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a- separation axioms based on Lukasiewicz logic
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Abstract

In the present paper, we introduce topological notions defined by means
of a-open sets when these are planted into the framework of Ying’s
fuzzifying topological spaces (by Lukasiewicz logic in [0, 1]). We in-
troduce T5'—, 11—, T5' (a- Hausdorff)-, T5' (a-regular)- and T} (-
normal)-separation axioms. Furthermore, the R§— and R — separa-
tion axioms are studied and their relations with the T7'— and 75—
separation axioms are introduced. Moreover, we clarify the relations
of these axioms with each other as well as the relations with other
fuzzifying separation axioms.
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1. Introduction and Preliminaries

In the last few years fuzzy topology, as an important research field in fuzzy
set theory, has been developed into a quite mature discipline [7-9, 14-15, 27]. In
contrast to classical topology, fuzzy topology is endowed with richer structure,
to a certain extent, which is manifested with different ways to generalize certain
classical concepts. So far, according to Ref. [8], the kind of topologies defined by
Chang [4] and Goguen [5] is called the topologies of fuzzy subsets, and further is
naturally called L-topological spaces if a lattice L of membership values has been
chosen. Loosely speaking, a topology of fuzzy subsets (resp. an L-topological
space) is a family 7 of fuzzy subsets (resp. L-fuzzy subsets) of nonempty set X,
and 7 satisfies the basic conditions of classical topologies [11]. On the other hand,
Hohle in [6] proposed the terminology L-fuzzy topology to be an L-valued mapping
on the traditional powerset P(X) of X. The authors in [10, 23] defined an L-fuzzy
topology to be an L-valued mapping on the L-powerset LX of X.

In 1952, Rosser and Turquette [25] proposed emphatically the following prob-
lem: If there are many-valued theories beyond the level of predicates calculus,
then what are the detail of such theories 7 As an attempt to give a partial answer
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to this problem in the case of point set topology, Ying in 1991-1993 [28-30] used a
semantical method of continuous-valued logic to develop systematically fuzzifying
topology. Briefly speaking, a fuzzifying topology on a set X assigns each crisp
subset of X to a certain degree of being open, other than being definitely open
or not. In fact, fuzzifying topologies are a special case of the L-fuzzy topologies
in [10, 23] since all the t-norms on I = [0, 1] are included as a special class of
tensor products in these paper. Ying uses one particular tensor product, namely
Lukasiewicz conjunction. Thus his fuzzifying topologies are a special class of all
the I- fuzzy topologies considered in the categorical frameworks [10, 23]. Roughly
speaking, the semantical analysis approach transforms formal statements of in-
terest, which are usually expressed as implication formulas in logical language,
into some inequalities in the truth value set by truth valuation rules, and then
these inequalities are demonstrated in an algebraic way and the semantic validity
of conclusions is thus established. So far, there has been significant research on
fuzzifying topologies [12-13, 20-21, 26]. For example, Shen [26] introduced and
studied Ty—, Ty —, Tz (Hausdorff)-, T5(regular)- and Ty(normal)- separation ax-
ioms in fuzzifying topology. In [13], the concepts of the Ry— and R;— separation
axioms in fuzzifying topology were added and their relations with the 77— and T5—
separation axioms, were studied. Also, in [12] the concepts of fuzzifying a-open
set and fuzzifying a-continuity were introduced and studied. In classical topology,
a-separation axioms have been studied in [2-3, 16-17, 19, 22]. As well as, they
have been studied in fuzzy topology in [1,18, 24]. In the present paper, we explore
the problem proposed by Rosser and Turquette [25] in fuzzy a-separation axioms.

A basic structure of the present paper is as follows. First, we offer some def-
initions and results which will be needed in this paper. Afterwards, in Section
2, in the framework of fuzzifying topology, the concept of a-separation axioms
TS —, TP —, T (a-Hausdorff)-, T (a-regular)- and T (a-normal) are discussed.
In Section 3, on the bases of fuzzifying topology the R — and R{— separation ax-
ioms are introduced and their relations with the T7* and T3 — separation axioms
are studied. Furthermore , we give the relations of these axioms with each other as
well as the relations with other fuzzifying separation axioms. Finally, in a conclu-
sion, we summarize the main results obtained and raise some related problems for
further study. Thus we fill a gap in the existing literature on fuzzifying topology.
We will use the terminologies and notations in [12-13, 26, 28, 29] without any
explanation. We will use the symbol ® instead of the second ” AND” operation A

as dot is hardly visible. This mean that [a] < [p — Y] < [a] ® [¢] < [¢].

A fuzzifying topology on a set X [6, 28] is a mapping 7 € $(P(X)) such that:

() 7(X)=1,7(¢) = L
(2) for any A, B,7(AN B) > 7(A) A7(B);

(3) for any {Ax: A€ A}, T ()\LEJAA,\) > /\/e\AT (Ay) .

The family of all fuzzifying a-open sets [12], denoted by 7, € S(P(X)), is defined
as
A€ty :=Ve(x € A— x e Int(Cl(Int(A)))),1. e, 7a(A) = A Int(Cl(Int(A)))(x)

€A
The family of all fuzzifying a-closed sets [12], denoted by F,, € S(P(X)), is defined

as A € F,, := X — A € 7,,. The fuzzifying a-neighborhood system of a point z € X
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[12] is denoted by N € I(P(X)) and defined as N2 (A) =
z€BCA

$(X), is defined as

Ta(B). The

fuzzifying a-closure of a set A C X [12], denoted by Cl, €

Clo(A)(x) = 1 - N2(X — A).

Let (X, 7) be a fuzzifying topological space. The binary fuzzy predicates K, H, M €
,V eS(XxP(X))and W € (P(X)x P(X)) [13] are defined as follows:
z,y) =JA(Ae N ANy¢ A)V(Ae Ny Az ¢ A));

) z,y):=3B3C((B€ N, Ay¢ B)A(C e NyAz ¢ C));

) M(z,y) :=3B3C(B€ N, A\C € NyABNC =0);

) V(x,D):=3A3B(A€ N, A B GT/\DCB/\AOB 0);

YW(A,B):=3GIH(GeT ANHeTNACGABCHANGNH =0).

e the class of all fuzzifying topological spaces. The unary fuzzy predicates

T; € 3(Q),i =0,1,2,3,4 [26] (see the rewritten form in [13]) and R; € I(Q),i =

0,1 [13] are defined as follows:
D) (X,7)eTy :=VaVy(r e X N\ye X Nz #y) — K(z,y);
2) (X, 7)eTy =VaVy(re X N\ye X Nz #y) — H(x,y);
B)(X,71)eTy:=VaVy(zre X A\ye X ANz #y) — M(z,y);
4) (X,7)eT3:=VaVD(x e XAD € FAx ¢ D) — V(z,D);
(5) (X,7) € Ty :=VAVB(Ac FABe FAANB =0) — W(A, B);
(6) (X,7) € Ry :=VaVy(r e X hye X Az #y) (K(z,y) — H(x,y));
(M) (X, 7)€ Ry :=VaVy(r e X hye X Nx #y) — (K(z,y) — M(x,y)).

2. Fuzzifying o- separation axioms and their equivalents
For simplicity we give the following definition.

2.1. Definition. Let (X, 7) be a fuzzifying topological space. The binary fuzzy
predicates K, H* M € (X x X),V* € (X x P(X)) and W?* € S(P(X) x
P(X)) are defined as follows:

(1) K(z,y) = FA((A € Ng Ay ¢ A)V (A€ NO Az ¢ A)):

(2) H*(z,y) :=3B3C((B€ Ny ANy ¢ B)AN(C € Ny ANz ¢ C));
(3) Mo‘(x y):=3IB3IC(Be Ny ANC e N ABNC =0);
(4) V¥(z,D):=3A3IB(Ae N>ANBe1t, ADC BAANB =),
(5) W¥(A,B) :==3G3H(G €T NHET,NACGABCHANGNH =0).

2.2. Definition. Let Q be the class of all fuzzifying topological spaces. The unary
fuzzy predicates T € (), =0,1,2,3,4 and RY € J(Q),7 = 0,1 are defined as
follows:

(D) (X,7) eIy =VaVy(r e X Nye X N #y) — K*(z,y);

(2) (X,7)eTP =VaVy(r e X Nye X AN #y) — H*(x,y);

3) (X,7)eTg :=VaVy(r € X Nye X Ax £ y) — M*(x,y);

(4) (X,7) € T§ :=Va¥D(z € X AD € F Az ¢ D) —s V(z, D);

(5) (X,7) €Ty :=VAVB(AE FABEFAANB= @)—>WQ(A,B);

(6) (X,7) eT¢ :=VaVD(x € XAD e FyAx ¢ D) — V(x,D);

(7) (X,7) e Ty :=VAVB(Ae F,AB€ F, NANB=0) — W(A4,B);

(8) (X,7) e Ry :=VaVy(zr e X hye X ANz #y) — (K%(x,y) — H*(z,y));
(9) (X,7) e R} =VaVy(r e X Nye X Nz #y) — (K*(z,y) — M*(z,y)).

2.3. Theorem. Let (X, 7) be a fuzzifying topological space. Then we have
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EX,7)eT§ +—VaVy(zre X Aye X Nx#y — (—(z € Clo({y})) V-

Cla({z}))))-

Proof. Since for any z, A,B, = AC B — (A€ NY — B € NY) (see [12, Theorem

4.2 (2)]), we have

(X, 7) e Tg] = /\ max(\/ N2(4), \/ Ny (A))

Ty ygA g A
= /\ max (N (X — {y}), N (X — {z}))
TF#Y
= /\ max(1 — Clo({y})(z),1 = Cloa({x})(y))
TF#Y
= N\ C(ClL({y}) (@) v =(Cla({z}) ()
zF#Y

=VaVy(re X Nye X ANz #y — (=(z € Cla({y})) Vv

2.4. Theorem. For any fuzzifying topological space (X, T) we have
EvVz({z} € F,) < (X,7) € T{.

~(y € Cla({z}))))]-

O

Proof. Since 7,(A4) = A N2(A) (Corollary 4.1 in [12]), for any x1, xo with 21 #

TEA
T9, we have

Ve({e} € F)l= A\ Fallzh) = A a(X = {zh) < A A\ Ny(X—{a})

reX zeX zeX yeX—{z}
< A ONX —{mh) SNE(X —{m}) = \/ N
yeX—{z2} o2& A

Similarly, we have, [Vz({z} € Fy)] < \/ Ng (B). Then
I1¢B

Wo{o} e ) <\ min(\/ N (4), VN8
ml;ém o A z1¢B
- /\ \/ min(Ny (A), N, (B))
T1#T2 x1¢B, T2¢A
=[(X,7) € T}
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On the other hand

(X,7)eT?]= /\ min(\/ Ng(4), \/ N

T1F#To To g A z1¢B
= /\ min(]\/'g?1 (X — {Iz}),N;?Q(X —{z1}))
T1£T2
< A Ne(X—{mh= A A\ NA(X {2}
T1F£To r2€X z1€X—{z2}
= /\ Ta(X —{x2}) = /\ To(X — {x})
zo€X zeX

Vz({z} € Fy)).

Therefore Vz({z} € F,)] = [(X,7) € T}]. O

2.5. Definition. Let (X, 7) be a fuzzifying topological space. The fuzzifying a-
derived set D, (A) of A is defined as follows: x € D,(A) := VB(B € N —
B(A-{z}) £ &)

2.6. Lemma. D,(A)(z) =1—- N2((X — A)U{z}).

Proof. From Theorem 4.2 (2) [12] we have

Do(A)(z) =1~ \V  NJB)=1-NJ((X - A)u{z}).
B(A—{z})=¢

2.7. Theorem. For any finite set A C X, =T (X, 7) = Do(A4) = ¢.

Proof. From Theorem 4.2 (2) [12] we have

A N X -MHufyh= A NyX == A\ NJ([)(X—{z})

yeX—A yeX—A yeX—A z€eA
> N ANX—{z}) = ANJ(X = {z}).
yeX—A z€A THy

Also

AN X = ufyh) = ANJX —(A-{h))= AN [ (X~ {z})

yeA yeEA yeA zeA—{y}

>N\ A NX —{zh) > ANJ(X —{z}).

yeA zeA—{y} THY
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Therefore
[Da(A) = ¢] = \ Ng((X = A) U {z})

zeX

—min( [\ N((X—A)u{y}), ANJ(X—A)Ufy})

yeX—A yeEA

> ANgX—{=h)= A A\ Nj(X—{z})
zHy zeX zeX—{y}

= N\ 7aX —{z}) = N Fal{z}) = T{'(X, 7).
zeX rzeX

O

2.8. Definition. The fuzzifying a-local basis 8¢ of z is a function from P(X)
into I = [0, 1] satisfying the following conditions:
(H)EBYCNY and (2) FAe N — IB(Be YAz € BCA).

2.9. Lemma. = A€ N2 «— 3IB(Be€ XAz e BCA).

Proof. From condition (1) in Definition 2.8 and Theorem 4.2 (2) in [12] we have
N2(A) > N%(B) > B%(B) for each B € P(X) such that x € B C A. So N3(A) >
V  B%(B). From condition (2) in Definition 2.8 we have N (A4) < \/ B%(B).
Tz€BCA Tz€BCA
Hence N3 (A)= \/ pB%(B). O
zeBCA

2.10. Theorem. If 5 is a fuzzifying a-local basis of x, then
EX,7)eTf+—VaVy(zre X Nye X Ne#y— JAA€ BNy ¢ A)).

Proof. For any x,y with x # y, ;/Aﬂg( ) < >/ NZ(A), \/BBO‘( ) < ;/BN;(B).
Y T
Somin( \/ 57 (A), \/ By (B)) < min( \/ N(A), \/ Ny (B))= 'V  min(N7(A), N (B)),
ygA ¢ ygA yg¢Ax¢B
e, AV BYA) < A V  min(NZ(A), N“(B)) [(X,7) € Tf]. On the
zAy ygA z#y y¢AxgB
other hand, for any B with z € B C X — {y} we have y ¢ B. So V p(A) >
¢A
BY(B). According to Definition 2.8 we have \/ 3(A) > V ’ B(B) =
ygA z€BCX —{y}
N2(X — {y}). Furthermore, from Corollary 4.1 [12] we have A \/ 83(A) >
z#y y¢A
AN(X={y)= A AN Ne(X—{y}) = A7aX—{y}) = A Fal{y}) =
T#Y yeX zeX—{y} yeX yeX
(X, 7) € T7). O

2.11. Theorem. If 5 is a fuzzifying a-local basis of x, then
E(X,7) e Ty «— VaVy(zr € XNy € X ANex #y — IB(B € Y Ny €
~(Cla(B))))-
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Proof.
VaVy(r € X Aye X ANx#y — AB(BEBI Ay € ﬁ(Cla(B))))]
AV w0 - N - BY)

z#y BEP(X)

:/\ \/ min(33 (B), N, (X — B))

z#y BEP(X)

= /\ \/ \/ min(ﬁS(B)aB{f(C))

z#y BEP(X) yeCCX—B

“AV \/ min (3% (D), B (E))

z#y BNC=0 x€DCB, yeECC

= AV min( \/ 82(D)\ BB

x#y BNC=() reDCB yeECC
= A\ V min(NJ(B),Ny(C)) = [(X,7) € T3]
x#y BNC=0

O

2.12. Definition. The binary fuzzy predicate >% € (N (X) x X), is defined as
Sz :=VAAe N — S S A), where N(X) is the set of all nets of X, [S>“z]
stands for the degree to which S «a-converges to x and ” S ” is the binary crisp
predicates ”almost in ”

2.13. Theorem. Let (X, 7) be a fuzzifying topological space and S € N(X).
E(X,7) € T «+— VSVaVy((S C X)A(x € X)A(y € X)A(S>Y2)A(SD>Yy) —
x=y).

Proof. [(X,7) € Tg] = éé\ Am\é @(N (
VSVaVy((SC X)A(z e X)AN(y e X)AN (S 2) A (S>Yy) — 2 =y)]
— A A (V NS4V Y NE(B)

z#y SCX SgZ A S¢B
=N AV V (NI VNI(B)).

£y SCX S Z ASYB

(1) If AN B = (), then for any S € N(X), we have S £ Aor S £ B. Therefore,
we obtain Nj(A) AN (B) < \/ N(A) or NY(A)ANJB) < \ Ng(B).

SZA S%B
Consequently, \/ (NS(A)ANS(B) < A (V NA(A)V \ No(B)),
ANB=0 SCX sz A S¢ B

A) AN (B)),

and
(X,7) e T9] < WSVaVy((SC X)A(z e X)Ay e X)AN(S>Y2) A (SD>Yy) —
z =y
(2) First, for any z, y withx # y,if '\ (NJ(A)AN}(B)) < t,then N(A) <
ANB=0

tor NJ'(B) < t provided ANB = 0, i.e., ANB # ) when A € (N2); and B € (N');.
Now, set a net S* : (Ng); x (Ng)y — X, (A, B) — x4,8) € AN B. Then for
any A € (Ng)¢, B € (NJ')t, we have S*S A and S*S B. Therefore, if S* £ A and
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S*L B, then A ¢ (Ng)i, B & (NJ), ie., NY(A)V N3 (B)) < t. Consequently
V V (NJ(A)VNS(B)) <t Moreover AV \/ (NJ(A)VN(B)) <t.
S*Z A S*Z B SCXS5Z2ASEB
Second, for any positive integer i, there exists z;, y; with z; # y;, and

\/ (N2(A) AN (B)) < [(X,7) € Tg] + 1/,
ANB=0(
and hence
AV V (Ve VvNg(B)) < [(X,7) € T + 1/i.
SCXSZASYB
So we have

VSVzVy((SC X)A(z e X)A(y e X)N(SDY2) A (S>Yy) — 2 =1y)]

A AV OV (N v NaB) < (X, 7) e TS,

2y SCX S ZASY B

O
2.14. Lemma. Let (X, 1) be a fuzzifying topological space.
(1) If D C B, then \/ Ng(A) = V. Np(4),
ANB=0 ANB=0, DCB
2) V AN}X-A)= V 7B
ANB=) yeD ANB=0, DCB
Proof. (1) Since D C B then
V N =\ NAADcB =\ NiA).
ANB=0 ANB=0 ANB=0, DCB
(2) Let y € D and AN B = 0. Then
V  onB = \/ B AlyeD
ANB=0, DCB ANB=0, DCB
= \/ Ta(B) = \/ Ta(B)
yeDCBCX—A yeBCX—A
=NJ(X —A) = \ NJ(X - 4)
yeD
Vo N\ N(X - A).
ANB=0 yeD
O

2.15. Definition. Let (X, 7) be a fuzzifying topological space.

oT$M (X, 7) = VaVD(x € XAD € FAz ¢ D — JA(A € NOA(D C X—Cla(A)))).

2.16. Theorem. = (X, 7) € T§' +— (X,7) € aTél).
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Proof.
oT{V(X,r) = A\ min(L,1-7(X - D)+ \/ min(N(4), A (1 - Cla(4)(®)))
z¢D AcP(X) yeED
= \ min(L,L1-7(X =D)+ \/ min(NZ(4), \ Ny (X — A))
z¢D AeP(X) yeD

and  T§(X,7) =\ min(1,1-7(X - D)+ \V/  min(NJ(A), 7a(B))).
x¢D ANB=0, DCB

So, the result holds if we prove that
\/ min(N3(4), \ NJ(X - A)) = \/  min(NJ(A),7a(B)) (%)
AeP(X) yeD ANB=0, DCB

It is clear that, on the left-hand side of () in the case of AN D # @ there exists
y € X such that y € D and y ¢ X — A. So, /\ N3 (X — A) = 0 and thus ()

yeD
becomes
\/ min(Ng(4), \ Ng(X - A)) = \/  min(Ng(A), ma(B)),
AeP(X), ANB=0 yeD ANB=(), DCB
which is obtained from Lemma 2.14. O

2.17. Definition. Let (X, 7) be a fuzzifying topological space.
oT$(X,7) :=VaVB(z € BAB €7 — JA(A € N® A Clo(A) C B)).

2.18. Theorem. = (X,7) € T¢ +— (X, 7) € aT3(2).

Proof. From Theorem 2.16 we have

T3H(X, 1) = /\ min(1, 1-7(X—-D)+ \/ min( /\ N (X-4))
x¢ D AeP(X) yeD
Now,
oTP (X, 1) = A min(L,1-7(B)+ \/ min(NJ(4), A (1-Cla(A)®)))
z€B AeP(X) yeEX—B
= A min(L,1-7(B)+ \/ min(NJ(4), A (1-(01-NX-A4))
z€B AeP(X) yeEX—B
= A min(L,1-7(B)+ \/ min(NJ(4), A NJ(X - A)).
z€B AeP(X) yEX—B
Put B=X — D we have
ol (X, )= /\ min(1,1 - 7(X = D)+ \/ min(NZ(4), \ N(X - A)))
¢ D AeP(X) yeD

=T3'(X, 7).
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2.19. Definition. Let (X, 7) be a fuzzifying topological space and ¢ be a subbase
of 7 then

oT$ (X, 7) :=Va¥D(z € DAD € ¢ —s 3B(B € N® A Clo(B) C D)).
2.20. Theorem. = (X,7) € T$ +— (X, 7) € aT3(3).

Proof. Since [¢ C 7] = 1, from Theorems 2.16 we have
T (X, 7) > oy (X,7) = T (X, 7).

So, it suffices to prove that aTS(?’) (X,7) < ozT3(2)(X, 7) and this is obtained if we
prove for any x € A,

min(1,1—-7(A \/ min(N (B /\ NS (X -B))) > ozT?f?’)(X7 7).
BeP(X) yeXfA

Set OéT3(3)(X,T) = ¢. Then for any € X and any Dy, € P(X),x € Dy,,\; € I

(I denotes a finite index set), A€ A, |J () Dx, = A we have
AEA M€l

—oDx)+ \/ min(Ng(B), A NJX-B)=6>5-c¢
BeP(X) yeEX =Dy,

where € is any positive number. Thus

\/ min(N2(B), A NO(X—B))>p(Dr) -1+
BeP(X) yEX—Dy,

Set vx, = {B : B C Dy, }. From the completely distributive law we have

AV wmin(Vg(B), A NJ(X-B)

XNi€I\ BEP(X) yEX—Dy,

- \/ A min(NZ(F(n), N NE(X = f()

feH{’y,\i:/\iEI,\} Ni€Iy yefoxi

=V min( A NGO AN NE - TO0)

fEH{’Y,\i:/\iEI,\} A ETy N €Ty yGXfDAi

= \/ min( /\ N2(f(\)), N NX = FO)

FEI{vyx, : N EIN} Xi€1y ye U X-—Dy,
i N €Ty

\/ min( A\ N2(B), N\ Ni(X-B)

BeP(X) Ai€1N yE)\ng)\X—DAi
k3

= \/ min( /\ N (X - B)),

BeP(X ye€ U X-—Dy,
A;EIy
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where B = f(\;).
Similarly, we can prove

/\ \/ min( /\ N (X - B))
AEA BEP(X ye U X-Dy,
N €Iy
= \/ min(Ng(B A N (X — B))
BeP(X) V€A A-LejzxxiD“
< \/ min® A Ng(X — B))
BeP(X) ve,0, A‘gIAX_DAi
< \/ min( /\ N, (X - B)),
BeP(X) yEXfA
so we have
\/ min( /\ NS (X - B))
BeP(X) yGXfA
> A A \/ min(N(B), [\ Ny (X -B))
AEA N;EI\ BEP(X yeX—Dy,
/\ /\ —14+0—ce
PYINPWSIN
For any I and A that satisfy |J () Dax, = 4 the above inequality is true. So,
AEA N;ETN
\/ min(¥ N\ Ng(X - B))
BeP(X) yeX—A

ie., min(1,1—7(

=V AV A

UxeaDx=A XeA Nix,er, Dx;=Dx X€I

=7(A)—14+d—c¢

\/ mln

BeP(X)

. N\ NJ(X-B))) =i

yEX—A

Because € is any arbitrary positive number, when ¢ — 0 we have

ozT3(2)(X,7') >6= ozT3(3)(X

7). So, = (X, 7) € T¢ +— (X,7) € T,

2.21. Definition. Let (X, 7) be any fuzzifying topological space.

1) o'TSN(X,7) = VaVD(x € X AD € Faha ¢ D — JA(A € Ny A (D C

X — Cl(A))));
(2) T3V (X

3) o7V (X,
GACl,(G)N
(4) o7y (X,
B));

7

7)
7)
B=4));
T) =

(5) o'TM(X,7) == VAVYB(A € TABE€ F,AANB =0 - 3G(G € TANA C

GACIHG)NB = ¢));

:=VaVB(xz € BAB €1, — JA(A € N, ACI(A) C B));
=VAVYBAeTABe FAANB =0 — 3G(G e TN A C

VAVB(A € FAB € TAAC B — 3G(G € TAA C GACLL(G) C

o(Dy,)—14+06—¢
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6) o'T\? (X, 7) :=VAVB(A € FAB € 7o AA C B = 3G(G € TAA C GACI(G) C
B)).

By a similar proof of Theorem 2.16 and 2.18 we have the following theorem.

2.22. Theorem. Let (X, 1) be a fuzzifying topological space.
(1) B (X,7) €T «— (X,7) € TS,
(2) & (X,7) € T¢ +— (X,7) € aTV;
(3) E (X, 1) €T «— (X,7) € T, where i = 1,2.

3. Relation among fuzzifying separation axioms

3.1. Lemma. (1) E K(z,y) — K*(z,y),
(2) = H(xz,y) = H*(z,y),
(3) E M(z,y) - M*(z,y),
(4) EV(z,D) = V(z, D),
(5) EW(A,B) = W*(A, B).

Proof. Since = 7 C 74, Ny(A) < N3 (A) for any A € P(X). Then the proof is

immediate. 0
3.2. Theorem. | (X,7) € T; — (X,7) € T, where i = 0,1,2,3,4.
Proof. Tt is obtained from Lemma 3.1. O

3.3. Theorem. If To(X,7) =1, then
(1) = (X,7) € Rp — (X, 7) € R,
(2) E (X,7) € Ry — (X, 1) € R},
Proof. Since Ty(X, 1) =1, for each z,y € X and x # y, we have [K(z,y)] = 1 and
so [K*(z,y)] = 1.
(1) Using Lemma 3.1 (1) and (2) we obtain
[(XvT) € RO] = /\ [K((E,y) - H(l‘,y)] < /\ [K(‘r7y) - Ha(xvy)]
T#y TFY
< N[K*(2,y) = H(z,y)] = R§ (X, 7).
TAY
(2) Using Lemma 3.1 (1) and (3) the proof is similar to (1). O
3.4. Lemma. (1) E M*(z,y) — H%(z,y);
(2) ‘: Ha(mvy) — Ka(x’y);
(3) | M*(z,y) — K%(z,y).
Proof. (1) Since {B,C € P(X): BNC =0} C{B,C e P(X):y¢ Bandx ¢ C},
then
[M*(z,y)] = V min(N3(B),NJ(C)< V  min(N3(B),Ny(C)) = [H*(z,y)].

BNC=0 y¢B, z¢C
(2) [K*(z,y)] = max( V N7 (A), V NJ(4))> V N34 = V (NJ(AA
ygA zgA y¢A y¢A, ¢B
N (B))
= [H*(z,y)].

(3) From (1) and (2) it is obvious. O
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3.5. Theorem. Let (X, 7) be a fuzzifying topological space. Then we have
(1) F (X,7) e T} — (X, 7) € Tg5
(2) = (X,7) e T — (X,7) € TT5
(3) = (X, 1) e Ty — (X,7) € T
Proof. The proof of (1) and (2) are obtained from Lemma 3.4 (2) and (1), respec-

tively.
(3) From (1) and (2) above the result is obtained. O

)

3.6. Theorem. = (X,7) € R} — (X, 7) € R.

Proof. From Lemma 3.4 (2), the proof is immediate. a

3.7. Theorem. For any fuzzifying topological space (X, T) we have
(1) = (X,7) e T¢ — (X,7) € RY;
(2) B (X,7) € TY — (X, 7) € R§ A (X, 7) € T";
(3) If T¢¥(X,7) =1, then E (X,7) e TP +— (X,7) € R§ N (X,7) € T§.

Proof. (1) T (X, 7) = Ny [H* (2, 9)] < Nyoey [K* (2, ) — H*(z,y)] = RG (X, 7).
(2) Tt is obtained from (1) and from Theorem 3.5 (1).
(3) Since T§(X,7) = 1, for every x,y € X such that  # y, then we have
[K*(z,y)] = 1. Therefore

[(X,7) e RE A (X,7) € T§] = (X, 7) € Rf]

= A min(1,1— [K*(z,y)] + [H*(z,)))
TFY

= N\ [H(2,y)] = T{(X.7).
Ty

3.8. Theorem. Let (X, 1) be a fuzzifying topological space.
(1) (X, 7)€ R (X,7) e T — (X,7) € TY, and
(2) If T (X, 1) =1, then E (X,7) € R§ @ (X,7) € T¢ +— (X,7) € T

Proof. (1)

[(X,7) € Rf @ (X,7) € T§']
= max(0, R§(X,7) + T¢(X,7) — 1)

= max(0, A\ min(1,1 — [K*(z,y)] + [H*(z,9)]) + N\ [K(2,9)] - 1)

Ty T#yY
< max(0, A\ {min(1, 1~ [K°(z,9)] + [H(z,9)]) + [K*(z,9)]} - 1)
TEY

= N\[H(,y)] = T{ (X, 7).
T£Y



O. R. SAYED

[(X,7) € Rf ® (X,7) € T§'] = [(X,7) € R{]

= A\ min(1,1 - [K*(z,9)] + [H*(z,y)])
TFY
= N\ [H*(z,y)] = T} (X, 7),
T#Y
because T§(X,7) = 1, implies that for each z,y such that z # y we have
(K (2,y)] = 1.
O

3.9. Theorem. Let (X,7) be a fuzzifying topological space.
(1) =(X,7)eT§ — (X,7) € R — (X, 7) € TY), and
(2) ': (XvT) € Rg — ((X7T) € T()a — (X7T) € Tla)

Proof. Tt obtained From Theorems 3.7 (1) and 3.8 (1) and the fact that [«]
[p = ¥] & [a] @ [p] <[¥].

OIA

3.10. Theorem. Let (X, ) be a fuzzifying topological space.
(1) =(X,7)eTy — (X,7) € RY;
(2) = (X,7)eTy — (X,7) € R¥ A (X,T) € T¥, wherei=0,1;
(3) If T®(X,7) =1, then
(i) = (X,7) €Ty «— (X,7) € RY A (X, 7) € T§"
(i) = (X,7) €T +— (X, 7) € RY A (X, 7) € T

Proof. 1t is similar to the proof of Theorem 3.7. O

3.11. Theorem. Let (X, 7) be a fuzzifying topological space.
(1) =(X,7) e RY®(X,7) e T — (X,7) € TS, and
(2) If T (X, 7) =1, then = (X,7) € Ry ® (X,7) € T§ +— (X, 7) € T5".

Proof. 1t is similar to the proof of Theorem 3.8. O

3.12. Theorem. Let (X, ) be a fuzzifying topological space.
(1) =E(X,7)eTy — (X,7) e R} — (X, 7) €TY), and
(2) E (X,7) e RY — ((X,7) € Ty — (X,7) € T3).

O

Proof. 1t is similar to the proof of Theorem 3.9.

3.13. Theorem. IfT{(X,7) =1, then

(1) E(X,7) e T¢ — (X,7) € R — (X,7) e TP)N((X,7) € TP
(X, 1) € Tg" — ~((X, 7) € af)));

(2) = ((X,7) € R — ((X,7) € I — (X,7) € IT)) A ((X,7) € T
(X, 7) € Tg" — ~((X, 7) € aF)));

(3) )= ((X,T) e Iy — ((X,T) € Ry — (X,T) IS Tf“)) A ((X,T) e Tt
(X, 1) € Rf — (X, 7) € I§)));

(4) = (X,7) € Rf — ((X,7) € I — (X,7) € IT)) A ((X,7) € T
~((X,7) € Rf — ~((X,7) € Tf))).

LD
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Proof. For simplicity we put, T§¢(X,7) = a, RF(X,7) = 8 and TP(X,7) = 7.
Now, applying Theorem 3.8 (2), the proof is obtained with some relations in fuzzy
logic as follows:

(1) 1=(aefc—=y)=(@@f—7)A(y—acp)
=-((a®pB)® ) A=(y®-(a®p))

(@ ®@=(=(8®@ 7)) A=(y® (e — =B))

=(a—2(B® ) A(y — ~(a — =p))

=(a— (B—7)N(y — ~(a — =p))),

since ® is commutative one can have the proof of statements (2) - (4) in a similar
way as (1). O

By a similar procedure to Theorem 3.13 one can have the following theorem.

3.14. Theorem. IfT{'(X,7) =1, then

(1) E((X,7) e Tg" — ((X,7) € RY — (X, 1) € TS)) A
(X,7) €T3 — ~((X,7) € Tg — ~((X,7) € RY)));

2) E (X,7) e R} — (X,7) e T§ — (X,7) e T) AN ((X,7) € T) —
(X, 1) €T — ~((X,7) € af)));

3)E (X,7) e T¢ — (X,7) € RY — (X,7) e Tg)N((X,7) € T} —
(X, 7) € Ry — (X, 7) € TF)));

(4) = (X,7) € Rf — ((X,7) € I§ — (X,7) € T9)) AN (X, 7) € T3 —
-((X,7) € RY — —~((X,7) € T§))).

3.15. Lemma. For any o, 3 € I we have, (1A (1 —a+B)) +a <1+ 4.
3.16. Theorem. = (X, 7) € I¥ @ (X,7) e T1 — (X, 7) € T§".
Proof. From Theorem 2.2 [26] we have, T} (X,7) = A 7(X — {y}) and applying

yeX
Lemma 3.5 we have

T3H(X, 1)+ Th(X,7)

= /\ min (1,1 —7(X-D)+ \/ min(Nﬁ(A),m(B))) + /\ (X —{y})

z¢D ANB=0, DCB yex

IA

z€X, x#ty yeX ANB=0 yeX

zeX, z#y ~yeX ANB=0 yeX

< A A (min(l, L—r(X —{yh+ \/ min(N7(4), N (B)) +7(X — {y})>

z€X, zAyyeX

<A1+ Y mnevee.pm)

T#y ANB=(

ANB=0

=1+ /\ \V min(NZ(4),NJ(B)) =1+T5(X,7),

A ( A min(L,1-7(X —{y}) + \/ min(N3(A),N3(B) + N (X —{y})

A /\ min (171—7()( -{wh+ V min(Ng(A),N;(B))> + N\ (X —{y})

)
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namely, T5(X, 1) > T$(X,7)+ T1(X,7) — 1. Thus T9*(X, 7) > max(0, T9(X, 7) +

Ti(X,7)—1). O

3.17. Theorem. = (X,7) e T2 @ (X,7) e Th — (X, 1) € T¥.

Proof. It is equivalent to prove that T5'(X,7) > T (X, 7) + T1(X,7) — 1. In fact,
TH(X, 1)+ T(X, 1)

~ A min (1, | — min(r(X — B), (X — D))
END=0

+ \/ min(Ta(A),Ta(B))> + /\ (X —{z})

ANB=0, ECA, DCB 2€X

< /\ min (17 1 —min(r(X — {z}),7(X — D))

¢ D

T \/ min(N;‘(A),Ta(B))) + /\ T(X —{=})

ANB=0, DCB ze€X

= /\ min (1,maX (1 -7(X-D)+ \/ min(Ng(A), 74(B)),1 — 7(X — {z})
a¢D ANB=0, DCB

+ min(N;“(A)Ja(B)))) + A\ (X = {z))

ANB=0, DCB z€X

= N\ max (min (1, 1l-7(X-D)+ \/  min(NZ(A), Ta(B))>,min (1, 1—7(X — {z})

¢ D ANB=0, DCB

+ mm(N;(A),Ta(B)))) + N\ (X - {=})

ANB=0, DCB z€X

< /\ max (min (1, 1-7(X-D)+ \/ min(N3(4), TQ(B))) (X = {a)),

x¢D ANB=0, DCB

min (117X~ (D 4V minN2 ), 7a(B) 70X~ (o))

ANB=0, DCB

< A max(min (1,1—7'(X—D)+ \/ min(N;(A),Ta(B))) —i—T(X—{x}),l)

x¢D ANB=0, DCB

<A <min (1, 1-7(X-D)+ \V  min(Ng(A), Ta(B))) + 1)

x¢€D ANnB=(, DCB

= A min (1, 1-7(X-D)+ \V min(N;(A),ra(B))> +1
x¢D ANB=0, DCB

=T5(X,7)+ 1.
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By a similar procedures of Theorems 3.16 and 3.17 we have the following theo-
rems

3.18. Theorem. Let (X, 7) be a fuzzifying topological space.
(1) = (X,7) e T¢ @ (X,7) € T® — (X,7) € T,
(2) = (X, 1) €Ty ® (X,7) € TP — (X,7) € T§.

From the above discussion one can have the following diagram:
T 9T < T @ T

’ !
T§ ~—— T}

|

TO T1 T2 T3 T4
Ty T T3 T3 T

Conclusion: The present paper investigates topological notions when these
are planted into the framework of Ying’s fuzzifying topological spaces (in seman-
tic method of continuous valued-logic). It continue various investigations into
fuzzy topology in a legitimate way and extend some fundamental results in gen-
eral topology to fuzzifying topology. An important virtue of our approach (in
which we follow Ying) is that we define topological notions as fuzzy predicates
(by formulae of Lukasiewicz fuzzy logic) and prove the validity of fuzzy implica-
tions (or equivalences). Unlike the (more wide-spread) style of defining notions
in fuzzy mathematics as crisp predicates of fuzzy sets, fuzzy predicates of fuzzy
sets provide a more genuine fuzzification; furthermore the theorems in the form of
valid fuzzy implications are more general than the corresponding theorems on crisp
predicates of fuzzy sets. The main contributions of the present paper are to study
a-separation axioms in fuzzifying topology and give the relations of these axioms
with each other as well as the relations with other fuzzifying separation axiom.
The role or the meaning of each theorem in the present paper is obtained from its
generalization to a corresponding theorem in crisp setting. For example: in crisp
setting, a topological space (X, 7) is T¢ if and only if for each 2z € X,z € F,,
where F|, is the family of a-closed sets. This fact can be rewritten as follows: the
truth value of a topological space (X, 7) to be Tf* equal the infimum of the truth
values of its singletons to be a-closed, where the set of truth values is {0,1}. Now,
is this theorem still valid in fuzzifying settings, i.e., if the set of truth values is
[0,1]? The answer of this question is positive and is given in Theorem 2.4 above.

There are some problems for further study:

(1) One obvious problem is: our results are derived in the Lukasiewicz continuous
logic. It is possible to generalize them to more general logic setting, like residuated
lattice-valued logic considered in [31-32].

(2) What is the justification for fuzzifying a-separation axioms in the setting of
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(2, L) topologies.

(3) Obviously, fuzzifying topological spaces in [23] form a fuzzy category. Per-

haps, this will become a motivation for further study of the fuzzy category.
(4) What is the justification for fuzzifying a-separation axioms in (M, L)-topologies

etc.
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