), i.e.,

LC(X, τ) =
∧
x∈X

∨
B⊆X

max(0, N
X

x (B)+
(B, τ/B) − 1).

2. Fuzzifying semi-base and semi-subbase

Definition 2.1. Let (X, τ) be a fuzzifying topological
space and βS ⊆ τS. Then βS is called a semi-base of
τS if βS fulfils the condition: � A ∈ NSXx → ∃B((B ∈
βS) ∧ (x ∈ B ⊆ A)).

Example 2.2. LetX = {a, b, c}, and I = [0, 1]. Define
a mapping τ : P(X) −→ I on X as follows: τ(∅) =
τ(X) = 1, τ({a, c}) = 0, τ({a, b}) = 1

5 , τ({b, c}) = 1
2 ,

τ({a}) = 0, τ({b}) = 3
4 , τ({c}) = 1

2 . Then we can easily
verify that τ is a fuzzifying topology. By calculat-
ing, τS(∅) = τS(X) = 1, τS({a, c}) = 1

2 , τS({a, b}) =
3
4 , τS({b, c}) = 1

2 , τS({a}) = 0, τS({b}) = 3
4 , τS({c}) =

1
2 . If we set βS = τS, then NSx (A) = ∨x∈B⊆AτS(B) =∨
x∈B⊆A βS(B) by Definition 1.6(3). Obviously, βS is

a semi-base of τS by Definition 2.1.
The proof of the following two theorems is easy, and

we omit it.

Theorem 2.3. Let (X, τ) be a fuzzifying topolog-
ical space and βS ⊆ τS, then βS is a semi-base
of τS if and only if τS = β

(∪)
S , where β

(∪)
S (A) =∨⋃

λ∈�Bλ=A

∧
λ∈�βS(Bλ), and � is an index set.

Theorem 2.4. Let βS ∈ �(P(X)). Then βS is a semi-
base for some fuzzifying S-topology τS if and only if it
has the following properties:

(1) β
(∪)
S (X) = 1;

(2) � (A ∈ βS) ∧ (B ∈ βS) ∧ (x ∈ A ∩ B) →
∃C((C ∈ βS)∧ (x ∈ C ⊆ A ∩ B)).

Definition 2.5. ϕS ∈ �(P(X)) is called a semi-subbase
of τS if ϕ�

S is a semi-base of τS, where ϕ�
S is the finite

intersection-extension of ϕS in Zadeh’s sense, i.e.,
ϕ�
S (A) = ∨⋂

λ∈�
Bλ=A

∧
λ∈�

ϕS(Bλ), {Bλ : λ ∈ �} �

P(X), with " � " standing for "a finite subset of".

Theorem 2.6. ϕS ∈ �(P(X)) is a semi-subbase of some
fuzzifying S-topology if and only if ϕ�

S (X) = 1.
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Proof. We easily demonstrate that ϕ�
S satisfies the sec-

ond condition of Theorem 2.4, and others are obvious.
�

3. Fuzzifying irresolute mappings

The purpose of this section is to introduce and study
the concept of irresolute mappings in fuzzifying topo-
logical spaces.

Definition 3.1. Let (X, τ) and (Y, σ) be two fuzzify-
ing topological spaces and let f ∈ YX. A unary fuzzy
predicate I ∈ �(YX), called fuzzifying irresoluteness,
is given as follows:
I(f ) := ∀B(B ∈ σS → f−1(B) ∈ τS).
From [6, Theorem 3.3 (1) (a)] we haveσ(B) ≤ σS(B),

and so we have � f ∈ I → f ∈ CS.

Example 3.2. Let (X, τ) and τS are defined just as in
Example 2.2, we have that τ(B) ≤ τS(B) (∀B ∈ P(X)).
Let Y = {d}, and I = [0, 1]. Define a mapping ς :
P(Y ) −→ I on Y as follows: ς(∅) = ς(Y ) = 1, then
ς is a fuzzifying topology and ςS(∅) = ςS(Y ) = 1.
Now, define a mapping f ∈ XY by f (d) = a. Clearly,
ςS(f−1(B)) = 1 ≥ τS(B) ≥ τ(B) (∀B ∈ P(X)), so we
have � f ∈ I → f ∈ CS.

Theorem 3.3. Let (X, τ), (Y, σ) and (Z, ν) be three fuzzi-
fying topological spaces and let f ∈ YX and g ∈ ZY .
Then

(1) � I(f ) → (CS(g) → CS(g ◦ f )), (2) � CS(g) →
(I(f ) → CS(g ◦ f )).

Proof. (1) It suffices to show that [I(f )] ≤ [CS(g) →
CS(g ◦ f )]. If [CS(g)] ≤ [CS(g ◦ f )], the results holds.
If [CS(g)] ≥ [CS(g ◦ f )], then

[CS(g)] − [CS(g ◦ f )]

=
∧

V∈P(Z)

min
(

1, 1 − ν(V ) + σS(g−1(V ))
)

−
∧

V∈P(Z)

min
(

1, 1 − ν(V ) + τS(f−1(g−1(V )))
)

≤
∨

V∈P(Z)

(σS(g−1(V )) − τS(f−1(g−1(V )))).

Therefore,

[CS(g) → CS(g ◦ f )]

= min(1, 1 − [CS(g)] + [CS(g ◦ f )])

≥
∧

U∈P(Y )

min(1, 1 − σS(U) + τS(f−1(U)))

= [I(f )].

(2) Follows from (1) and the fact that [α] ≤
[ϕ → ψ] ⇔ [α] ⊗ [ϕ] ≤ [ψ].

Definition 3.4. Let (X, τ) and (Y, σ) be two fuzzifying
topological spaces and let f ∈ YX. We define the unary
fuzzy predicates ωk ∈ �(YX), where k = 1, ..., 5, as
follows:

(1) f ∈ ω1 = ∀B (B ∈ z
Y
S → f−1(B) ∈ z

X
S

)
,

where z
X
S and z

Y
S are the fuzzifying semi-closed

subsets of X and Y , respectively;
(2) f ∈ ω2 = ∀x∀U(U ∈ NSYf (x) → f−1(U) ∈

NS
X

x ), where NS
X

and NS
Y

are the family of
fuzzifying semi-neighborhood systems ofX and
Y , respectively;

(3) f ∈ ω3 = ∀x∀U(U ∈ NSYf (x) → ∃V (f (V ) ⊆
U → V ∈ NSXx ));

(4) f ∈ ω4 = ∀A (f (ClXS (A)
) ⊆ ClYS (f (A))

)
;

(5) f ∈ ω5 = ∀B(ClXS (f−1(B)) ⊆ f−1(ClYS (B))).

Theorem 3.5. � f ∈ I ↔ f ∈ ωk, k = 1, ..., 5.

Proof. The proof is similar to that of Theorem 7.2 in
[1].

Theorem 3.6. � f ∈ I → ∀x∀T (T ∈ N(X) ∧ T �S

x → f ◦ T �S f (x)).

Proof. From Theorem 3.5, the result holds if we
prove that [∀x∀T (T ∈ N(X) ∧ T �S x → f ◦ T �S

f (x))] ≥ ω3(f ). So, it suffices to show that for any
x ∈ X and T ∈ N(X),

min(1, 1 − [T �S x] + [f ◦ T �S f (x)]) ≥ ω3(f ).

The concrete proof is easy, and we omit it. �

4. Fuzzifying semi-compact spaces

Theorem 4.1. Let (X, τ) and (Y, σ) be any two fuzzifying
topological spaces and letf ∈ YX be a surjection. Then

(1) � 
S(X, τ) ⊗ CS(f ) −→ 
(f (X)),
(2) � 
S(X, τ) ⊗ I(f ) −→ 
S(f (X)).

Proof. The proofs of (1) and (2) are the same as for
Theorems 4.2 and 4.3 in [14], respectively. �
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The above theorem is a generalization of the follow-
ing corollary [2, Corollary 3.1].

Corollary 4.2. Let (X, τ), (Y, σ) be two topological
spaces and let f : (X, τ) → (Y, σ) be a surjective map-
ping. If f is semi-continuous (resp. irresolute) andX is
semi-compact, then Y is compact (resp. semi-compact).

Definition 4.3. Let (X, τ) and (Y, σ) be two fuzzify-
ing topological spaces. A unary fuzzy predicate QS ∈
�(YX), called fuzzifying semi-closedness [14], is given
as follows:

QS(f ) := ∀B(B ∈ z
Y
S → f−1(B) ∈ z

X
S ),

where z
X
S and z

Y
S are the fuzzy families of τ, σ-semi-

closed sets in X and Y , respectively.

Theorem 4.4. Let (X, τ) be a fuzzifying topologi-
cal space, (Y, σ) be a fuzzifying S-topological space
and f ∈ YX. Then � 
S(X, τ) ⊗ T S2 (Y, σ) ⊗ I(f ) −→
QS(f ).

Proof. Similar to the proof of Theorem 4.5 in [14]. �

Theorem 4.5. Let (X, τ) be a fuzzifying topological
space, ϕS be a semi-subbase of τS , and
β1 := (∀�)(KϕS (�, X) → ∃℘((℘ ≤ �) ∧

K(℘,X) ⊗ FF (℘))),
where KϕS (�, X) := K(�, X) ⊗ (� ⊆ ϕS);
β2 := (∀S)((S is a universal net in X) → ∃x((x ∈

X) ∧ (S�Sx));
β3 := (∀S)((S ∈ N(X) → (∃T )(∃x)((T < S) ∧ (x ∈

X) ∧ (T�Sx)),
where "T < S" stands for "T is a subnet of S";
β4 := (∀S)((S ∈ N(X) → ¬(adhSS ≡ φ));
β5 := (∀�)(� ∈ �(P(X)) ∧ � ⊆ zS ⊗ fI(�) →

∃x∀A(A ∈ � → x ∈ A)).
Then � (X, τ) ∈ 
S ↔ βi , i = 1, 2, ..., 5.

Proof. (1) Since ϕS ⊆ τS, [� ⊆ ϕS] ≤ [� ⊆ τS] for
any � ∈ �(P(X)). Then [KϕS (�, X)] ≤ [KS(�, X)].
Therefore 
S(X, τ) ≤ [β1].

(2) [β2] =
∧

{
∨
x∈X

[S�Sx] : S is a universal net in X}.

(2.1) Assume X is finite. We set X = {x1, ..., xm}.
For any universal net S inX, there exists i◦ ∈ {1, ..., m}
with S⊂̃{xi◦}. In fact, if not, then for any i ∈ {1, ..., m},
S /̃⊂ {xi}, S⊂̃X− {xi} and S⊂̃⋂mi=1(X− {xi}) = φ,

a contradiction. Therefore xi◦ /∈ A and NSxi◦ (A) = 0

(see [6], Theorem 7.2 (1)) provided S /̃⊂ A, and

furthermore [S�Sxi◦ ] = ∧
S /̃⊂ A

(
1 −NSxi◦ (A)

)
= 1.

Therefore, [β2] = 1 ≥ [β1].
(2.2) In general, to prove that [β1] ≤ [β2], we prove

that for any λ ∈ [0, 1], if [β2] < λ, then [β1] < λ.
Assume for any λ ∈ [0, 1], [β2] < λ. Then there exists
a universal net S in X such that

∨
x∈X[S�Sx] < λ and

for any x ∈ X, [S�Sx] = ∧
S /̃⊂ A

(
1 −NSx (A)

)
< λ,

i.e., there exists A ⊆ X with S /̃⊂ A and
NSx (A) > 1 − λ. Since ϕS is a semi-subbase of
τS, ϕ

�
S is a semi-base of τS and from Definition

2.1, we have
∨
x∈B⊆Aϕ�

S (B) ≥ NSx (A) > 1 − λ,

i.e., there exists B ⊆ A such that x ∈ B ⊆ A and∨{∧
λ∈�ϕS(Bλ) :

⋂
λ∈�Bλ = B,Bλ ⊆ X, λ ∈ �} =

ϕ�
S (B) > 1 − λ, where � is finite. Therefore, there

exists a finite set � and Bλ ⊆ X(λ ∈ �) such
that

⋂
λ∈�Bλ = B and for any λ ∈ �,ϕS(Bλ) >

1 − λ. Since S /̃⊂ A and � is finite, there
exists λ(x) ∈ � such that S /̃⊂ Bλ(x). We set
�◦(Bλ(x)) = ∨x∈XϕS(Bλ(x)). If ℘ ≤ �◦, then for
any δ > 0, ℘δ ⊆ {Bλ(x) : x ∈ X}. Consequently, for
any B ∈ ℘δ, S /̃⊂ B and S⊂̃Bc since S is a universal
net. If [FF (℘)] = 1 − inf {δ ∈ [0, 1] : F (℘δ)} = t,

then for any n ∈ w (the non-negative integer),
inf {δ ∈ [0, 1] : F (℘δ)} < 1 − t + 1

n
, and there exists

δ◦ < 1 − t + 1
n

such that F (℘δ◦). If δ◦ = 0, then
P(X) = ℘δ◦ is finite and it is proved in (2.1). If δ◦ > 0,
then for any B ∈ ℘δ◦, S⊂̃Bc. Since F (℘δ◦), we have
S⊂̃⋂{Bc : B ∈ ℘δ◦} /= φ, i.e.,

⋃
℘δ◦ /= X and there

exist x◦ ∈ X such that for any B ∈ ℘δ◦, x◦ /∈ B.
Therefore, if x◦ ∈ B, then B /∈ ℘δ◦, i.e., ℘(B) < δ◦,
K(℘,X) = ∧x∈X∨x∈B℘(B) ≤ ∨x◦∈B℘(B) ≤ δ◦ <
1 − t + 1

n
. Let n → ∞. We obtain K(℘,X) ≤ 1 − t

and [K(℘,X) ⊗ FF (℘)] = 0. In addition,
[KϕS (�◦, X)] ≥ 1 − λ. In fact, [�◦ ⊆ ϕS] = 1 and
[K(�◦, X)] = ∧x∈X∨x∈B�◦(B) ≥ ∧x∈X�◦(Bλ(x)) ≥∧
x∈XϕS(Bλ(x)) ≥ 1 − λ since x ∈ Bλ(x).

Now, we have [β1] = (∀�)(KϕS (�, X) →
∃℘((℘ ≤ �) ∧K(℘,X) ⊗ FF (℘))) ≤ KϕS (�◦, X) →
∃℘((℘ ≤ �◦) ∧K(℘,X) ⊗ FF (℘)) = min(1, 1 −
KϕS (�◦, X) +∨℘≤�◦ [K(℘,X) ⊗ FF (℘))] ≤ λ.

By noticing that λ is arbitrary, we have [β1] ≤ [β2].
(3) It is immediate that [β2] ≤ [β3].
(4) To prove that [β3] ≤ [β4], first we prove that

[∃T ((T < S) ∧ (T�Sx))] ≤ [S ∝S x], where [∃T ((T <
S) ∧ (T�Sx))]=

∨
T<S

∧
T /̃⊂ A

(
1 −NSx (A)

)
and [S ∝S

x] = ∧
S /̃� A

(
1 −NSx (A)

)
. Indeed, for any T < S one

can deduce {A : S /̃� A} ⊆ {A : T /̃⊂ A} as follows.
Suppose T = S ◦K. If S /̃� A, then there existsm ∈ D
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such that S(n) /∈ A when n ≥ m, where ≥ directs the
domain D of S. Now, we will show that T /̃⊂ A. If not,
then there existsp ∈ E such thatT (q) ∈ Awhen q ≥ p,

where ≥ directs the domain E of T . Moreover, there
exists n1 ∈ E such that K(n1) ≥ m since T < S, and
there exists n2 ∈ E such that n2 ≥ n1, p since (E,≥
) is directed. So, K(n2) ≥ K(n1) ≥ m, S ◦K(n2) /∈
A and S ◦K(n2) = T (n2) ∈ A, which is a contra-
diction. Hence {A : S /̃� A} ⊆ {A : T /̃⊂ A}. Therefore
[∃T ((T < S) ∧ (T�Sx))]=

∨
T<S

∧
T /̃⊂ A

(
1 −NSx (A)

)
=
∨
T<S

∧
{A:T /̃⊂ A}

(
1 −NSx (A)

)≤ ∧
{A:S /̃� A}

(
1−NSx (A)

)
=
∧
S /̃� A

(
1 −NSx (A)

)
= [S ∝S x]. Therefore for any

x ∈ X and S ∈ N(X), we have

[β3] =
∧

S∈N(X)

∨
x∈X

[∃T ((T < S) ∧ (T�Sx))]

≤
∧

S∈N(X)

∨
x∈X

[S ∝S x]

=
∧

S∈N(X)

¬
(∧
x∈X

(
1 − [S ∝S x]

))

=
∧

S∈N(X)

[¬(adhSS ≡ φ)] = [β4].

(5) We want to show that [β4] ≤ [β5]. For any
� ∈ �(P(X)), assume [fI(�)] = λ. Then for any δ >
1 − λ, if A1, ..., An ∈ �δ, A1 ∩ A2 ∩ ... ∩ An /= φ.

In fact, we set ℘(Ai) = ∨ni=1 �(Ai). Then ℘ ≤ �
and FF (℘) = 1. By putting ε = λ+ δ− 1 > 0,
we obtain λ− ε < λ ≤ [FF (℘) → (∃x)(∀B)(B ∈
℘ → x ∈ B)] = ∨x∈X∧x/∈B(1 − ℘(B)). There
exists x◦ ∈ X such that λ− ε <

∧
x◦ /∈B(1 − ℘(B)),

x◦ /∈ B implies ℘(B) < 1 − λ+ ε = δ and
x◦ ∈ ⋂℘δ = A1 ∩ A2 ∩ ... ∩ An. Now, we set
ϑδ = {A1 ∩ A2 ∩ ... ∩ An : n ∈ N,A1, ..., An ∈ �δ}
and S : ϑδ → X,B �→ xB ∈ B,B ∈ ϑδ and
know that (ϑδ,⊆) is a directed set and S is a
net in X. Therefore [β4] ≤ [¬(adhSS ≡ φ)] =∨
x∈X
∧
S

∼
/� A

(1 −NSx (A)). Assume [� ⊆ zS] = µ.

Then for any B ∈ P(X),�(B) ≤ 1 + zS(B) − µ, and
[� ⊆ zS ⊗ fI(�)→ (∃x)(∀A)((A ∈ �) → x ∈ A)]
= min(1, 2 − µ− λ+∨x∈X∧x/∈A(1 − �(A))). There
fore it suffices to show that for any x ∈ X,∧

S
∼
/� A

(1 −
NSx (A)) ≤ 2 − µ− λ+∧x/∈A(1 − �(A)), i.e.,∨
x/∈A�(A) ≤ 2 − µ− λ+∨

S
∼
/� A
NSx (A) for some

δ > 1 − λ. For any t ∈ [0, 1], if
∨
x/∈A�(A) > t, then

there exists A◦ such that x◦ /∈ A◦ and �(A◦) > t.

Case 1: If t ≤ 1 − λ, then t ≤ 2 − µ− λ+∨
S

∼
/� A

NSx (A).

Case 2: Let t > 1 − λ. Here we set δ = 1
2 (t + 1 − λ)

and have A◦ ∈ �δ, A◦ ∈ ϑδ. In addition, t < �(A◦) ≤
1 + zS(A◦) − µ, t + µ− 1 ≤ zS(A◦) = τS(Ac◦).
Since A◦ ∈ ϑδ, we know that SB ∈ A◦, i.e.,

SB /∈ Ac◦ when B ⊆ A◦ and S
∼
/� Ac◦. Therefore,

2 − µ− λ+ ∨
S

∼
/� A

NSx (A) ≥ 2 − µ− λ+NSx (Ac◦) ≥

2 − µ− λ+ τS(Ac◦) ≥ t + (1 − λ) ≥ t. By noticing
that t is arbitrary, we have completed the proof.

(6) To prove that [β5] = [(X, τ) ∈ 
S] see [14, The-
orem 3.3]. �

The above theorem is a generalization of the follow-
ing corollary [3, Theorems 3.3 and 3.6].

Corollary 4.6. The following are equivalent for a topo-
logical space (X, τ).

(a) X is a semi-compact space.
(b) Every cover of X by members of a semi-subbase

of τS has a finite subcover.
(c) Every universal net in X semi-converges to a

point in X.
(d) Each net in X has a subnet that semi-converges

to some point in X.
(e) Each net in X has a semi-adherent point.
(f) Each family of semi-closed sets in X that has

the finite intersection property has a non-void
intersection.

Definition 4.7. Let {(Xi, τi) : i ∈ I} be a fam-
ily of fuzzifying topological spaces,

∏
i∈IXi

be the cartesian product of {Xi : i ∈ I} and
ϕ = {p−1

i (Ui) : i ∈ I, Ui ∈ P(Xi)},where pt :
∏
i∈IXi

→ Xt(t ∈ I) is a projection. For � ⊆ ϕ,

I(�) stands for the set of indices of ele-
ments in �. The semi-base βS ∈ �(

∏
i∈IXi) of∏

i∈I (τS)i is defined as V ∈ βS := (∃�)(� �
ϕ ∧ (

⋂
� = V )) → ∀i(i ∈ I(�) → Vi ∈ (τS)i), i.e.,

βS(V ) = ∨
��ϕ,

⋂
�=V

∧
i∈I(�)

(τS)i(Vi).

Example 4.8. Let (X, τ) and τS are defined just as in
Example 2.2. Define a mapping ς : P(Y ) −→ I on
Y as follows: ς(∅) = ς(Y ) = 1, then ς is a fuzzify-
ing topology and ςS(∅) = ςS(Y ) = 1 (see Example
3.2). Hence, Y ×X = {(d, a), (d, b), (d, c)}, so ϕ =
{∅, X× Y, {(d, a)}, {(d, b)}, {(d, c)}, {(d, a), (d, b)},
{(d, b), (d, c)}, {(d, a), (d, c)}}.
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By calculating, βS(∅) = 1, βS(X× Y ) = 1, βS
({(d, a)}) = 0, βS({(d, b)}) = 3

4 , βS({(d, c)}) = 1
2 ,

βS({(d, a), (d, c)}) = 1
2 ,βS({(d, a), (d, b)}) = 3

4 , βS

({(d, b), (d, c)}) = 1
2 . According to Theorem 2.3, we

can easily obtain β(∪)
S = βS, so τS × ςS = βS.

Definition 4.9. Let (X, τ), (Y, σ) be two fuzzifying topo-
logical spaces. A unary fuzzy predicate OS ∈ �(YX),
called fuzzifying semi-openness, is given as:OS(f ) :=
∀U(U ∈ τS → f (U) ∈ σS). Intuitively, the degree to
which f is semi-open is [OS(f )] = ∧U⊆X min(1, 1 −
τS(U) + σS (f (U))).

Example 4.10. We know that (X, τ) is a fuzzi-
fying topological space (see Example 2.2) and
τS(∅) = τS(X) = 1, τS({a, c}) = 1

2 , τS({a, b}) = 3
4 ,

τS({b, c}) = 1
2 , τS({a}) = 0, τS({b}) = 3

4 , τS({c}) = 1
2 .

We set Y = X, σ = τ and f = idX, then [OS(f )] =∧
U⊆X

min(1, 1 − τS(U) + σS (f (U))) = 1.

Lemma 4.11. Let (X, τ) and (Y, σ) be two fuzzify-
ing topological spaces. For any f ∈ YX, OS(f ) :=
∀B(B ∈ βXS → f (B) ∈ σS), where βXS is a semi-base
of τS.

Lemma 4.12. For any family {(Xi, τi) : i ∈ I} of fuzzi-
fying topological spaces.

(1) � (∀i)(i ∈ I → pi ∈ OS); (2) � (∀i)(i ∈ I →
pi ∈ CS).

Theorem 4.13. Let {(Xi, τi) : i ∈ I} be a family of
fuzzifying topological spaces. Then
� ∃U(U ⊆∏i∈IXi ∧ 
S(U, τ/U) ∧ ∃x(x ∈ IntS(U))
→ ∃J(J � I ∧ ∀j(j ∈ I − J ∧ 
S(Xj, τj))).

Proof. It suffices to show that∨
U∈P(

∏
i∈IXi)

(
S(U, τ/U) ∧∨x∈∏
i∈IXi

NSx (U)) ≤∨
J�I
∧
j∈I−J
S(Xj, τj). Indeed, if∨

U∈P(
∏

i∈IXi)
(
S(U, τ/U) ∧∨x∈∏

i∈IXi
NSx (U)) >

µ > 0, then there exists U ∈ P(
∏
i∈IXi) such

that 
S(U, τ/U) > µ and
∨
x∈
∏

i∈IXi
NSx (U) > µ,

where NSx (U) = ∨x∈V⊆U
(∏

i∈I (τS)i
)

(V ). Fur-
thermore, there exists V such that x ∈ V ⊆ U and(∏

i∈I (τS)i
)

(V ) > µ. Since βS is a semi-base of

∏
i∈I (τS)i, (

∏
i∈I (τS)i)(V )

=
∨⋃

λ∈�
Bλ=V

∧
λ∈�

βS(Bλ)

=
∨⋃

λ∈�
Bλ=V

∧
λ∈�

∨
�λ�ϕ,

⋂
�λ=Bλ

∧
i∈I(�λ)

(τS)i(Vi) > µ,

where �λ = {p−1
i (Vi) : i ∈ I(�λ)}(λ ∈ �). Hence

there exists {Bλ : λ ∈ �} ⊆ P(
∏
i∈IXi) such that⋃

λ∈�Bλ = V. Furthermore, for any λ ∈ �, there
exists �λ � ϕ such that

⋂
�λ = Bλ and for any

i ∈ I(�λ), we have (τS)i(Vi) > µ. Since x ∈ V, there
exists Bλx such that x ∈ Bλx ⊆ V ⊆ U. Hence
there exists �λx � ϕ such that

⋂
�λx = Bλx

and
⋂
i∈I(�λ)p

−1
i (Vi) = Bλx ⊆∏i∈IXi and for

any i ∈ I(�λ), we have (τS)i(Vi) > µ. By⋂
i∈I(�λ)p

−1
i (Vi) = Bλx,we have pδ(Bλx ) = Vδ ⊆ Xδ,

if δ ∈ I(�λx ); pδ(Bλx ) = Xδ, if δ ∈ I − I(�λx ).
Since Bλx ⊆ U, for any δ ∈ I − I(�λx ), we
have pδ(U) ⊇ pδ(Bλx ) = Xδ and pδ(U) = Xδ.

On the other hand, since for any i ∈ I and

Ui ∈ P(Xi),
(∏

j∈I (τS)j
)(
p−1
i (Ui)

)
≥ (τS)i(Ui),

we have for any i ∈ I, I(pi) = ∧Ui∈P(Xi) min (1, 1 −
(τS)i(Ui) +∏j∈I (τS)j(p

−1
i (Ui))) = 1. Furthermore,

by Theorem 4.1,
S(U, τ/U) = 
S(U, τ/U) ⊗ I(pδ) ≤

S(Pδ(U), τδ) = 
S(Xδ, τδ) for each δ ∈ I − I(�λ).
Therefore,

∨
J�I
∧
j ∈ I − J
S(Xj, τj) ≥∧

δ∈I−I(�λ)
S(Xδ, τδ) ≥ 
S(U, τ/U) > µ. �
The above theorem is a generalization of the follow-

ing corollary.

Corollary 4.14. If there exists a coordinate semi-
neighborhood semi-compact subset U of some point
x ∈ X of the product space, then all except a finite
number of coordinate spaces are semi-compact.

Lemma 4.15. For any fuzzifying topological space
(X, τ) and A ⊆ X we have

� T S2 (X, τ) → T S2 (A, τ/A).

Lemma 4.16. For any fuzzifying S-topological space
(X, τ) we have
� T S2 (X, τ) ⊗ 
S(X, τ) → T S4 (X, τ) (for the definition
of T S4 (X, τ) see [7, Definition 3.1]).

The above lemma is a generalization of the following
corollary [10, Theorem 3.9].

Corollary 4.17. Every semi-compact semi-T2 S-
topological space is s-normal.

Lemma 4.18. For any fuzzifying S−topological
space (X, τ), � T S2 (X, τ) ⊗ 
S(X, τ) → T S3 (X, τ)(For
the definition of T S3 (X, τ) see [7, Definition 3.1]).
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The above lemma is a generalization of the following
corollary [11, Theorem 3.9].

Corollary 4.19. Every semi-compact semi-T2 S-
topological space is s-regular.

Theorem 4.20. For any fuzzifying topological space
(X, τ) and A ⊆ X we have

� T S2 (X, τ) ⊗ 
S(A) → A ∈ zS.

Proof. For any {x} ⊂ Ac, we have {x} ∩
A = φ and 
S({x}) = 1. By Theorem 4.4
in [13] [T S2 (X, τ) ⊗ (
S(A) ∧ 
S({x}))] ≤∨
G∩Hx=φ,A⊆G,x∈Hx min(τS(G), τS(Hx))). Assume

βx = {Hx : A ∩Hx = φ, x ∈ Hx},
⋃
x∈Acf (x) ⊇ Ac

and
⋃
x∈Acf (x) ∩ A = ⋃x∈Ac (f (x) ∩ A) = φ. So,⋃

x∈Acf (x) = Ac and therefore,

[T S2 (X, τ) ⊗ 
S(A)]

≤
∨

G∩Hx=φ,A⊆G,x∈Hx
τS(Hx)

≤
∧
x∈Ac

∨
A∩Hx=φ,x∈Hx

τS(Hx)

=
∨

f∈
∏
x∈Ac

βx

∧
x∈Ac

τS(f (x))

≤
∨

f∈
∏
x∈Ac

βx

τS(
⋃
x∈Ac

f (x))

=
∨

f∈
∏
x∈Ac

βx

τS(Ac) = zS(A). �

The above theorem is a generalization of the follow-
ing corollary.

Corollary 4.21. Semi-compact subspace of a semi-
Hausdorff topological space is semi-closed.

Theorem 4.22. � (X, τ) ∈ 
S → (∀B)(B ∈ zS →
(B, τ/B) ∈ 
S).

Proof. From Theorem 4.1 [13], we have for any
B ⊆ X, [
S(X, τ) ⊗ zS(B)] ≤ 
S(B). So 
S(X, τ) ≤
[zS(B) → 
S(B)]. Therefore, 
S(X, τ) ≤ [(∀B)(B ∈
zS → (B, τ/B) ∈ 
S)]. �

The above theorem is a generalization of Theorem
3.2 in [3].

5. Fuzzifying locally semi-compactness

Definition 5.1. Let � be a class of fuzzifying topo-
logical spaces. A unary fuzzy predicate LSC ∈ �(�),
called fuzzifying locally semi-compactness, is given as
follows:

(X, τ)∈LSC := (∀x)(∃B)((x ∈ IntS(B) ⊗ 
S(B, τ/B)).

Since [x ∈ IntS(X)] = NSx (X) = 1, then LSC(X, τ)
≥ 
S(X, τ). Therefore,

� (X, τ) ∈ 
S → (X, τ) ∈ LSC.
Also, since � (X, τ) ∈ 
 → (X, τ) ∈ LC [15] and

� (X, τ) ∈ 
S → (X, τ) ∈ 
 [14], � (X, τ) ∈ 
S →
(X, τ) ∈ LC.

Theorem 5.2. For any fuzzifying topological space
(X, τ) and A ⊆ X,

� (X, τ) ∈ LSC ⊗ A ∈ zS → (A, τ/A) ∈ LSC.
Proof. We have

LSC(X, τ)

=
∧
x∈X

∨
B⊆X

max(0, NS
X

x (B) + 
S(B, τ/B) − 1)

and

LSC(A, τ/A)

=
∧
x∈A

∨
G⊆A

max(0, NS
A

x (G) + 
S(G, (τ/A)/G) − 1).

Now, suppose that [(X, τ) ∈ LSC ⊗ A ∈ zS] > λ >

0. Then for any x ∈ A, there exists B ⊆ X such that

NS
X

x (B) + 
S(B, τ/B) + τS(X− A) − 2 > λ. (1)

Let E = A ∩ B ∈ P(A). Then NS
A

x (E) = ∨E=C∩B
NS

X

x (C) ≥ NS
X

x (B) and for any U ∈ P(E), we have

(τS/A)S/E(U)

=
∨

U=C∩E
τS/A(C) =

∨
U=C∩E

∨
C=D∩A

τS(D)

=
∨

U=D∩A∩E
τS(D) =

∨
U=D∩E

τS(D).

Similarly, (τS/B)S/E(U) = ∨U=D∩EτS(D). Thus,
(τS/B)S/E = (τS/A)S/E and 
S(E, (τ/A)/E) =

S(E, (τ/B)/E). Furthermore, [E ∈ zS/B] = τS/B

(B − E) = τS/B(B ∩ Ec) = ∨
B∩Ec=B∩DτS(D) ≥ τS

(X− A) = zS(A). Since � (X, τ) ∈ 
S ⊗ A ∈ zS →
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(A, τ/A) ∈ 
S (see [14], Theorem 4.1), from (1) we
have for any x ∈ A that∨
G⊆A

max(0, NS
A

x (G) + 
S(G, (τ/A)/G) − 1)

≥ NS
A

x (E) + 
S(E, (τ/A)/E) − 1

= NS
A

x (E) + 
S(E, (τ/B)/E) − 1

≥ NS
X

x (B) + [
S(B, τ/B) ⊗ E ∈ zS/B] − 1

≥ NS
X

x (B) + 
S(B, τ/B) + [E ∈ zS/B] − 2

≥ NS
X

x (B) + 
S(B, τ/B) + [A ∈ zS] − 2 > λ.

Therefore,

LSC(A, τ/A)

=
∧
x∈A

∨
G⊆A

max(0, NS
A

x (G)

+
S(G, (τ/A)/G) − 1) > λ.

Hence [(X, τ) ∈ LSC ⊗ A ∈ zS] ≤ LSC(A, τ/A).
�

As a crisp result of the above theorem we have the
following Corollary.

Corollary 5.3. LetA be a semi-closed subset of locally
semi-compact space (X, τ). Then A with the relative
topology τ/A is locally semi-compact.

The following theorem is a generalization of the
statement "If X is a semi-Hausdorff space and A is a
dense locally semi-compact subspace, then A is semi-
open", where A is a dense in a topological space X if
and only if the semi-closure of A is X.

Theorem 5.4. For any fuzzifying S-topological space
(X, τ) and A ⊆ X, � T S2 (X, τ) ⊗ LSC(A, τ/A) ⊗
(ClS(A) ≡ X) → A ∈ τS.
Proof. Suppose that [T S2 (X, τ) ⊗ LSC(A, τ/A) ⊗
(ClS(A) ≡ X)] > λ > 0. Then LSC(A, τ/A) >
λ− [T S2 (X, τ) ⊗ (ClS(A) ≡ X)] + 1 = λ′ > λ, i.e.,∧
x∈A
∨
B⊆A max(0, NS

A

x (B) + 
S(B, (τ/A)/B) − 1)
> λ′. Thus for any x ∈ A, there exists Bx ⊆ A such
that NS

A

x (Bx) + 
S(Bx, (τ/A)/Bx) − 1 > λ′, i.e.,∨
H∩A=Bx

∨
x∈K⊆HτS(K) +
S(Bx, (τ/A)/Bx) − 1 >

λ′. Hence there exists Kx such that Kx ∩ A = Bx,

τS(Kx) +
S(Bx, (τ/A)/Bx) − 1 > λ′. Therefore,
τS(Kx) > λ′.

(1) If for any x ∈ A, there exists Kx such that x ∈
Kx ⊆ Bx ⊆ A (thusKx = Bx), then

⋃
x∈AKx = A and

τS(A) = τS(
⋃
x∈AKx) ≥ ∧x∈AτS(Kx) ≥ λ′ > λ.

(2) If there exists x◦ ∈ A such that
Kx◦ ∩ (Bcx◦ ) /= φ, τS(Kx◦ ) + 
S(Bx◦ , (τ/A)/Bx◦ ) −

1 > λ′. From the hypothesis, we have that
[T S2 (X, τ) ⊗ LSC(A, τ/A) ⊗ (ClS(A) ≡ X)] > λ > 0,
we have [T S2 (X, τ) ⊗ (ClS(A) ≡ X)] /= 0. So τS(Kx◦ )
+ 
S(Bx◦ , (τ/A)/Bx◦ ) − 1 + [T S2 (X, τ) ⊗ (ClS(A) ≡
X)] − 1 > λ. Therefore, τS(Kx◦ ) + 
S(Bx◦ , (τ/A)/
Bx◦ ) − 1 + T S2 (X, τ) + [(ClS(A) ≡ X)] − 1 − 1 > λ.

Since

(τS/A)S/Bx◦ (U)

=
∨

U=C∩Bx◦
τS/A(C) =

∨
U=C∩Bx◦

∨
C=D∩A

τS(D)

=
∨

U=D∩Bx◦
τS(D) = τS/Bx◦ (U), 
S(Bx◦ , (τ/A)/Bx◦ )

= 
S(Bx◦ , τ/Bx◦ ),

from Theorem 4.20, we have τS(Bcx◦ ) ≥ T S2 (X, τ) ⊗

S(Bx◦ , τ/Bx◦ ) ≥ T S2 (X, τ) + 
S(Bx◦ , τ/Bx◦ ) − 1.
Hence τS(Kx◦ ) + τS(Bcx◦ ) + [ClS(A) ≡ X] − 2 > λ.

Now, for any y ∈ Ac we have [ClS(A) ≡ X] =∧
x∈X(1 −NS

X

x (Ac)) ≤ 1 −NS
X

y (Ac). Since (X, τ) is a
fuzzifying S-topological space, τS(Kx◦ ) + τS(Bcx◦ )
− 1 ≤ τS(Kx◦ ) ⊗ τS(Bcx◦ ) ≤ τS(Kx◦ ) ∧ τS(Bcx◦ ) ≤ τS

(Kx◦ ∩ Bcx◦ ) ≤ NS
X

y (Kx◦ ∩ Bcx◦ )≤NSXy (Ac), where y

∈ Kx◦ ∩ Bcx◦ ⊆ Hx◦ ∩ (Hx◦ ∩ A)c = Hx◦ ∩(Hc
x◦ ∪ Ac)

= Hx◦ ∩ Ac ⊆ Ac. Therefore, 0 < λ < τS(Kx◦ ) +
τS(Bcx◦ ) + [ClS(A) ≡ X] − 2 = τS(Kx◦ ) + τS(Bcx◦ ) −
1+ [ClS(A) ≡ X] − 1 ≤ NS

X

y (Ac) + 1 −NS
X

y (Ac) −
1 = 0, a contradiction. So, case (2) does not hold. We
have completed the proof. �

Theorem 5.5. For any fuzzifying S-topological space
(X, τ),� T S2 (X, τ) ⊗ (LSC(X, τ))2 → ∀x∀U(U ∈
NS

X

x → ∃V (V ∈ NSXx ∧ ClS(V ) ⊆ U ∧ 
S(V ))),
where (LSC(X, τ))2 := LSC(X, τ) ⊗ LSC(X, τ).

Proof. We need to show that for any x and U, x ∈ U,

T S2 (X, τ) ⊗ (LSC(X, τ))2 ⊗NS
X

x (U)

≤
∨
V⊆X

(NS
X

x (V ) ∧
∧
y∈Uc

NS
X

x (Vc) ∧ 
S(V, τ/V )).

Assume thatT S2 (X, τ) ⊗ (LSC(X, τ))2 ⊗NS
X

x (U) >
λ > 0. Then for any x ∈ X there exists C such that

T S2 (X, τ) +NS
X

x (C) + (LSC(X, τ))2

+NSXx (U) − 3 > λ. (2)
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Since (X, τ) is a fuzzifying S-topological space,
NS

X

x (C) +NS
X

x (U) − 1 ≤ NS
X

x (C) ⊗NS
X

x (U) ≤ NS
X

x

(C) ∧NSXx (U) ≤ NS
X

x (C ∩ U) = ∨x∈W⊆C∩UτS(W).
Therefore there exists W such that x ∈ W ⊆ C ∩ U,
and T S2 (X, τ) + (LSC(X, τ))2 + τS(W) − 2 > λ. By
Lemmas 4.15 and 4.17 we have T S2 (X, τ) ≤
T S2 (C, τ/C) and T S2 (C, τ/C) + 
S(C, τ/C) − 1 ≤
T S2 (C, τ/C) ⊗ 
S(C, τ/C) ≤ T S3 (C, τ/C). Thus T S3
(X, τ) + 
S(C, τ/C) + τS(W) − 2 > λ. Since for any
x ∈ W ⊆ U, we have T S3 (C, τ/C) ≤ 1 − τS/C(W) +∨
G⊆C((NS

C

x (G) ∧∧y∈C−WNS
C

y (C −G))) (see [7,
Theorem 3.16]), so there exists G, x ∈ G ⊆ W such
that ((NS

C

x (G) ∧∧y∈C−WNS
C

y (C−G)))≥T S3 (C, τ/C)

+ τS/C(W)−1 ≥ T S3 (C, τ/C)+τS(W)−1, and ((NS
C

x

(G) ∧∧y∈C−WNS
C

y (C −G))) + 
S(C, τ/C) − 1>λ.

ThusNS
C

x (G) = ∨D∩C=GNS
X

x (D) = NS
X

x (G ∪ Cc) >
λ′ = λ+ 1 − 
S(C, τ/C) ≥ λ. Furthermore, for any
y ∈ C −W, NS

C

y (C −G) = ∨D∩C=C∩GcNS
X

y (Gc ∪
Cc) = NS

X

y (Gc) > λ′ and NS
X

x (G) = NS
X

x ((G ∪ Cc)
∩ C) ≥ NS

X

x (G∪Cc) ∧NSXx (C) > λ′. Since NS
X

y (Gc)
= ∨x∈Bc⊆GcτS(Bc) > λ′, for any y ∈ C −W, there
exists Bcy such that y ∈ Bcy ⊆ Gc and τS(Bcy) > λ′.
Set Bc = ⋃y∈C−WBcy . Then C −W ⊆ Bc ⊆ Gc and
τS(Bc) ≥ ∧y∈C−WτS(Bcy) ≥ λ′.Again, letV = B ∩ C,
then V ⊆ (C −W)c ∩ C = (Cc ∪W) ∩ C = C ∩W
= W ⊆ U ∩ C and Vc = Bc ∪ Cc. Since (X, τ) is a
fuzzifying S-topological space,

NS
X

x (V ) = NS
X

x (B ∩ C) ≥ NS
X

x (B) ∧NSXx (C)

≥ NS
X

x (G) ∧NSXx (C) > λ. (3)

By (2) and Theorem 4.20,

τS(Cc) ≥ T S2 (X, τ) ⊗ 
S(C, τ/C) ≥ T S2 (X, τ)

+
S(C, τ/C) − 1 ≥ λ′.

So τS(Vc) = τS(Bc ∪ Cc) ≥ τS(Bc) ∧ τS(Cc) ≥ λ′,
i.e., τS(Vc) + 
S(C, τ/C) − 1 ≥ λ and


S(V, τ/V ) = 
S(V, (τ/C)/V ) ≥ τS/C(C − V )

+
S(C, τ/C) − 1 ≥ τS(Vc)

+
S(C, τ/C) − 1 ≥ λ. (4)

Finally,∧
y∈Uc

NS
X

y (Vc) ≥
∧
y∈Vc

NS
X

y (Vc) = τS(Vc) ≥ λ (5)

Thus by (3), (4) and (5), for any x ∈ U, there exists
V ⊆ U such that NS

X

x (V ) > λ,
∧
y∈UcNS

X

y (Vc) ≥ λ

and 
S(V, τ/V ) ≥ λ.

So
∨
V⊆X

(NS
X

x (V ) ∧ ∧
y∈Uc

NS
X

y (Vc) ∧ 
S(V, τ/V ))

≥ λ. �

Theorem 5.6. For any fuzzifying S-topological space
(X, τ), � T S2 (X, τ) ⊗ (LSC(X, τ))2 → T S3 (X, τ).

Proof. By Theorem 5.5, for any x ∈ U, we have∨
x∈V⊆U

(NS
X

x (V ) ∧
∧
y∈Uc

NS
X

y (Vc)

≥ [T S2 (X, τ) ⊗ (
S(C, τ/C))2 ⊗NS
X

x (U)].

Thus

1 −NS
X

x (U) +
∨

x∈V⊆U
(NS

X

x (V ) ∧
∧
y∈Uc

NS
X

y (Vc)

≥ [T S2 (X, τ) ⊗ (
S(C, τ/C))2],

i.e., [T S3 (X, τ)] ≥ [T S2 (X, τ) ⊗ (
S(C, τ/C))2]. �

Theorem 5.7. For any fuzzifying S-topological space
(X, τ),

� T S3 (X, τ) ⊗ LSC(X, τ) → ∀A∀U(U ∈ NSXA
⊗
S(A, τ/A) → ∃V (V ⊆ U ∧ U ∈ NSXA
∧τS(Vc) ∧ 
S(V, τ/V ))),

where U ∈ NSXA := (∀x)(x ∈ A ∧ U ∈ NSXx ).

Proof. We only need to show that for anyA,U ∈ P(X),
[T S3 (X, τ) ⊗ LSC(X, τ) ⊗ 
S(A, τ/A) ⊗NS

X

A (U)] ≤∨
V⊆U

(NS
X

A (V ) ∧ τS(Vc) ∧ 
S(V, τ/V )).

Indeed, if [T S3 (X, τ) ⊗ LSC(X, τ) ⊗ 
S(A, τ/A) ⊗
NS

X

A (U)] > λ > 0, then for any x ∈ A, there existsC ∈
P(X) such that [T S3 (X, τ) ⊗NS

X

x (C) ⊗ 
S(C, τ/C) ⊗

S(A, τ/A) ⊗NS

X

A (U)] > λ. Since (X, τ) is a fuzzify-
ing S-topological space,∨
x∈W⊆C∩U

τS(W)

= NS
X

x (C ∩ U) ≥ NS
X

x (C) ∧NSXx (U)

≥ NS
X

x (C) ∧NSXA (U) ≥ NS
X

x (C) ⊗NS
X

A (U).

Then there exists W such that x ∈ W ⊆ C ∩ U, and
[T S3 (X, τ) ⊗ τS(W) ⊗ 
S(C, τ/C) ⊗ 
S(A, τ/A)]>λ.
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Therefore

[T S3 (X, τ)] + τS(W) − 1 > λ+ 2 − 
S(C, τ/C)

−
S(A, τ/A)] = λ′ ≥ λ. (6)

Since for any x ∈ W, [T S3 (X, τ)] ≤ 1 − τS(W) +∨
B⊆W

(NS
X

x (B) ∧ ∧
y∈Wc

NS
X

y (Bc)), we have

∨
B⊆W

(NS
X

x (B) ∧
∧
y∈Wc

NS
X

y (Bc)) > λ′.

Thus there exists Bx such that x ∈ Bx ⊆ W ⊆ C ∩
U and for any y ∈ Wc, we have NS

X

y (Bcx) > λ′,
NS

X

x (Bx) > λ′. Since NS
X

y (Bcx) = ∨x∈Gc⊆BcxτS(Gc) >
λ′, then for any y ∈ Wc, there exists Gxy such
that x ∈ Gcxy ⊆ Bcx and τS(Gcxy) > λ′. Set Gcx =⋃
y∈WcGcxy. Then Wc ⊆ Gcxy ⊆ Bcx and τS(Gcx) ≥∧
y∈WcτS(Gcxy) ≥ λ′. Since Gx ⊇ Bx, NS

X

x (Gx) ≥
NS

X

x (Bx) > λ′, i.e.,
∨
x∈H⊆GxτS(H) > λ′. Thus there

exists Hx such that x ∈ Hx ⊆ Gx and τS(Hx) > λ′.
Hence for any x ∈ A, there exists Hx and Gx such that
x ∈ Hx ⊆ Gx ⊆ U, τS(Hx) > λ′ andW ⊇ ⋃x∈AGx ⊇⋃
x∈AHx ⊇ A. We define � ∈ �(P(A)) as follows:

�(D)

=
⎧⎨⎩

∨
Hx∩A=D

τS(Hx), there exists Hx s.t. Hx ∩ A=D,

0, otherwise.

Let 
S(A, τ/A) = µ > µ− ε (ε > 0). Then

1−KS(�, A)+
∨
℘≤�

[K(℘,A) ⊗ FF (℘)] > µ− ε, (7)

where

[K(�, A)] =
∧
x∈A

∨
x∈B

�(B) =
∧
x∈A

∨
x∈D

�(D)

=
∧
x∈A

∨
x∈D

∨
Hx′∩A=D

τS(Hx′ ) ≥ λ′

and

[� ⊆ τS\A]

=
∧
B⊆X

min(1, 1 − �(B) + τS\A(B))

=
∧
B⊆X

min(1, 1−
∨

Hx∩A=B
τS(Hx)+

∨
H∩A=B

τS(H))=1.

So, KS(�, A) = [K(�, A)] ≥ λ′. By (7), [K(℘,A) ⊗
FF (℘)] > µ− ε− 1 +KS(�, A) ≥ µ− ε− 1+λ′ ≥
λ− ε. Thus∧

x∈A

∨
x∈E

℘(E) + 1 −
∧

{δ : F (℘δ)} − 1 > λ− ε,

and ∧
x∈A

∨
x∈E

℘(E) > λ− ε+
∧

{δ : F (℘δ)}.

Hence there exists β > 0 such that F (℘β) and∧
x∈A
∨
x∈D℘(D) > λ− ε+ β. Therefore for

any x ∈ A, there exists Dx ⊆ A such that
℘(Dx) > λ− ε+ β and

⋃
x∈ADx ⊆ A. Suit-

ably chosen ε such that λ− ε > 0 provides
℘(Dx) > β > 0. Since �(Dx) ≥ ℘(Dx) > 0,
Dx = Hx′ ∩ A, i.e., Hx′ ∩ A ∈ ℘β. By F (℘β),
there exists finite Hx′1 , Hx

′
2
, ..., Hx′n such that⋃n

i=1Hx′i ⊇ A and
⋃n
i=1Hx′i ⊆ ⋃ni=1Gx′i . Set

V = ⋃ni=1Gx′i , and Vc = ⋂ni=1G
c
x′
i
, A ⊆ V ⊆ U,

and τS(Vc) ≥ ∧1≤i≤nτS(Gc
x′
i
) ≥ λ′ > λ. Since

for any x ∈ A, Gx ⊆ W ⊆ C ∩ U ⊆ C, we have
V = ⋃ni=1Gx′i ⊆ W ⊆ C by τS\C(C − V ) =∨
D∩C=C∩VcτS(D) ≥ τS(Vc) ≥ λ′. Thus by (6),

τS\C(C − V ) + 
S(C, τ/C) − 1 > λ. By Theo-
rem 4.1 in [14], 
S(V, τ/V ) = 
S(V, τ/C/V ) ≥
[
S(C, τ/C) ⊗ τS\C(C − V )] > λ. Finally, we
have for any x ∈ A, NSXx (V ) = NS

X

x (
⋃n
i=1Gx′i ) ≥

NS
X

x (
⋃n
i=1Hx′i ) ≥ τS(

⋃n
i=1Hx′i ) ≥ ∧

1≤i≤nτS(Hx′
i
) ≥

λ′ > λ. So NS
X

A (V ) = ∧x∈ANSXx (V ) ≥ λ. There-

fore, NS
X

A (V ) ∧ τS(Vc) ∧ 
S(V, τ/V ) ≥ λ. Thus∨
V⊆U (NS

X

A (V ) ∧ τS(Vc) ∧ 
S(V, τ/V )) ≥ λ. �

Theorem 5.8. Let (X, τ) and (Y, σ) be two fuzzifying
topological spaces and f ∈ YX be surjective. Then �
LSC(X, τ) ⊗ CS(f ) ⊗O(f ) → LC(Y, σ). For the def-
inition of O(f ), see [17].

Proof. If [LSC(X, τ) ⊗ CS(f ) ⊗O(f )] > λ > 0, then
for any x ∈ X, there exists U ⊆ X, such that

[NS
X

x (U) ⊗ 
S(U, τ/U) ⊗ CS(f ) ⊗O(f )] > λ.

Since NS
X

x (U) = ∨x∈V⊆UτS(V ), there exists V ′ ⊆ X

such that x ∈ V ′ ⊆ U and [τS(V ′) ⊗ 
S(U, τ/U) ⊗
CS(f ) ⊗O(f )] > λ. By Theorem 4.1 (1),

[
S(U, τ/U) ⊗ CS(f )] ≤ [
(f (U), σ/f (U))]
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and

[τ(V ′) ⊗O(f )] = max(0, τ(V ′) +O(f ) − 1)

=max(0, τ(V ′)+
∧
V⊆X

min(1, 1−τ(V ′)+σ(f (V )))−1)

≤ max(0, τ(V ′) + 1 − τ(V ′) + σ(f (V )) − 1)

= σ(f (V )) ≤ N
Y

f (x)(f (V ′)) ≤ N
Y

f (x)(f (U)).

Since f is surjective,

LC(Y, σ) = LC(f (X), σ)

=
∧

y∈f (x)⊆f (X)

∨
U ′=f (U)⊆f (X)

[N
Y

y (U ′)⊗[
(U ′, σ/U ′)]

≥
∧

y∈f (x)⊆f (X)

[N
Y

f (x)(f (U)) ⊗ [
(f (U), σ/f (U))]

≥
∧

y∈f (x)⊆f (X)

[τ(V ′) ⊗O(f )

⊗
S(U, τ/U) ⊗ CS(f )] ≥ λ. �

Theorem 5.9. Let (X, τ) and (Y, σ) be two fuzzifying
topological spaces and f ∈ YX be surjective. Then �
LSC(X, τ) ⊗ I(f ) ⊗OS(f ) → LSC(Y, σ).

Proof. By Theorem 4.4, the proof is similar to that of
Theorem 5.8. �

Theorems 5.8 and 5.9 are generalizations of the fol-
lowing corollary.

Corollary 5.10. Let (X, τ) and (Y, σ) be two topological
spaces and f : (X, τ) → (Y, σ) be a surjective map-
ping. If f is semi-continuous (resp. irresolute), open
(resp. semi-open) and X is a locally semi-compact,
then Y is locally compact (resp. locally semi-compact)
space.

Theorem 5.11. Let {(Xi, τi) : i ∈ I} be a family of fuzzi-
fying topological spaces. Then

� LSC(
∏
i∈I
Xi,
∏
i∈I

(τS)i) →

∀i(i ∈ I ∧ LSC(Xi, (τS)i) ∧ ∃J(J � I

∧∀j(j ∈ I − J ∧ 
S(Xj, τj))).

Proof. It suffices to show that

LSC(
∏
i∈I
Xi,
∏
i∈I

(τS)i) ≤ [
∧
i∈I
LSC(Xi, (τS)i)

∧
∨
J�I

∧
j∈I−J


S(Xj, τj)].

From Theorem 5.8 and Lemma 4.12 we have for any
j ∈ I, LSC(

∏
i∈I
Xi,

∏
i∈I

(τS)i) = [LSC(
∏
i∈I
Xi,

∏
i∈I

(τS)i) ⊗
CS(pj) ⊗OS(pj)] ≤ LSC(Xj, τj).

So,
∧
j∈I
LSC(Xj, τj) ≥ LSC(

∏
i∈I
Xi,

∏
i∈I

(τS)i).

By Theorem 4.13, we have∨
J�I

∧
j∈I−J


S(Xj, τj)

≥ [
∨

U⊆
∏
i∈I
Xi


S(U,
∏
i∈I

(τS)i/U) ⊗
∨

X⊆
∏
i∈I
Xi

NS
X

x (U))]

≥
∨

U⊆
∏
i∈I
Xi

∨
X⊆
∏
i∈I
Xi

[
S(U,
∏
i∈I

(τS)i/U) ⊗NS
X

x (U))]

≥
∧

X⊆
∏
i∈I
Xi

∨
U⊆
∏
i∈I
Xi

[
S(U,
∏
i∈I

(τS)i/U) ⊗NS
X

x (U))]

= LSC(
∏
i∈I
Xi,
∏
i∈I

(τS)i).

Therefore,

LSC(
∏
i∈I
Xi,
∏
i∈I

(τS)i)

≤ [
∧
i∈I
LSC(Xj, τj) ∧

∨
J�I

∧
j∈I−J


S(Xj, τj)].

�
We can obtain the following corollary in crisp setting.

Corollary 5.12. Let {Xλ : λ ∈ �} be a family of
non-empty topological spaces. If

∏
λ∈�

Xλ is locally semi-

compact, then each Xλ is locally semi-compact and all
but finitely many Xλ are semi-compact.

6. Conclusion

The present paper investigates topological notions
when these are planted into the framework of Ying’s
fuzzifying topological spaces (in semantic method of
continuous-valued-logic). It continues various investi-
gations into fuzzy topology in a legitimate way and
extends some fundamental results in General Topol-
ogy to fuzzifying topology. An important virtue of our
approach (in which we follow Ying) is that we define
topological notions as fuzzy predicates (by formulae
of Łukasiewicz fuzzy logic) and prove the validity of
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fuzzy implications (or equivalences). Unlike the (more
wide-spread) style of defining notions in fuzzy mathe-
matics as crisp predicates of fuzzy sets, fuzzy predicates
of fuzzy sets provide a more genuine fuzzification;
furthermore the theorems in the form of valid fuzzy
implications are more general than the corresponding
theorems on crisp predicates of fuzzy sets. The main
contribution of the present paper is to give characteriza-
tions of fuzzifying semi-compactness. Also, we define
the concept of locally semi-compactness of fuzzifying
topological spaces and obtain some basic properties of
such spaces. There is a problem for further study.

Our results are derived in the Łukasiewicz continuous
logic. Is it possible to generalize them to a more gen-
eral logical setting, like residuated lattice-valued logic
considered in [20–21]?

It’s worth to say, there already exists a version in the
setting of (2, L) topologies (see [10]). Our obtained
results will be still valid in the setting of [10], in
which the author only introduced L-continuity degree,
L-openness degree, L-closedness degree of mappings
between L-fuzzifying topological spaces. Moreover,
he showed that most of elementary results related
to continuous mappings, open mappings, and closed
mappings in general topology could be extended to L-
fuzzifying topological spaces by means of the graded
concepts.
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