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Abstract:
In this paper, some characterizations of fuzzifying ¥ -compactness are given,

including characterizations in terms of nets and y -subbases. Several characterizations
of locally ¥ -compactness in the framework of fuzzifying topology are introduced and
the mapping theorems are obtained.
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1. Introduction and preliminaries

In the last few years fuzzy topology, as an important research field in fuzzy set theory,
has been developed into a quite mature discipline [6-8, 11-12, 22]. In contrast to
classical topology, fuzzy topology is endowed with richer structure, to a certain extent,
which is manifested with different ways to generalize certain classical concepts. So far,
according to Ref. [7], the kind of topologies defined by Chang [2] and Goguen [3] is
called the topologies of fuzzy subsets, and further is naturally called L -topological
spaces if a lattice L of membership values has been chosen. Loosely speaking, a
topology of fuzzy subsets (resp. an L -topological space) is a family 7 of fuzzy subsets
(resp. L -fuzzy subsets) of nonempty set X , and 7 satisfies the basic conditions of
classical topologies [10]. On the other hand, Hohle in [5] proposed the terminology L -

fuzzy topology to be an L -valued mapping on the traditional powerset P(X ) of X .
The authors in [9, 11-12, 16] defined an L -fuzzy topology to be an L -valued mapping
on the L -powerset LX of X .

In 1952, Rosser and Turquette [17] proposed emphatically the following problem: If
there are many-valued theories beyond the level of predicates calculus, then what are the
detail of such theories? As an attempt to give a partial answer to this problem in the case
of point set topology, Ying in 1991-1993 [23-25] used a semantical method of
continuous-valued logic to develop systematically fuzzifying topology. Briefly speaking,
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a fuzzifying topology on a set X assigns each crisp subset of X to a certain degree of
being open, other than being definitely open or not. Roughly speaking, the semantical
analysis approach transforms formal statements of interest, which are usually expressed
as implication formulas in logical language, into some inequalities in the truth value set
by truth valuation rules, and then these inequalities are demonstrated in an algebraic way
and the semantic validity of conclusions is thus established. So far, there has been
significant research on fuzzifying topologies [13-15, 18-21, 26]. For example, Ying [26]
introduced the concepts of compactness and established a generalization of Tychonoff’s
theorem in the framework of fuzzifying topology. In [21] the concept of local
compactness in fuzzifying topology is introduced and some of its properties are
established. Generalzied open sets play a very important role in General Topology and
they are now the research topics of many topologists worldwide. Indeed a significant
theme in General Topology and Real Analysis is the study of variously modified forms
of continuity, separation axioms etc. by utilizing generalized open sets. One of the most
well known notions and also an inspiration source is the notion of b -open [1] sets
introduced by Andrijevic in 1996. In [4] Hanafy used the term y -open sets instead of

b -open sets and studied the concepts of y -open sets and y -continuity in fuzzy
topology [2]. In [13] the concepts of fuzzifying ¥ -open sets and fuzzifying y -

continuity were introduced and studied. Also, Sayed [19] introduced some concepts of
fuzzifying y -separation axioms and clarified the relations of these axioms with each

other as well as the relations with other fuzzifyign separation axioms. Furthermore, in
[20], Sayed characterized the concepts of fuzzifying y -irresolute functions and used the

finite intersection property to give a characterization of fuzzifying y -compact spaces. In
this paper, the concepts of ¥ -base and y -subbase of fuzzifying ¥ -topology are
introduced. Other characterizations of fuzzifying ¥ -compactness are given, including
characterizations in terms of nets and y -subbase. Several characterizations of locally
¥ -compactness in the framework of fuzzifying topology are introduced and the mapping

theorems are obtained. Thus we fill a gap in the existing literature on fuzziyfing
topology. We use the terminologies and notations in [13, 19-25] without any explanation.
We note that the set of truth values is the unit interval and we do often not distinguish the
connectives and their truth value functions and state strictly our results on formalization
as Ying does. We will use the symbol ® instead of the second “AND” operation A as

dot is hardly visible. This mean that [y]<[p > y]e[r]®[p]<[w]. Al of the

contributions in general topology in this paper which are not referenced may be original.
We now give some definitions and results which are useful in the rest of the present

paper. The family of all fuzzifying y -open sets [13], denoted by 7, € S(P (X )) , 18
defined as follows:

Aet, =V (a: ceAoze (Cl(lnt (A)) uInt(Cl(A)))),
e, 7,(A)= A\ (Cl(Int(A))(z) v Int(CL(A))(x)).

zeA
The family of all fuzzifying ¥ -closed sets [13], denoted by 7, J(P(X)).is defined
as Ae 7, == X—-Aer,. The fuzzifying y -neighborhood system of a point x € X [13]
is denoted by N7 (or N7 )e J(P(X)) and defined as N7 (A)=\/,.5_, 7, (B). The
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fuzzifying y -closure of a set A< X [13], denoted by Cl, € J(X), is defined as
ClL, (A)(z)=1-NI(X-A). If (X,7) is a fuzzifying topological space and N (z) is
the class of all nets in X ,then the binary fuzzy predicates >7, o J(N (X)x X) [18]
are defined as 57 z=VA(AeN/' 5SEA), S 2=VA(Ae N 5 ST 4),

29 ¢

where “S 7 x 7S o’ z ’stand for “ Sy -converges to x”,“x is an y -accumulation

LR N3

point of S, respectively; and “&”, “T” are the binary crisp predicates “almost in”,
“often in”, respectively. The degree to which x is an y -adherence point of S is

adh, S (x) =[S oc” xJ If (X,7)and (Y,0) are two fuzzifying topological spaces and
feY™, the unary fuzzy predicates C,,I, € S(YX) , called fuzzifying y -continuity
[13], fuzzifying y -irresoluteness [20], are given as Cy(f) =V B (B €eoc— f"(B) €7, ) ,
I(f)=VB (B €o, > [ (B)e Ty), resepctivley. Let Q be the class of all fuzzifying
topological spaces. A unary fuzzy predicate Ty € J(Q) , called fuzzifying y -
Hausdorftness [19], is given as follows:
T/ (X,7) :Va:‘v’y((xe XryeXrz#y)—
IBAC(Be NI ACe NI ABAC =)

A unary fuzzy predicate I" e ‘TS(Q), called fuzzifying compactness [20], is given as
follows: T'(X,7)=(VR)(K, (R.X) > (39)(( S R)AK (9. A)® FF ())) and if
Ac X, then T'(A)=T(A,7/A). For K, K, (resp. < and FF') see [24, Definition
4.4] (resp. [24, Theorem 4.3] and [26, Definition 1.1 and lemma 1.1]. A unary fuzzy
predicate fI e %(%(P(X ))), called fuzzy finite intersection property [26], is given as
fI(R)=Vp((@<R)AFF(p)>FaVB(Bep >xeB)). A fuzzifying topological
space (X,7) is said to be fuzzifying y -topological space [20] if 7, (ANB)27,(A)
AT, (B). A binary fuzzy predicate K, € J(3I(P(X))x P(X)), called fuzzifying -
open covering [20], is given as K, (R, A4):= K(EK,A)@(ER c 2'7). A unary fuzzy pre-
dicate I € S(Q) , called fuzzifying y -compactness [20], is given as follows: (X ,T) €
T, =(VR)(K, (%.X) > @p) (9 <R) A K (9. X)® FF ())) and if A X , then
T,(A)=T,(A,7/A). It is obvious that T, (X,z)=T(X.7,), T (A,7/A)=T(A,
T},/A) and = K, (R,A) > K, (R,A). A unary fuzzy predicate LC € I(Q), called
fuzzifying locally compactness [21], is given as follows: (X,7)e LC == (Vm)(EIB)((:E

e Int(B)®T(B,7/B))).
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2. Fuzzifying y -base and y -subbase

Definition 2.1. Let (X,7) be a fuzzifying topological space and B, c z,. Then j,
is called an y -base of 7, if S, fulfils the condition: I=AeN{X —31B ((Be ﬁy)/\
(x e Bc A)) .

Theorem 2.1. f, is an y -base of 7, if and only if 7, =ﬂﬁu), where ,Bﬁu) (A)=
\/U}.EAB}.=‘4 /\ieA ﬂy (B/?.) .

Proof. Suppose that S, is an y -base of 7,. If U,., B, = A ,then from Theorem 3.1
(1) () in [13], 7,(A) =7, (U,cs B,) 2N\ ,en 7, (By) 2 /\sen B, (B;) . Consequently,
7, (A)2\/y 54 \ser B, (B;). To prove that 7, (A)S\/y 5 _4N\iex B, (By), we
first prove 7, (A)=/\,c4 \Vsepea 7, (B) - (Indeed, assume &, ={B:xe€ Bc A}. Then
for any f € H.T,GA 51 > Ua:eﬂf(x) =A 2 and furthermore rr(A) = T;/(UmeAf(x)) 2 /\.’L'EAT}/
(f (l)) 2 \/fel'[,EA S, /\IEA T;/ (f (l)) = /\a:eA \/a:eBgA T}/ (B) . Also T}' (A) < /\xeA \/.’L'EBQA
7,(B). Therefore 7, (A)=/\, 4, \V,cpca T, (B).

NOW, since N{A (A) < \/.'L'eb’gA ﬁ}/ (B) b T}/ (A) = /\J‘EA \/.'L'eb’gA T}/ (B) = /\J‘EA N{A
(A) < /\L’eA \/reBgA ﬂ}/ (B) = \/fel_[_‘e,, S, /\reA ﬂ;/ (f (l‘)) . Then T}/ (A) < \/U,IEABA:A /\AEA
B,(B;). Therefore 7, (A)=\/y 5 -1/ \1cr B2 (B;). In the other side, we assume
7, (A)=\/y,_ 51 \sca B, (B;) and we will show that /3, is an ¥ -base of 7,, i.e., for
any AC X, N7 (A)<\/, .50, B,(B). Indeed, if te Bc A, U, B, =B, then
there exists 4, € A such that ze B, and N\, , B,(B,)<f, (Biu ) S\/uenes B, (B) -

Therefore
NZY (A) = \/,reBgA Ty (B) = \/a:eBgA \/UkAB;;A /\AEA ﬂ;/ (B/i) < \/,reBgA ﬂ;/ (B) .

Theorem 2.2. Let 3, € J(P(X)). Then B, is an y -base for some fuzzifying y -
topology 7, if and only if it has the following properties:

(1) B (X)=1;
@ =(AeB)a(BeB)r(re AnB)»3C((Ce B)A(reCcAnB)).
Proof. If 3, is an y -base for some fuzzifying y -topology 7, (X)= A" (X) .
Clearly, B (X)=1. In addition, if z€ ANB, then B, (A)a B, (B)<t,(A)A7,(B)
<7(ANB)SN? (ANB)S\/,cocunsB, (C). Conversely, if B, satisfies (1) and (2),
then we have 7, is a fuzzifying y -topology. In fact, 7, (X)=1. Forany {4, :1e A}

c P(X), we get &, ={{B¢£:<I)ﬂe Al}:Uq,AeAAB(Dl:Aﬂ}. Then for any fell,., 5,
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Ujzea UBW ef(A) Bmﬂ =UznA4; - Therefore 7, ( U Aa) = V /\ :By (B<1>) 2z V

AeA

L /\(i)ﬁy(Bq’*) /) v A ﬂy(B%):,l/e\ATy(Aﬂ)-

AeA By, ef FeA (5, e, )es, P

Finally, we need to prove that 7, (AnB)>7,(A)A7,(B). If 7,(A)>t, 7,(B)>t,
then there exists {B;ﬂ:ﬂ.,e Al}, {B,iz:ﬂ?e Az} such that U, ., B, =A, U, B, =B
and for any 4, € A, ,BA(BA)>t, forany 4, € A,, ﬂy(B%)>t.Now, forany ze An
B, there exists 4, € A, 4, €A, suchthat v€ B, NB, . From the assumption, we
know that t < f, (BA”)/\ B, (Bjm_ ) S V.iecen, nn, B, (C) and furthermore, there exists
C, such that ze C, B, B, cAnB, B,(C,)>t. Since U,.,,C,=ANB,
we have t <A _, 2 B(C)SN/y 5 _uns/NaeaB(B)=7,(ANB). Now, let 7,(A)
AT, (B)=k. For any natural number n, we have 7, (A)>k-1/n, 7,(B)>k~1/n
andso 7, (ANB)2k—1/n. Therefore 7, (AnB)2k=1,(A)r7,(B).

Definition 2.2. ¢, € S(P(X)) is called an y -subbase of 7, if ¢} is an y -base of
z,, where @) (NcaBy) =V, 5,-4 Naea @2 (B;) » {B,: Ae A} P(X), with “€”
standing for “a finite subset of”.

Theorem 2.3. ¢, € Ts(P(X)) is an y -subbase of some fuzzifying y -topology if and
only if ! (X)=1.

Proof. We only demonstrate that (pf satisfies the second condition of Theorem 2.2,

and others are obvious. In fact ¢ (A)Ag] (B)= ﬂgl:M/E}\l o, (BA) A

QA

" \'/AfB(””/E\"‘%(BA))A(@/E\AZ(/’V(B&) s vV (/\

N\ o, (B = S %
Aeh, 7( ’17)] N 2.=4 N QEASTALE 7
A Aeny 2eA

(Bﬂ))=¢f‘(AmB). Therefore if z€ ANB, then ¢ (A)Ag) (B)< @) (ANB)<
Vo9 (C).

reCcANB

V
ﬂ B, =B
hers

3. Fuzzifying y -compact spaces

Theorem 3.1. Let (X,7) be a fuzzifying topological space, @, be an y -subbase of
7,,and
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Bi= (YR)(K,, (R, X) 530 (0 <R) A K0, X)®FF(p))) , where K, (%, X)
=K(RX)®(Rco,);

B, =(Vv5S) (S is a universal net in X) — 3z ((x € X) A (S >7 :1:)) :

By=(VS) (SeN(X)—3T)(3x)(T< S)A(veX)A(T >7x)) , where “T<S ”
stands for ““ T" is a subnet of S”’;

B, =(VS) (SN (X)—=(adn,s =9));

Bi= (VR) (Re F(P(X))ARCF ®fI(R) > FaVA(AeR>zeA)). Then
E(X.7) €T, & B, i=12,5.

Proof. (1) Since ¢, c 7, , [EKg(pyJS[‘Jic;TyJ for any R e J(P(X)). Then

[K% (EK,X)] < [K}, (EK,X)} . Therefore T, (X,7)< [ﬂl] .
@) [B.]= /\{\/Iex [S =4 x] : S is a universal net in X} .

(2.1) Assume X is finite. We set X ={z,,---,z,,}. For any universal net S in X,

there exists i, € {l,---,m} with S é{xiﬂ}. In fact, if not, then for any i€ {l,---,m},
S& {xl} , Sc X—{xiﬂ} and S&N, (X_{SCZ; }) =¢ , a contradiction. Therefore
x, ¢ A and NI (A)=0 (see [13], Theorem 4.2 (1)) provided SE&A , and
furtheremore [S > 2, J =/Ngea (1 - NI (A)) =1.

Therefore [4,]=12[4,].

(2.2) In general, to prove that [, |<[f,] we prove that for any A€[0,1],if [3,]< 4,
then [f,]<A. Assume forany A€[0,1], [f,]<A. Then there exists a universal net S
in X such that \/zeX[S l>y:c] <A and for any z € X,[S >7x:| = /\S“(l—Nf(A)) <A,
i.e., there exists A< X with S& A and N7 (4)>1-A4. Since @, is an y -subbase of
7,, @, is an y -base of 7, and from Definition 2.1, we have \/,_,_, @y (B) > N7 (A)
>1-4, ie., there exists B A such that € BC A and \/{min _, ¢, (B,):N,u B,
=B,B, c X,Ae A} =9} (B)>1-A, where A is finite. Therefore there exists a finite
set A and B, ¢ X(A€A) suchthat N,.,B, =B and forany €A, ¢, (B;)>1-1.
Since S& A and A is finite, there exists A(z)e A such that S & By, - We set

ERO(BA(Z)):\/IEA% (Bi(z))' If o <R, then for any 6 >0, @, g{B}i(I) ::z:eX}.

Consequently, for any Be p;, S& B and S & B because S is a universal net. If
[FF (50)] =1- inf{5 e[0,1]: F (@, )} =t ,then for any n € w (the non-negative integer),

inf{5e[0,l]:F(5{)§)}<1—t+1/n, and there exists J, <1—t+1/n such that F(go(sg).
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If §, =0, then P(X)=g, is finite and it is proved in (2.1). If &, >0, then for any
Begps, SCB. Since F(gogb), we have Séﬂ{B" :Begoﬁb}¢¢. Le, U, =X
and there exist x, € X' such that for any Be @, , x, ¢ B. Therefore, if x, € B, then
Bep, ,ie., p(B)<d., K(9,X)=/\,cx Voes £(B) S\, s 9(B)< 8, <1—t+1/n.
Let n —> . We obtain K (¢, X)<1-t and [K(go,X)@FF(go)]= 0. In addition,
[K, (R.X)]21-2. Infact, [R. o, |=1 and [K (R, X)]= /A, \V,ep K. (B) 2

/\J,Exi)(o(Bw)) > N\

x

ey %(B/l(w)) >1-A because x € BJ(I). Now, we have [/51] = (VER)

(K, (R.X)>3p((p<R)AK (0, X)® FF (p))) <K, (%.,X)>3p((@<R.)A

K (9,X)® FF (p)) =min(1,1—K¢7 (R, X)+ v [K(go,X)@FF(go)]jS/l . By

PR,
noticing that A is arbitrary, we have [, ]<[£,].
(3) It is immediate that [4,]<[f,].

(4) To prove that [S,]<[f,].first we prove that [EIT((T<S)/\(T|>7;U))J < [S’ x?:v],
where [3T((T< S)A(T |>7a:))J =VresN\rea(1=-N7(A)) and [S oz ]= Ay, (1-N7

(A)) . Indeed, for any T'< S on can deduce {A:S (1a A}g{A:T& A} as follows.
Suppose T'=SoK . If ST A, then there exists me D such that S(n)e A when

n =>m , where > directs the domain D of S. Now, we will show that T'& A . If not,

then there exists p € E such that T(q) € A when ¢ 2> p, where > directs the domain
E of T'. Moreover, there exists n, € E such that K (n,)>m because T'<S , and
there exists n,e E such that n,>n, , p because (E,>) is directed. So, K (n,) 2K (n,)
>m, SoK(n,)e A and SoK(n,)=T(n,)e A. They are contrary. Hence {A:

STA}{A:T& A} . Therefore [EIT((T< S)A (T >7m))} = \/T<S/\T¢A(1 —N;’(A))
= \/T<S/\{A:T(tA}(l - Nf'(A)) < /\{A:S'EA}(I - N:LZ(A)) = /\SE[A(l - N{(A)) = [S xyx] :
Therefore for any z € X and S e N(X)we have [B,]= A V/ [EIT((T <S)A(T "

SENX) ok
x))] < SeA/w\(x)x\E/XI:S o m] - Se{v\(x)_'(ybg( (1 _[S o’ m])) - Se{/\(X)[ﬁ(adhyS = ¢):| -
4]

(5) We want to show that [3,]<[f;]. Forany Re F(P(X)) , assume [f] (9?)] =1.
Then forany § >1-4,if A, A e R;, AnA,N-—-NA#¢. Infact, we get p(A,)
=\, R(4,). Then @ <R and FF(p)=1. By putting £=1+5—1>0, we obtain
A-e<A<[FF(p)—(32)(VB)(Bep > 2€B)|=\/,.x N\, (1-9(B)) .  There
exists z, € X such that 1—e</\_,, (1-@(B)), 2. ¢ B implies p(B)<1-A+e=45
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and z, e Ny =A NA, N--NA, . Now, we get F={A NA N-NA :neN,A,

A, eR,;} and S:9; > X, Bozy,eB, Bed; and know that (d;,C) is a
directed set and S is a net in X . Therefore [, ] S[ﬁ(adhySE ¢)} =\V,ex Neza (1
—N7(A)). Assume [Rc F, |=p. Then for any Be P(X), R(B)<1+F, (B)-u,
and [RcF,®fI(A)>(Fz)(VA) ((AeR)>zed)|=min(L2-u—-A+\/,
AN (I—ER(A))) Therefore, it suffices to show that for any € X, A, (1—Nf (A))
S2—p—2A+ /N, (1-R(A)) , ie, Voo R(A)<2-pu-2+\/ 5, N7 (A) for some
d>1-A. Forany te[0,1], if \/,,, R(A)>t, then there exists A, such that z & A
and R(A,)>t.

Casel. t<1-A,then t<2—u—A+\/4, N’ (A).

Case 2. t>1-A. Here we set 6 =1/2(t+1—A1) and have A e R;, A, €. In
addition, t<9i(Ao) <I+F, (Ao)—,u s t+u—-1<F, (A) =7, (A:') . Since A €V;, we
know that S, € A , ie., S, 2 A when BC A and ST A°. Therefore, 2—u— A+
Vsaa N7 (A)22-pu—A+N7 (AS)22-p-A+7,(AS)2t+(1-4)2t. By noticing
that ¢ is arbitrary, we have complete the proof.

(6) To prove that [ ;]| = I:(X,T) € l"y:l see [20] Theorem 4.3.

The above theorem is a generalization of the following corollary.

Corollary 3.1. The following are equivalent for a topological space (X,7) .

(a) X isan y -compact space.

(b) Every cover of X by members of an y -subbase of z, has a finite subcover.
(c) Every universal net in Xy -converges to a pointin X .

(d) Each netin X has a subnet that y -converges to some pointin X .

(e) Each netin X has an y -adherent point.

(f) Each family of y -closed sets in X that has the finite intersection property has a
non-void intersection.

Definition 3.1. Let {(XS,TS) se S} be a family of fuzzifying topological spaces,
[I,.s X, be the Cartesian product of {X,:seS} and ¢= {p;‘ (U,):se8,U, e
P(X,)}, where p, :TI
for the set of indices of elements in @ . The y -base 8, € (1,4 X,) of I, (T}, )5 is

X, > X, (teS) is a projection. For ® c ¢, S(P) stands

seS

defined as

Vep,=@30)(ecpr(Ne=V))—> Vs(se S(@)->V, e (TJ,)S), ie.,
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A= M (7). (V).

Definition 3.2. Let (X,z), (Y,0) be two fuzzifying topological space. A unary
fuzzy predicate O, € F(Y™) , is called fuzzifying y -openness, is given as:
0,(f)= VU(U er, > f(U)e 0'7). Intuitively, the degree to which f is y -open is
[0, (£)]=Npex min(L1-7, (U)+0, (£(U)))-

Lemma 3.1. Let (X,7) and (Y,o) be two fuzzifying topological space. For any
feY*, 0,(f)=VB(Be B} - f(B)eo,), where B isan y -base of ,.

Proof. Clearly, [O,(f)|<[VU (U € B >f(U)€a,)]. Conversely, forany U c X,
we are going to prove min(l,l—ry U)+o, (f(U)))Z [VV(VG,BX - f(V)eo, )J
If 7,(U)<o,(f(U)). it is hold clearly. Now assume 7,(U)>o,(f(U)). fR < P(X)

with UR=U , then U, f(V)=f(UR)=f(U). Therefore 7, (U)- ( U))=
N BI(V) - No,(W) <

‘J‘clf’(X\)/U‘JH S8 ) so;P(Y),\L/Jso:f( Wee /W) sracp(x\)/Um:o veR A V)
N V)) < Y (V)-o, (L1-7, (U

‘J‘CP(X\)/Uso yVeR Y(f( )) mcp(x\)/ R=U ‘eg‘( » (V) ) min s )

Lemma 3.2. For any family {(X,,7,):se S} of fuzzifying topological spaces.
() &= (‘v’s)(se S—p, e 07) ;

() b(Vs)(seS%ps eCy).

Proof. (1) For any teS , we have O, (pt):/\L,EP(H’ESX’)min(l,l—(]—[ses (T},)s)
(U)-‘:—(T;, )t (, (U))) Then it suffices to show that for any U € P(I1,.s X,), we have

(Ty)t (n (U))2 (Hses (T}’ )é)(U) -

Assume (HSES (Ty) )( )=\, 50N iea Vo, oo, B,l/\seS(CDA)(T}/)S(V;)>Iu’ where
@, = (o (V):se (@, )} (e A).

Hence there exists {B,:1e A} < P(Il,_¢ X,) such that U,_, B, =U and further-
more, for any A€ A, there exists ®, € ¢ such that N®, =B, and Ny, ,p, (V,) =

s
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B, , where for any se S(®,) we have (z'y)s (V.)>u. Thus pt(U)=pt(U,, N
' (V)
(1) If for any A€ A, N g4, p.'(V,)=¢, then U=¢,pt(U)=¢ and (Ty)t(pt (U))

=1. Therefore (z’ ) (p, (U))Z(Hses (Ty)b)(U).
(2) If there exists 4, € A, such that ¢ = s, ,», (V.)=B, ,

s

seS(@;)

(1)Ifte:‘S( )1e teS- S( ) pt(B) X, . Therefore (Ty)t(pt(B&)):

(ry)t (X,)=1.

(i) If teS(®,), then p (B, )=V,cX, . Thus pt(U)=p,[[ U BLJU

tes(@, )

(mU Bﬂ»]] :[teU pt(Bzo)]U{mU r(B, )]=VtuXt=Xt Hence (z,) (p(0))

:(z’y)t(Xt) =1 or (TV)t (p, (U))= (ry)t (V)>4 . Therefore (T},)t (p, (U))=
(Hses (Ty )q)(U) Thus O, (p,) =

(2) Form Lemma 3.1 in [25] we have = (Vs)(se S — p, € C). Furthermore, s for
any two fuzzifying topological spaces (X,7) and (Y,0) and feY" , we have
C(f)<C,(f) (Theorem 3.3 in [13]). Therefore = (Vs)(s eS—p, e Cy) )

Theorem 3.2. Let {(Xs,rs):se S} be the family of fuzzifying topological spaces,

then =3U{U CTLg X, AT, (U 2/U) Ado(welit, (U)) 53T (T€SAW(te S-TAT, (X,.7)) .

Proof. It suffices to show that \/ r, (U,g/lU)A \/ NZ(U) ISV AN
(;EP[HX ] erX, TestesS-T
T, (X,.7,). Indeed, if \/ |T,(U,z/U)A \/ NI(U)|>u>0, then there
UeP[HX\] “HX

exists U e P(I,.g X,) such that T, (U,z/U)>u and \/,.;_ x NI (U)>u , where
N (U)=\ ey v (Hses (Ty )é)(V) Furthermore, there exists V' such that xte V' cU
and (Hseg (ry) )(V)>/z. Since S, is an y -base of ngs( ) (Hses (T},)S)(V)

- \/Uz AB1=V /7'€A ﬂ ( ) \/Uz A By=V /\AGA \/‘Digﬁ’ﬂd’z:BA /\SES((DJ) (TY )s (‘/’) > H ’
where @, {p seS(CI)A)}(ﬂ.eA).
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Hence there exists {B, : A€ A} < P(I1,.4 X,) such that U,., B, =V . Furthermore,
for any A€ A, there exists ®, € ¢ such that N®, = B, and for any se S(®,), we
have (z,) (V,)> . Since # €V, there exists B, such that ze B, <V cU . Hence
there exists @, €¢ such that @, =B, and N_yq, p.'(V.)=B, cIl.. X, and
for any seS(®,), we have (z,) (V,)>1-u. By nsesmpgl (V.)=B, . we have
Py (B, )=VscX;. if §eS(®, ): P(B,)=X,,if 6eS-S(®, ). Since B, c
U, for any 5€S-S(®, ), we have P;(U)2 P;(B, )= X, and P;(U)=X,. On
the other hand, since for any s€ S'and Ue P(X,), (Il.o(z,), ) (7'(U,)) 2z, ) (U.

)
we have, for any s€ 5, I, (p.) =\, Ly min(11=(7,) (U,)+ s (7, ), (p7'(0, ))
=1. Furthermore, since by Theorem 3.5 [20], we have =T, (X,7)® I(f) T, (f(X)).
then T, (U,7/U)=T,(U,z/U)®I, (p,)<T,(P;(U).75)= T,(X,.75). Therefore,
Vres MNiesr Ty (X07) 2 Nsog_gio) Ty (X5:75) 2T, (U7/U)> 1.
The above theorem is a generalization of the following corollary.

Corollary 3.2. If there exists a coordinate neighborhood y -compact subset U of

some point x € X of the product space, then all except a finite number of coordinate
spaces are ¥ -compact.

Lemma 3.3. For any fuzzifying topological space (X,z') , Ac X,
=T (X,7) > T) (A,7/A).

Proof. [T7(X.7)]= A (N7 (U).NI(V)) £ A

Y€ XY U VeP(X)UNV=¢ Y€ X0y (UAA)N(V nA)=p

(VA @ANNAVAL) < A (N ) =T (4,

LAY [y g 0 Ve P(A)
t/A), where N7 (U)=\/,.ccp 7, JA(C) and 7, /A(B)=\/ j_ys 7, (V).
Lemma 3.4. For any fuzzifying y -topological space (X,7),
=T/ (X,7)®T, (X,7) > T] (X,7).
For the definition of T/ (X,T) see [19, Definition 3.1].

Proof. If [T;’(X,r)@l"y (X,T):|=0, then the result holds. Now, suppose that
[77 (X.7)®T,(X.7)]>A>0. Then T/ (X,7)+T,(X,7)-1>4>0. Therefore
from Theorem 5.4 [20], T (X.7)® (T, (A)AT, (B))A(ANB=¢)=" T/ (X.7) >
(EiU)(EIV)((U € Ty)/\(Ve T},)/\(A gU)/\(B gV)/\(AﬁB = ¢)) . Then for any
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)AT (B)) < Vuav=pacu,pey MiN (Ty ),

ABcX, AnB=¢, T/ (X,7)®(T,
< ( ) —>\/Umv:¢,AgB,Bgv min(TV (U)’

7,(V)) or equivalently 77 (X,7) ﬁ
T},(V)).

Hence for any A, BcX , AnB=¢ , 1—[1“},(/1)/\1" (B )}+\/LM P p—
min(z, (U).7, (V))+T, (X,7)-1> 4. From Theorem 5.1 in [20] we have =T ( z')
®AeF, >T,(A). Then T, (X,7)+[7, (A7) a7, (BY)]-1= (I, (X.0)+7,(4)-1)A
( .7)+7,(B)- )s(r (X,7) ®T(A”)) ( y(X,z')®T(B")) [ r (B ]
Thus I“},(X,T) [T(A)AT,(B)]-1<=[7,(A°)a,(B")] . So, 1-[z (A()/\T( ]

1

+\/U,W:¢,AQU’Bd,min(ry(U),ry(V)) >A e,  THX,7)=/\, . ,min( ,1—[77(14‘) A
ry(Bf )J +\/ v oAt ey MIN (z'y ).z, (V))) > 1.

The above lemma is a generalization of the following corollary.

Corollary 3.3. Every y -compact y -Hausdorff topological space is ¥ -normal.

Lemma 3.5. For any fuzzifying y -topological space (X,7), FI7(X,7)®T (X,7)
— T7 (X,7). For the definition of 7} (X,7) see [19, Definition 3.1].

Proof. Immediate, set A ={z} in the above lemma.

The above lemma is a generalization of the following corollary.

Corollary 3.4. Every y -compact y -Hausdorff topological space is y -regular.

Theorem 3.3. For any fuzzifying topological space (X,7) and Ac X,
7 (X,7)®T,(4A) > Ac F,.

Proof. For any {x}c A, we have {x}nA=¢ and T, ({z})=1. By Theorem 5.4
20, [77 (X,2)®(T, (A)AT, ({2})) ] € Vern -oceen, min(z, (G).7, (H,))
Assume S, ={H :AnH =¢,xeH,}, U, c,f(xr)2A4° and U _,. f(z)nA=
U_, (fx)nA)=¢ . So, U_, f(x)=A° . Therefore [T7 (X.7)®T, (4)]<
Voot -paciuen, Ty (H) SN, o Vv —puen, T (H) =V gen_ g Nose 7, (f (@)
Vien 5 % (Uyer F(@) = Vpen . 7 (A7) = 7 (4) -

The above theorem is a generalization of the following corollary.

Corollary 3.5. y -compact subspace of an y -Hausdorff topological space is y -
closed.
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4. Fuzzifying locally y -compactness

Definition 4.1. Let Q be a class of fuzzifying topological spaces. A unary fuzzy
predicate L,C' e (), called fuzzifying locally y -compactness, is given as follows:

(X.7)e L,C= (V) (3B)(v € Int(B)®T,(B,7/B)). Since [zent, (X)]= N7 (X)
=1,then L C(X,7)2T,(X,7). Therefore, = (X,7)el’, - (X,7)e L,C .

Also, since = (X,7)eT —(X,7)e LC [21] and = (X,7)el, —(X,7)eT [20],
E(X,7)el, »(X,7)e LC.

Theorem 4.1. For any fuzzifying topological space (X,7) and Ac X,
F(X,7)e LLC®AecF, —»(Ar/A)e LC.
Proof. ~We have L,C(X,7)=/\,o /ey max (0,N7" (B)+T, (B,7/B)-1) and
LC(AT/A)=Aos Veen max(o, N (@)+T, (G.(z/A)/G) - 1) . Now, suppose that

[(X,z')eLyC@)Aer:|>/1>0. Then for any x € A, there exists B < C' such that
N7Y(B)+T, (B,7/B)+7,(X - A)-2> 4. (*)

Set E=AnBeP(A). Then N7* (B)=\pocrn N7 (C)= NT* (B) and for any
UeP(E), we have (TY/A)}//E(U) =\Viecnr Ty [ A(C) = \Viecnr Voepna Ty (D) =
\VVi=pmine Ty (D) =\/y-prp 7, (D) . Similarly, (7, /B)y /E(U) =\Vy_prp T, (D) .
Thus, (z,/B) [E=(z,/A) [E and T, (E.(z/A)/E)=T,(E.(z/B)/E). Further-
more, |EeF,/B|=1,/B(B-E)=t1,/B(BNE")=\/, ,._, ,7,(D)27,(X-A)
=F,(A). Since =(X,7)el, —(A,7/A)eT, (see [20], Theorem 5.1), from (*) we
have for any xe€ A that \/ max (O, Nj,’A(G)+1"7(G, (T/A)/G) —1) > N_,LV,A(E) +1"7(E,
GcA

(z/A)/E)-1 =N7"(E)+T, (E.(r/B)/E)-12 N7*(B)+[T, (B.7/B)® E € F,

/B]-1 >N/ (B)+T,(B,7/B)+|EeF,/B]-2 =N!*(B)+T,(B,7/B)+[Ae
F},]— 2> A .Therefore L,C(A,7/A)=/\, /g, max(0,N7*(G)+T(G,(z/A)/G)
—1)> 1. Hence [(X,T) eL,C®Ae F},] <L,C(A1/A).

As a crisp result of the above theorem we have the following corollary.

Corollary 4.1. Let A be an y -closed subset of locally y -compact space (X,7).
Then A with the relative topology z/A is locally y -compact.

The following theorem is a generalization of the statement “If X is an y -Hausdorff

topological space and A is an ¥ -dense y -locally compact subspace, then A is ¥ -
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open”, where A is an ¥ -dense in a topological space X if and only if the ¥ -closure of
Ais X.

Theorem 4.2. For any fuzzifying y -topological space (X,7) and Ac X,

=17 (X.7)® L,C(A,7/A)®(CL, (A)

X)—)Aery.

Proof. Assume |:T27 (X,7)®L,C(A,7/A)® (C17 (4)= X)] >A>0. Then L,C(A,
7/A)> A-[ T/ (X,7)®(CL (A)= X)[+1=2"> 4, ie, A,y \/poymax (0,N74(B

+T, (B,.(z/A)/B,)-1> A" , ie. \yoscs Voexen 7, (K)+ T, (B,.(7/A)/B,)-
> A’. Hence there exists K, such that K, NnA=B,, 7,(K,)+T,(B,,(r/A)/B,)-1
> A’. Therefore 7, (K,)>A".

(1) If for any x € A there exists K, suchthat re K, ¢ B, c A, then U
and 7, (A) =7, (U,, K, )2\, 0,7, (K, )24 > 2.

(2) If there exists x, € A such that K m(BJf“ ) 9.1, (er“)JrFy (B‘Tﬁ ,(T/A)/B.n)—

)
+T,(B,(z/A)/B)-1)>A" . Thus for any x € A, there exists B, A such that N7*(B,)
1

K, =A

zeA

1>A’. From the hypothesis [ 7 (X,7)® L,C'(A,7/A)®(ClL, (4)= X)]|> 4>0, we
have [ 7/(X,7)®(CL(4)= X)]#0. So 7,(K, )+T,(B,.(r/A)/B, )-1+[ T} (X.7)
®(Cl, (4)=X)]-1>0 . Therefore 7, (K, )+r (B, .(z/4)/B, )—1+Ty(X,z')+
[(c1,(4)= X)]-1-1> 4. Since (r,/A) /B =Vicos, Ty AC)=\Vy_crs,
Vezpma Ty (D) =\/y_pos, 7, (D)=1,/B, (U ( (/A /BJ,Q):Fy(Bmc,z'/B&).
From Theorem 3.3. we have 7,(B; )>T7 X.7)®T (B,.7/B, )2 T}(X.7)+T,(B, .

y
7/B, )-1. Hence y( )+, (B )+ [ )=X]-2>21. Now, for any ye A°
we have [Cl, (A = xex( ) N7 (A7) . since (X,7) is a
fuzzifiying 7 -topological space, ry(K,Q)Hy( B )-1<t,(K, )®7,(B: )<, (K, )
nt, (B )<z, (K, nB. )< NI (K, nB.)<SNJ¥ (A7) . where yeK, NnB. c
H, A(H, AA) =H, A(H UA)=H, nA"CA". Therefore 0<A<r, (K, )+
7, (B )+[Cl ()= X]-2=7, (K, )+7,(B; )-1+[CL, (A) = X |- 1< N7" (A7) +1-

N7*(A°)=1=0, a contradiction. So, case (2) does not hold. We complete the proof.

Theorem 4.3. For any fuzzifying y -topological space (X,7),

F T (X,7)®(L,C(X.7)) - VavU

UeN »3V(VeNr AL (V)cU AT, (V))),
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where (LYC(X,T))Z =L,C(X,7)®LC(X,7).
Proof. We need to show that forany z and U, ze U, T} (X,7)® (LyC(X,z'))2 ®
NZX(U) €V ey (NS (VIAA, o N7 (V) AT, (V,2/V)). Assume that T7 (X, 7)

®(L7,C(X,T))2 ®N’*(U)>A>0. Then forany z e X there exists C such that
T/ (X.7)+ N7 (C)+(L,C(X.7)) +N7" (U)-3> 2 *)

Since (X,7) is fuzzifying y -topological space, N’* (C)+N!* (U)-1< N7*(C)
®N!* (U)S NI* (C)AN* (U)S NI* (CAU) =\ ,ayccrv Ty (W) . Therefore there
exists W such that e W cCNU and T/ (X,T)+(L70(X,T))2 + 7, (W)—Z >A.
By Lemma 3.3 and 3.5 we have 77(X,7) < T7(C,7/C) and T](C,7/C)+T,(C,7/C)
-1< T} (C,7/C)®T, (C,7/C)<TY (C,7/C) . Thus T7(X,7)+T,(C,7/C)+1,(W)
—2> . Since for any z € Wc U ,we have 17 (C,7/C) Sl_Ty/C(W)JF\/GgC((NfC
(GYAN o NI¢ (C—G))) , so there exists G, xe G cW such that ((Nj,’c (G)A
Npeow NI9(C=G))) 2T (C.2/C)+ 7, /C(W)-12T (C.t/C)+1, (W)-1 and

((Nj" (G)AN oy N7°(C = G))) + T,(C,7/C)=1> 4. Thus N7 (G)=\/prees

N"*(D)=N"* (GUC’“)>/”L’: A+1-T,(C,7r/C)2 A . Furthermore, for any ye

C-Ww, N'“(C-G) NI¥(GUCT)=NI¥(G*)> A’ and N7¥(G)=

=V prc=cner
NI¥((GuC)nC)2 NI¥ (GUCT)ANTT (C)> 4. Since NI¥(G°)=V/, 0
T, (B“) > A", for any ye C —W , there exists B, such that y e B] c G“ and T}/(Blj)
>A". Set B°=U, . B,. Then C-W c B cG* and 7, (B”) 2/N,eow T, (B;/)
>A’. Again, set V=BnNC , then Vc(C-W) nC =(C" uW)mC =CNnW =

W cUNC and V° =B uC*. Since (X,7) is fuzzifying y -topological space,
N7 (V)= N (BAC)2 N (B)AN?" (C)2 N7 (G)ANT" (C)> 4. (1)
By (*) and Theorem 3.3, 7,(C°) 2 T/ (X,7)®T,(C,7/C) 2 T} (X,7)+ T (C.7/C)
—12 4. So 7, (V*)=1,(B LUC )27, (B ) AT, (C°)2 4, e,
7,(V°)+T,(C.7/C) ~12 2 and
r,(v,7/V)=T,(V.(z/C)/V)zz,/C(C-V)+

r,(C.7/C)-127,(V)+T,(C.7/C)-12 4 )
Finally,
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ANz AN (V) =2, (V)22 3)

Thus by (1), (2) and (3), for any z € U , there exists V < U such that N{X (V)>4,
Ao N (V)22 and T, (V,2/V)2 4 S0 ooy (NI (V)AL N7 (V) A
r,(V.o/V))= 4.

Theorem 4.4. For any fuzzifying y -topological space (X,7),

F TV (X,7)®(L,C(X,7)) =T/ (X.7)

Proof. By Theorem 4.3, for any € U, we have \/ (N;’X (V)A A NZ* (V") >

reVcl yeU*

|77 (X.o)@ (T, (C.e/C)) @ NF* ()| Thus 1=N7* (U) 4V vy (N7 (V) AN

-
N7Y(v°) z[T;(X,r)®(ry(C, r/C))z] Jie, [T7(X,7)]2 [T{(X,z’)@ (r,(c, z’/C))Z:| .
Theorem 4.5. For any fuzzifying y -topological space (X,r) ,
=17 (X,0)® L,C(X,7) - VAVU (U e N} ®T, (4,7/4) -
WV(V cUAUeN] ar, (VO)AT, (V,T/V))),

where U e N7 = (Va:)(a: cAnU e N{X) .

Proof. We only need to show that for any A,U € P(X), |:T37 (X,7)®L,C(X,7)®
T (A g/ NI (U)] < V(NP (V) Az (V) AT (V.2/V)) . Indeed, if [77(X7)
®L,C(X,7)®T, (A,z’/A)®_NZX (U)] >A>0, then for any € A, there exists C' €
P(X) such that | 77 (X,7)® N/* (C)@T, (C,7/C)® T, (A,r/A)@ N} (U)]> 2.
Since (X,7) is fuzzifying y -topolgoical space, \/,.yccny 7, (W)=NI"(CNU)2
N7X(C)ANTX (U)2 N7¥(C)ANT¥ (U)2 N7* (C)® N?" (U) . Then there exists
W such that ze W cCnU , and [T7(X,7)®7,(W)®T,(C,7/C)®T (A,7/A)]
> A. Therefore

[17 (X.2)]+7,(W)=-1> A+2-T, (C.7/C)-T, (Az/A)=A"24 (¥

Since for any @ W, [17 (X,7)]<1=7, (W)+\/ oy (NI (B)A A\ o N (BY)),

yew* “ 'y

we have \/j_y (N{X (B)AN e N;X (B"))>2/. Thus there exists B, such that

reB, cW cCnU and for any ye W*, we have N;’X(B;’)>l’, N7Y(B,)> 4.
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Since N;’X (Bl‘f) =V,eoren T (G”) > A", then for any y e W*, there exists G,, such
that ve G}, c B; and 7 ( M) >A". Set G;=U_, .G, then W cG; c B, and

yeWw*s —xy

Ty(G;f)Z/\yew, ry(G;y)Zi’ . Since G,2B,, N/ (G‘[)zN{X(BI)>/1’ , ie
Vaenee, T, (H)> A", Thus there exists H, such that ze H, G, and 7, (H,)>A’.
Hence for any z € A, there exists H, and G, such that vre H, c G, cU, 7, (H,)>

A and Wo U, G, oU,.,H, 2 A. Wedefine Re T\NQ(P (A)) as follows:

AV (H,), there exists H, suchthat H, N A= D,
EK(D) — JH,nA=D ’ ’
0, otherwise.
Let T,(A7/A)=p>u-e(e>0) . Then 1-K,(R,A)+\/p| K(R,A)®
:|> H—E > where I:K SR A :I /\xEA \/xEB EK( ) /\1€A vaeD ( )
AeaVoeoV i oap®(H, )22 and  [Rer\A]= A min(L1-R(B)+7,\ A(B)

~——

=B/;\Xmin(1,1— Vo oT,(H)+ r,(H))=1. So, K,(R,A)=[K(R,A)]=1".

H,nA=D HAA=D
By (%), [ K (R,A)®FF(p)]|>u-e-1+K, (R A) 2 u-e-1+1 21-¢.

Thus A,y \/,ep R(E)+1-N{8: F(ps)}-1>4-¢, and N\, /., R(E)> A
8+/\{5:F(505)}. Hence there exists >0 such that F(goﬂ) and /\,_,\/,., R(D)
>A—€e+ . Therefore for any € A, there exists D, ¢ A such that @ (D, )> A-¢

+f and U,., D, 2 A. Suitably choose & such that A—£>0, then p(D,)>>0.
Since R(D,)2p(D,)>0, D, =H, NA,ie, H.NnAcp,. By F(goﬁ), so there
exists finite H,,,H,,,--,H, such that U H, 2> A and U_ H, cU_ G, . SetV =
UG, ,and V' =T_ G, AcV cU,and7, (V‘f) > Nigien T, (G( )> A’>A. Since
for any z€e A, G, cWcCnUcC, we have V=U?:1Gl.; cW cC . Because
T\C(C=V)=V ) oo Ty (D)2 7, (V)2 A7 Thus by (%), 7,\C(C-V)+T(C,
7/C)=1> A4, and by Theorem 5.1 [21], T, (V,z/V)=T, (V,T/C/V)Z[F}, (C,7/C)
®r,\C(C-V)]>2.

Finally, we have for any ze€ A , N’,’X (V):Nfc’x (U’;ZIGJ )>N” ( "L H,, )>

Ty (U?;lH., )> Arer y( )> A’>A. So, NV ( )= AV NZ (V)Z A . Therefore
NE V) A, (VAT (V.e/V) 2 4. Thus Vi (N (V) g, (V) AT, (V.2V)) 2.
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Theorem 4.6. Let (X,7) and (Y,o) be two fuzzifying topological space and
feY™ be surjective. Then £ L,C(X,7)®C,(f)®O0(f)— LC(Y,0). For the
definition of O(f), see [25].

Proof. If [Lyc(X,T)@)Cy (f)®0(f)]>/1>0, then for any z € X , there exists
Uc X, such that [ N7 (U)@T, (U,7/U)®C, (£)@O(f)|> 2. Since N/* (U)=

zeVcU %y
®C, (f)®O(f)]> 4. By Theorem 5.2 in [20], [T, (U.z/U)®C, (f)]<[T(f (V).
a/f(U))] and [7(V")®O(f)]=max (0,2(V")+0(f)~1) = max(0,7(V")+ /\ min

\Vsever T, (V) so there exists V’c X such that ze V'c U and [z'y(V’)@Fy(U,T/U)

(L1=z (V) +o(f(V)-1) <max(0.z(V)+1-z(V')+a(f(V))-1) =o(f(V))<
N‘;/(I)(f(V )) Y( (f(U)) . Since f is surjective, LC(Y,O‘)zLC(f(X),O‘)z

yef(f/);f( X)ur=f(U)ef(X )[ U, ®[F O-/U ):I] yef(/)\f(x)[NfY(f) (f(U))]@[F(f(U),

o/f(U)]= A [r(V)®O(f)®T, (U.7/U)®C,(f)]= 1.

vef(z)ef(X)

v<

Theorem 4.7. Let (X,7) and (Y,o) be two fuzzifying topological space and f € Y~
be surjective. Then = L,C(X,7)®I, (f)®O,(f)— L,C(Y,0).

Proof. By Theorem 5.3 in [20], the proof is similar to the proof of Theorem 4.6.
Theorem 4.6 and 4.7 are a generalization of the following corollary.

Corollary 4.2. Let (X,7) and (Y,0) be two topological space and f:(X,7)—
(Y,o) be surjective mapping. If f isan y -continuous (resp. y -irresolute), open (resp.

y -open) and X is locally ¥ -compact, then Y is locally compact (resp. locally y -
compact) space.

Theorem 4.8. Let {(X,,7,):s€ S} be afamily of fuzzifying topological spaces, then
= L, (Mg XM (7,) ) > Vs[se SALC(X,(5,) |AIT (T €S aVt(te S-T
AT, (X,.7,)).

seS seS 5 resteS-T

Proof. It suffices to show that Lyc’(]_[ XS»H(Ty )S)S s/g\s[LYC(X‘* ) (Ty) YNAVAVA

seS

F},(Xt,ft ):I From Theorem 4.7 and Lemma 3.1 we have for any te S ,LVC’(HXS,

I(z,), j :[LVC(HXS,H(TY)S)(@C} (p,)®O0, (p,)}SLyC(Xt,Tt) S0, Aep .

seS seS ses

LC(X,.7,)2L, C’(Hbes Xé,Héeg( 7)5) By Theorem 3.2 we have \/ /\ T (X,

regtes-T 7
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)2 FV(U,H(T},) \Uj@ \/ NjX(U)) > [FV(U,

2 VoV
x;gx\ U;ng\ XQHX
[r, (U, I(z,). \U) ®N7¥ (U))} =L,

C(H X1 (2'7 )g) Therefore LYC(HSEs X, I (2'7 )q) < [/\tesz LC(X,,7,)A

seS seS
\/f@S /\teS—T F;/ (Xt’T;/)] :

We can obtain the following corollary in crisp setting.

Corollary 4.3. Let {XA ‘e A} be a family of nonempty topological spaces. If
I1,., X, is locally y -compact, then each X, is locally ¥ -compact and all but finitely
many X, are y -compact.

Conclusion.

The present paper investigates topological notions when these are planted into the
framework of Ying’s fuzzifying topological spaces (in semantic method of continuous
valued-logic). It continue various investigations into fuzzy topology in a legitimate way
and extend some fundamental results in general topology to fuzzifying topology. An
important virtue of our approach (in which we follow Ying) is that we define topological
notions as fuzzy predicates (by formulae of Lukasiewicz fuzzy logic) and prove the
validity of fuzzy implications (or equivalences). Unlike the (more wide-spread) style of
defining notions in fuzzy mathematics as crisp predicates of fuzzy sets, fuzzy predicates
of fuzzy sets provide a more genuine fuzzification; furthermore the theorems in the form
of valid fuzzy implications are more general than the corresponding theorems on crisp
predicates of fuzzy sets. The main contributions of the present paper are to give
characterizations of fuzzifying y -compactness. Also, we define the concept of locally

y -compactness of fuzzifying topological spaces and obtain some basic properties of
such spaces. There are some problems for further study:

(1) One obvious problem is: our results are derived in the Lukasiewicz continuous
logic. It is possible to generalize them to more general logic setting, like residuated
lattice-valued logic considered in [27-28].

(2) What is the justification for fuzzifying locally y -compactness in the setting of
(2,L) topologies.

(3)Obviously, fuzzifying topological spaces in [16] form a fuzzy category. Perhaps,
this will become a motivation for further study of the fuzzy category.

(4) What is the justification for fuzzifying locally y -compactness in (M,L) -

topologies etc.
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