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cyanobacteria is expected to increase in aquatic ecosystems 
(Mohamed and Al-Shehri 2012, 2015; Rigosi et al. 2014; 
Chia et al. 2019). Cyanobacterial blooms present significant 
environmental and human health hazards as several cyano-
bacterial species can produce secondary toxic metabolites 
called cyanotoxins, with different toxicological characteris-
tics including neurotoxicity (e.g., saxitoxins and anatoxins), 
hepatotoxicity (e.g., microcystins and cylindrospermopsins) 
to dermatotoxicity (e.g., aplysiatoxin) (O’Neil et al. 2012).

One particularly potent neurotoxin is anatoxin-a (ATX-
a), which is a water-soluble secondary bicyclic amine 
(2-acetyl-9-azabycyclo [4.2.1.] non-2-ene –MW 165 Da, 
C10H15NO) (Osswald et al. 2007). It is an alkaloid neu-
rotoxin produced by cyanobacterial species of the genera 
Dolichospermum (formerly, Anabaena), Aphanizomenon, 
Arthrospira, Cylindrospermum, Microcystis, Nostoc, Phor-
midium, Planktothrix, Raphidiopsis and Oscillatoria (Colas 
et al. 2021). ATX-a is a potent agonist of nicotinic acetylcho-
line receptors expressed in synapses involved in cholinergic 
axon transmission (Bertrand and Terry 2018). Since ATX-a 

Introduction

The enrichment of nutrients, particularly, nitrogen and 
phosphorus, poses a threat to aquatic ecosystems and deteri-
orate the water quality (Burgan et al. 2013). Due to nutrient 
enrichment and global warming, the proliferation of harmful 
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Abstract
Anatoxin-a (ATX-a) is a neurotoxin produced by some species of cyanobacteria. Due to its water solubility and stability 
in natural water, it could pose health risks to human, animals, and plants. Conventional water treatment techniques are not 
only insufficient for the removal of ATX-a, but they also result in cell lysis and toxin release. The elimination of this toxin 
through biodegradation may be a promising strategy. This study examines for the first time the biodegradation of ATX-a 
to a non-toxic metabolite (Epoxy-ATX-a) by a strain of Bacillus that has a history of dealing with toxic cyanobacteria 
in a eutrophic lake. The Bacillus strain AMRI-03 thrived without lag phase in a lake water containing ATX-a. The strain 
displayed fast degradation of ATX-a, depending on initial toxin concentration. At the highest initial concentrations (50 & 
100 µg L− 1), total ATX-a degradation took place in 4 days, but it took 6 & 7 days at lower concentrations (20, 10, and 
1 µg L− 1, respectively). The ATX-a biodegradation rate was also influenced by the initial toxin concentration, reaching its 
maximum value (12.5 µg L− 1 day− 1) at the highest initial toxin concentrations (50 & 100 µg L− 1). Temperature and pH 
also had an impact on the rate of ATX-a biodegradation, with the highest rates occurring at 25 and 30 ºC and pH 7 and 
8. This nontoxic bacterial strain could be immobilized within a biofilm on sand filters and/or sludge for the degradation 
and removal of ATX-a and other cyanotoxins during water treatment processes, following the establishment of mesocosm 
experiments to assess the potential effects of this bacterium on water quality.
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cannot be broken down by acetylcholinesterase, it has the 
potential to cause respiratory arrest, chronic muscular stim-
ulation, paralysis, and death (Plata-Calzado et al. 2022). 
ATX-a and their cyanobacterial producers can be found in 
both temperate and tropical freshwaters (Bruno et al. 2017; 
Yilmaz et al. 2018; Svirče et al. 2019; Christophoridis et al. 
2018; Mantzouki et al. 2018; Pitois et al. 2018; John et al. 
2019; Karosienė et al. 2020). Furthermore, independent of 
cyanobacterial growth, temperature and nutrient concentra-
tions, particularly nitrogen and phosphorus, were found to 
regulate the production of ATX-a (Bashir et al. 2023). Fur-
thermore, the existence of ATX-a in drinking water sources 
at levels exceeding the WHO guideline limit of 30 µg L− 1 
(WHO 2020) poses health hazards to humans (Liu et al. 
2018). Current and most updated treatment methods includ-
ing activated carbon, membrane filtration and TiO2 photoca-
talysis were found to efficiently eliminate ATX-a from water 
(Kumar et al. 2018; Kaminski et al. 2021). However, some 
of these methods are expensive and others require special-
ized equipment and expertise.

According to earlier studies, biodegradation is a use-
ful strategy for cyanotoxin elimination without harmful 
byproducts (Mohamed and Alamri 2012; Mohamed 2016; 
Li et al. 2015; Lezcano 2016; Mohamed et al. 2022). How-
ever, little is known about ATX-a biodegradation by bacte-
ria in comparison to other cyanotoxins. Reduction of ATX-a 
levels was linked to bacteria found in sediments (Rapala et 
al. 1994). Kiviranta et al. (1991) found that a strain of Pseu-
domonas sp. can degrade ATX-a at a rate of 2–10 µg mL− 1 
d− 1. Additionally, it has been asserted that ATX-a biodeg-
radation occurred by an assemblage of bacteria related to 
the renowned order Sphingomonadales, which contains sev-
eral species known to degrade microcystins (Kormas and 
Lymperopoulou 2013; Mou et al. 2013; Briand et al. 2016; 
Ding et al. 2022; Mugani et al. 2024). Therefore, it has been 
proposed that indigenous cyanotoxin-degrading bacteria 
can form biofilms under environmentally relevant condi-
tions, and thereby could contribute to the self-purification 
of the ecosystem from such potent toxins (Smith et al. 2008; 
Mohamed and Alamri 2012). These bacteria can also be uti-
lized to established biofilm within sand filter to help degrade 
cyanotoxins in wastewater treatment plants (Ho et al. 2007; 
Wu et al. 2019). Therefore, it is necessary to search for pure 
bacterial strains that have potential to degrade ATX-a in 
order to establish a viable biodegradation approach for this 
toxin that might be used in water treatment plants. Given 
that the indigenous Bacillus strain (AMRI-03) was isolated 
from a eutrophic Saudi lake dominated by microcystin-pro-
ducing blooms of Anabaenopsis arnoldi (Mohamed and Al-
Shehri 2009) and was discovered to be capable of degrading 
microcystin and cylindrospermopsin toxins (Alamri 2010; 
Mohamed and Alamri 2012; Mohamed et al. 2022), it might 

also be able to degrade ATX-a in natural waters. Therefore, 
the main novelty of the present study was to examine the 
biodegradation of ATX-a for the first time by a pure bac-
terial strain. The potential effects of pH and temperature 
on ATX-a biodegradation by this bacterial strain were also 
studied. Finally, the toxicity of the bacterial strain and 
ATX-a biodegradation byproducts was evaluated for pos-
sible application in water treatment plants.

Materials and methods

Materials

The Bacillus strain (AMRI-03) employed in this study 
was previously isolated from Tendaha Lake, Saudi Arabia 
(18º30ʹN and 42º20ʹE) and deposited in the Gene bank with 
an accession number of GU294753 (Alamri 2010). The 
lake has been characterized by alkaline pH (8-8.4), higher 
temperatures (28–30ºC), and dominance of microcystin-
producing blooms of Anabaenopsis arnoldi (Mohamed and 
Al-Shehri 2009). The strain demonstrated highest homol-
ogy with Bacillus subtilis (Alamri 2010). The strain was 
found to degrade microcystin and cylindrospermopsin tox-
ins (Alamri 2010; Mohamed and Alamri 2012). ATX-a was 
purchased from Abraxis (Warminster, PA, USA). The toxin 
was dissolved in sterilized lake water and the resulting solu-
tion was then diluted to reach the desired experimental con-
centrations of 1, 10, 20, 50 and 100 µg L− 1.

Biodegradation of anatoxin-a

The strain AMRI-03 was cultivated in liquid nutrition broth 
(NB) medium (Tiedje 1982) at 30 °C for 48 h while being 
shaken at 120 rpm. The bacterial cells were then collected 
by centrifugation (6000xg, 15 min, 4  °C). The pellet was 
washed twice with sterile 0.02  M sodium phosphate buf-
fer (pH = 7.2). Bacterial suspension of AMRI-03 cells at 
a final concentration of 105 cfu mL− 1 was added into a 
250-mL sterile conical flask containing 100 mL of filtered 
(0.2 μm) and sterilized lake water (pH7). To examine the 
capacity of strain AMRI-03 to utilize ATX -a as a nutrient 
source, we used NB medium without nitrogen source in this 
experiment. ATX-a toxin was spiked separately to the flasks 
at concentrations of 1, 10, 20, 50 and 100 µg L− 1. These 
concentrations were chosen based on that ATX-a levels 
may reach up to 100 µg L− 1 in the natural aquatic environ-
ment when blooms occur (Colas et al. 2021). Two controls 
were used in our experiments. Control 1, which contained 
bacterial cells of strain AMRI-03 and filtered and sterilized 
lake water but no ATX-a, was utilized to compare bacterial 
growth in the absence and presence of ATX-a in cultures. 
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Control 2 contained filtered and sterilized lake water and 
100 µg L− 1 ATX-a but no bacterial cells to ensure that it 
was not destroyed by abiotic conditions. Treated and con-
trol flasks were incubated at 30 °C with shaking (140 rpm) 
in the dark to avoid photodegradation of ATX-a by light. 
In order to determine bacterial growth and analyze ATX-
a, samples (2mL) were aseptically taken from the flasks at 
regular intervals for 8 days. Bacterial growth was moni-
tored by spectrophotometrically measuring optical density 
(OD) at a wavelength of 600 nm. The specific flowchart of 
the experimental design of ATX-a biodegradation by strain 
AMRI-03 under different conditions of temperature, pH and 
initial toxin concentration are shown in Fig. 1. Each experi-
ment was conducted in triplicate, and each assay such as 
optical density and toxin concentration was run in duplicate.

Effect of temperature and pH on ATX–a 
biodegradation

Bacterial cells were grown in filtered and sterilized lake 
water amended with 50 µg L− 1 ATX –a at 10, 20, 25 and 
30ºC to examine the influence of temperature on ATX -a 
degradation by the AMRI-03 strain. The impact of pH on 
ATX-a biodegradation was also examined by growing 
AMRI-03 cells in sterilized lake water supplemented with 
50  µg L− 1 ATX-a at various pHs (6, 7, 8, 9 and10, with 
0.1 M phosphate buffer). These experiments were executed 
with the same protocol as described in the previous section 
of biodegradation of anatoxin-a. The concentration 50 µg 
L− 1 ATX-a was used in the pH and temperature experiments 

because there was no difference in the biodegradation rate 
of ATX- a by Bacillus strain at 50 µg L− 1 and 100 µg L− 1.

Anatoxin-a analysis

To determine the ATX–a concentrations remaining (i.e., 
not-degraded) during biodegradation experiments, samples 
from bacterial cultures were collected in real time and cen-
trifuged (6000xg, 10 min, 4ºC). Concentrations of ATX –a 
in the supernatant were then determined using ELISA kit 
(Abraxis, Warminster, PA, USA) according to the manu-
facturer instructions. ATX-a quantity was estimated from 
calibration curve of semi-log relationship between relative 
absorbance and toxin concentration using ATX-a standard 
provided with ELISA kit. All assays were performed on 
duplicate for each sample. Detection limit for ATX-a was 
0.15 µg L− 1.

Estimation of anatoxin-a biodegradation rate

The average biodegradation rate of ATX-a by AMRI-03 
strain was computed by dividing the initial ATX concentra-
tion spiked into the bacterial cultures by the number of days 
until ATX-a was no longer detectable by ELISA.

Toxicity of anatoxin-a and degradation products

The toxicity of ANX-a and its bacterial degradation prod-
ucts was assessed using a commercially available Thamno-
tox kit F™ following the manufacturer’s instructions. The 
basis for this assay is the percentage mortality of the larvae 

Fig. 1  Flowchart of the experi-
mental methodology applied in 
this study
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in the positive-ion mode was applied with a scan range of 
50–400 m/z. Data acquisition and processing was achieved 
using MassLynx software (Waters Corporation, Milford, 
MA).

4.1. Statistical analysis

Differences in ATX-a biodegradation by AMRI-03 strain 
along different initial ATX concentrations, different tem-
peratures and different pH levels were tested statistically 
using one-way ANOVA (P < 0.05), followed by Tukey post-
hoc multiple comparison test to show which groups differed 
from each other (P < 0.05).

The data analysis was done using SPSS version 17.

Results

ATX-a biodegradation

Figure 2 shows the growth curve of AMRI-03 strain grown 
with different concentrations of ATX -a (1–100  µg L− 1). 
During the first three days of incubation, the growth of this 
bacterium exhibited insignificant variation between con-
trol and ATX-a-treated cultures (P > 0.05). Subsequently, 
the bacterial growth declined sharply in control cultures, 
but markedly increased in ATX-a-treated cultures with a 
decline phase obtained at day 7 for all treatments. More-
over, this strain’s growth varied considerably (F3.48 = 4.3, 
P = 0.02) among ATX-a concentrations, reaching its maxi-
mum growth at 50  µg L− 1. The bacterial growth varied 
considerably (F3.48 = 4.3, P = 0.02) between ATX-a con-
centrations used in the experiment, reaching its maximum 
growth at 50 µg L− 1. On the first day of incubation with bac-
terial strain, ATX-a exhibited a minor degradation. There-
after, depending on its initial concentration, ATX-a steady 
degraded, reaching below the detection limit of ELISA kit 
by day 8 at most.

Meanwhile, ATX-a concentrations in control 2 (i.e., with-
out bacteria) showed no remarkable change along the incu-
bation period, verifying that ATX-a degradation occurred 
by bacteria rather than abiotic factors. The reduction in 
ATX-a concentrations by AMRI-03 strain differed consid-
erably (F3.48 = 790, P < 0.0001) along the initial ATX-a 
concentrations. Moreover, the ATX-a biodegradation rate 
by AMRI-03 strain increased proportionally (F3.48 = 158.7, 
p < 0.0001) to the initial ATX –a concentrations (Tables 1 
and 2). However, no significant variation in this rate was 
observed between the highest two ATX-a initial concentra-
tions (F = 7.7 = 0, P = 1). The highest biodegradation rate 
(12.5 µg L− 1 day− 1) was recorded at higher initial ATX-a 
concentrations (50 & 100 µg L− 1) (Table 1). Additionally, 

of the crustacean Thamnocephalus platyurus. This assay is 
simple, commonly available and has been widely employed 
to test the toxicity of several cyanotoxins (Törökné et al. 
2007; Sierosławska et al. 2014). The test was performed 
in microplate wells, and each well contained 10 larvae that 
were either exposed to various ATX-a concentrations (1, 
10, 20, 30, 40, and 50  µg L-1) or to an aliquot from the 
medium of treated cultures with 50  µg ATX-a L− 1 at the 
point of complete toxin degradation (i.e., 96 h). The expres-
sion “complete toxin degradation” used through the whole 
manuscript means that ATX-a concentration was below the 
detection limit. The test organisms were grown at room tem-
perature (25 °C ± 2) in the dark for 24 h. Thereafter, dead 
larvae were counted, and the % mortality was calculated 
and expressed as the difference (%) between mortalities in 
the tested and control samples. The lethal concentration that 
causes death in 50% of animals (LC50) with 95% confidence 
limits was calculated by the probit analysis method (Finney 
1971).

Toxicity of Bacillus AMRI-03 strain

The potential toxicity of AMRI-03 strain was tested by the 
same assay used for evaluating ATX-a toxicity using a com-
mercially available Thamnotox kit F™. The assay was per-
formed in the cell-free supernatant of the bacterial culture 
grown in liquid NB medium for 72 h. A strain of Bacillus 
cereus, which was found to produce both emetic and entero-
toxins (Ahmed et al. 2018), was used as a positive control. 
The standard freshwater provided in the Thamnotox kit 
served as a negative control. The percentage mortality and 
the 24 h LC50 for AMRI-03 strain and the killing B. cereus 
(control bacterium) was evaluated by the same method as 
mentioned above.

Identification of ATX-a biodegradation 
intermediates

Bacterial cultures exposed to ATX-a at a concentration of 
100  µg L-1 (i.e., before complete biodegradation), were 
collected after 2 days and 4 days (time of complete ATX-a 
biodegradation) and centrifuged (10,000 ×g, 10 min). After 
being combined, the supernatants were dried in the evapora-
tor and redissolved in 10% aqueous methanol. The solution 
was centrifuged (10,000×g., 10 min) and 50µL of the super-
natant was transferred to HPLC vials. Biodegradation prod-
ucts in this supernatant and the ATX-a standard were both 
analyzed by using a Waters Acquity ultra-high-performance 
supercritical fluid chromatography coupled to quadrupole-
time-of-flight mass spectrometry (UHPSFC/QTOF-MS) 
following the same conditions and procedures described in 
Kaminski et al. (2021). The mass spectrometer was operated 
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Effect of temperature and pH on ATX-a 
biodegradation

The effects of temperature and pH on the growth and bio-
degradation rate of ATX –a by AMRI-03 strain are shown 
in Fig.S1 and Table  1. The optimal conditions for the 
growth of this strain were 25ºC and at pH7-8 (Fig.S1). The 
ATX–a degradation rate increased with increasing tem-
peratures (F4.07 = 34.3, P < 0.0001), and the highest rates 
were obtained at 25 and 30ºC without significant difference 
between them (Tables  1 and 2). ATX-a degradation also 
occurred at lower temperatures (10 & 20ºC), but the toxin 
was not completely removed, with 81 and 21% of ATX-a 
remaining on day 8, respectively (Table  1). Conversely, 
ATX -a was entirely eliminated in 5 days at 25ºC and 30ºC.

Our results also showed that ATX-a degradation activity 
of AMRI-03 strain differed markedly with the change of the 
pH of growth cultures (F3.48 = 990.4, P < 0.0001) (Tables 1 
and 2). The highest degradation rates were obtained at 
pH7 (8.33  µg L− 1 d− 1), pH8 (10  µg L− 1 d− 1) and pH9 
(7.14 µg L− 1 d− 1), but this rate decreased sharply at lower 
pH6 (0.44 µg L− 1 d− 1) and higher pH10 (1.56 µg L− 1 d− 1) 

complete ATX-a degradation by this strain also depended 
on the initial toxin concentration; at higher concentrations 
of 50 and 100 µg L− 1, it took 4 days to completely degrade 
ATX-a, whereas at lower concentrations (20, 10, and 1 µg 
L− 1, respectively), it took 6 and 7 days (Fig. 3).

Table 1  Effect of ATX-a concentration, temperature and pH on the 
degradation rate of anatoxin-a Bacillus strain AMRI-03 during batch 
experiments. Values are expressed as mean ± SD. Different lowercase 
letters indicate significant differences in the mortality among different 
treatments for each experiment
Factor Degradation rate

(µg L− 1 d− 1)
Time of 
complete 
degrada-
tion (day)

ATX-a concentration (µg/L)
1 a7.14 ± 1.3 7
10 a8.33 ± 1.2 7
20 a8.33 ± 1.4 6
50 b12.5 ± 2.3 4
100 b12.5 ± 2.5 4
Temperature (℃)
10 a1.2 ± 0.2 *NO
20 b4.9 ± 0.9 NO
25 c10±1.7 5
30 c10±1.5 5
pH
6 a0.44 ± 0.1 NO
7 b8.33 ± 1.6 6
8 c10±2.1 5
9 b7.14 ± 1.3 7
10 d1.56 ± 0.4 NO
*NO means that complete degradation did not occur

Table 2  Results of One-way analysis of variance (ANOVA) for rate of 
ATX-a biodegradation by Bacillus strain AMRI-03 at different condi-
tions of initial ATX-a concentrations, temperature, and pH
Variable Df MS F-value P-value F- 

crit
Initial ATX-a 
concentration

4 19.83 158.72 < 0.0001 3.47

Temperature 3 5812.31 1223.64 < 0.0001 4.06
pH 4 6140.23 990.36 < 0.0001 3.47

Fig. 2  Growth curve of Bacillus 
strain AMRI-03 at different initial 
concentrations of anatoxin-a 
in batch cultures. Values are 
expressed as mean ± SD (n = 6, 
P < 0.05). Different uppercase 
letters indicate significant dif-
ferences in the optical density 
among different treatments at the 
same incubation time (i.e., verti-
cal track). Different lowercase 
letters indicate significant differ-
ences in the optical density for 
each treatment between different 
incubation times (i.e., horizontal 
track)
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([M + H] +, m/z 182) (Kaminski et al. 2021; Liu et al. 2022). 
The structure was also searched via the Mass Frontier™ 
software (Thermo Fisher Scientific Inc.) using its exact 
mass to ensure proper identification. This demonstrates 
that the product ion with m/z 182 (i.e., degradation prod-
uct) detected by LC-MS/MS analysis is epoxy-anatoxin-a 
(epoxy-ATX-a).

Table 3 displays the mortality of T. platyurus resulting 
from ATX-a standard and the bacterial degradation prod-
uct of this toxin. ATX-a exhibited severe mortality to T. 
platyurus, and this mortality increased with the increase of 
ATX-a concentrations with an LC50 value of 13.8 µg L− 1. 

(Table 1). ATX-a completely degraded at pH 8 in 5 days, 
pH 7 in 6 days, and pH 9 in 7 days (Table 1). Conversely, 
the bacterial strain showed no complete degradation at pH 
6 and pH10 with 93% and 75% of ATX-a remaining on day 
8, respectively.

Identification and toxicity of degradation products

The MS/MS spectra of ATX-a standard showed a fragment 
ion at m/z 166.13, while degradation product in bacterial 
supernatants showed a fragment ion at m/z 182.13 (Fig. 4). 
This is in accordance with previous studies of the MS frag-
mentation product for the epoxy-ATX-a molecular ion 

Fig. 4  Fragmentation mass spectra (MS/MS) of ATX-a with product ion m/z166.13 (a) and Epoxy-ATX-a with product ion m/z 182.13 (b)

 

Fig. 3  Influence of initial 
anatoxin-a concentrations on 
anatoxin-a biodegradation (% of 
ATX-a remaining in the medium) 
by Bacillus strain AMRI-03 dur-
ing batch experiments. Values are 
expressed as mean ± SD (n = 6, 
P < 0.05). Different uppercase 
letters indicate significant differ-
ences in the parentage of ATX-a 
remaining in the culture medium 
among different treatments at the 
same incubation time (i.e., verti-
cal track). Different lowercase 
letters indicate significant differ-
ences in the parentage of ATX-a 
remaining in the culture medium 
for each treatment between 
different incubation times (i.e., 
horizontal track)
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degrader. In our study, AMRI-03 strain showed short lag 
phase (one day) when was grown with ATX-a. Previously, 
Kiviranta et al. (1991) reported ATX-a degradation by bacte-
rial populations with a lag period of 4 days. AMRI-03 strain 
was similarly found to have short lag phase during CYN 
biodegradation (Mohamed and Alamri 2012). This agrees 
with the suggestion that cyanotoxin biodegradation occurs 
rapidly by strains with a previous history of cyanotoxins 
in water bodies (Smith et al. 2008; Mohamed and Alamri 
2012). This could be the situation of our strain which could 
have been previously exposed to this cyanotoxin contained 
in cyanobacterial blooms.

Additionally, our findings demonstrated that strain 
AMRI-03 entered a decline phase in cultures not treated 
with ATX-a (i.e., control 2) after 3 days as opposed to 6 days 
in ATX-treated cultures. This indicates that this bacterium 
could employ ATX-a as a carbon and nitrogen source for 
its growth, after the depletion of the natural organic matter 
found in lake water used in our batch experiments. Accord-
ingly, previous studies demonstrated that bacteria could 
grow in preconditioned sediments (Klitzke et al. 2010) 
and lake water with CYN without any addition of natural 
organic matter (Mohamed and Alamri 2012), possibly using 
of CYN as a carbon source.

In our study, the statistical analysis revealed a positive 
correlation (r = 0.89) between the initial ATX–a concentra-
tions and its degradation rate. The maximum rate (12.5 µg 
L− 1 day− 1) was obtained at higher initial ATX-a concen-
trations (50 and 100  µg L− 1). Our results thus support 
the evidence that cyanotoxin biodegradation by bacterial 
populations is initial-concentration-dependent (Smith et al. 
2008; Alamri 2010; Mohamed and Alamri 2012). However, 
no significant difference in ATX-a degradation rate was 
observed between the highest two initial concentrations of 
ATX-a (50 and 100 µg L− 1). This finding can be due to the 
possible existence of a threshold ATX-a concentration that 
is required to induce ATX-a biodegradation by bacteria. 
The degradation rate of ATX-a by our strain (12.5 µg L− 1 
day− 1) can be compared to that (6–30 µg mL− 1 per 3days) 
by Pseudomonas sp. (Kiviranta et al. 1991) and by bacterial 
consortium in sediment (2.4 µg mL− 1 per 4 days, Rapala et 
al. 1994). This discrepancy could be due to the difference 
in bacterial strains involved in ATX-a biodegradation. On 
the other hand, the ATX-a degradation rate obtained in the 
present study, is comparable to that of CYN toxin (1.25–
50 µg L− 1 day− 1) but less than that of MC toxin (145 µg L− 1 
day− 1) obtained in our previous studies by the same strain 
(Alamri 2010; Mohamed and Alamri 2012).

In addition to toxin concentrations, our study demon-
strated that ATX-a degradation by strain AMRI-03 was sim-
ilarly affected by temperature and pH changes as bacterial 
growth was. The highest degradation rate (10 µg L− 1 day− 1) 

Conversely, bacterial cultures showing complete ATX-a 
degradation showed no toxicity to T. platyurus.

Toxicity of Bacillus AMRI-03 strain

Table 4 presents the findings of the toxicity assay conducted 
on T. platyurus. The results indicate that the toxic B. cereus 
supernatant exhibited a high mortality rate against T. platy-
urus nauplii. This mortality increased as the proportion of 
bacterial supernatant with the highest mortality (100%) 
increased, which was obtained when using bacterial super-
natant without dilution. However, T. platyurus nauplii was 
not affected in any way by the supernatant of our Bacillus 
strain (AMRI-03).

Discussion

The present study unequivocally showed that our Bacillus 
strain, isolated from a eutrophic lake, is capable of degrad-
ing the cyanotoxin ATX-a. To date, only one study identified 
a Pseudomonas strain responsible for ATX-a degradation 
(Kiviranta et al. 1991). Our study is, therefore, the second 
one to recognize and identify a bacterial strain as ATX-a 

Table 3  Mortality (%) of fairy shrimp larvae (Thamnocephalus platy-
urus) exposed to anatoxin-a and anatoxin-a degradation product by 
Bacillus strain AMRI-03 for 24 h. Values are expressed as mean ± SD. 
Different lowercase letters indicate significant differences in the mor-
tality among different treatments
ATX-a concentrations
(µg L− 1)

ATX-a mortality
(%)

Mortality of 
degradation 
products
(%)

0 0 *NM
1 a6±1 NM
10 b29±4 NM
20 c58±6 NM
50 d87±8 NM
100 e100±7 NM
*NM indicates that no mortality was observed

Table 4  Mortality (%) of fairy shrimp larvae (Thamnocephalus platy-
urus) exposed to supernatants of toxic Bacillus cereus as a positive 
control and Bacillus AMRI-03 strain used in anatoxin-a degradation. 
Values are expressed as mean ± SD. Different lowercase letters indi-
cate significant differences in the mortality among different treatments
Supernatant
Proportion

Bacillus cereus Bacillus AMRI-03
% Mortality % Mortality

Culture medium 0 *NM
25% 31 ± 6 NM
50% 69 ± 8 NM
75% 86 ± 8 NM
100% 100 ± 7 NM
*NM indicates that no mortality was observed
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In our study, the results of MS/MS analysis revealed the 
presence of degradation product with m/z 182 in the super-
natant of Bacillus culture (AMRI-03) exposed to ATX-a 
for 2 days and after ATX-a had completely degraded (4 
days). Based on other publications describing ATX-a and 
its analogues, this degradation product could be identified 
as epoxy-ATX-a (James et al. 2005; Kaminski et al. 2021; 
Liu et al. 2022). Previous studies have demonstrated that 
epoxy-ATX-a is formed by oxidation of ATX-a with UV-A/
TiO2 photocatalysis (Kaminski et al. 2021) or FeIII –B*/
H2O2 catalytic oxidation system (Liu et al. 2022). In our 
study, the Bacillus strain (AMRI-03) could oxidize ATX-a 
by generating extracellular enzymes e.g., monooxygenases, 
which add one oxygen atom to ATX-a (Arora et al. 2010) to 
transform it into epoxy-ATX-a. Notably, some strains of B. 
subtilis were found to produce P450 monooxygenase which 
catalyzed the epoxidation of linoleic acid without further 
conversion of the epoxidation product (Hou 2006). How-
ever, additional research on the Bacillus strain (AMRI-03) 
is needed to identify the genes and enzymes responsible for 
ATX-a degradation.

What is also noteworthy here in our study is that the deg-
radation product, epoxy-ATX-a resulting from the biodeg-
radation of ATX-a by strain AMRI-03, was not toxic to T. 
platyurus. Our results are thus in agreement with previous 
studies that epoxy-ATX-a is nontoxic (James et al. 2005; 
Kaminski et al. 2021; Liu et al. 2022). Moreover, strain 
AMRI-03, which exhibited the highest similarity with 
Bacillus subtilis (Alamri 2010), was shown to be non-toxic 
to T. platyurus during the present study. This is consistent 
with previous studies showing that most B. subtilis strains 
are non-pathogenic and non-toxigenic to humans (Environ-
mental Protection Agency, EPA 1997; Lefevre et al. 2017). 
This has led to the widespread use of B. subtilis in the manu-
facture of compounds and enzymes for application in bio-
technology and other industries (Su et al. 2020). Since our 
Bacillus strain (AMRI-03) is nontoxic, it might be used in 
a slow sand filter to remove ATX-a in drinking water treat-
ment facilities. However, microcosm or mesocosm experi-
ments should be set up to study the potential effects of this 
bacterial strain on water quality. Previously, Eleuterio and 
Batista (2010) demonstrated the feasibility of using drink-
ing water biofilters containing microcystin degrading bacte-
ria to remove microcystins from waters.

Conclusions

This study provides evidence of ATX-a biodegradation for 
the first time by a Bacillus strain into a non-toxic byprod-
uct (Epoxy-ATX-a). The Bacillus strain degraded ATX-a at 
different rates, and the degradation rates were dependent 

was obtained at higher temperatures (25 & 30ºC), and the 
decrease in temperature below 20ºC slowed down ATX-a 
degradation rate by a factor of 2–10. Given that strain 
AMRI-03 was isolated from a warm lake, it makes sense 
that this strain would have a high optimal temperature for 
growth and ATX-a degradation. Similar temperature effects 
for the biodegradation of other cyanotoxins, such cylindro-
spermopsin and microcystin, have also been shown in other 
research (Smith et al. 2008; Ho et al. 2007, 2010; Klitzke 
and Fastner 2012; Mohamed and Alamri 2012). Regarding 
the effects of pH, the highest degradation rates (8.33and 
10 µg L− 1 day− 1, respectively) were obtained at pH 7 and 
8 (the optimal pH range for bacterial growth). This degra-
dation rate decreased sharply at pH 6 and pH 10, reaching 
levels of 0.44 and 1.56  µg L− 1 day− 1, respectively. This 
indicates that ATX-a degradation may have an optimum pH 
for the activity of its degradation enzyme. Previously, Smith 
and Sutton (1993) found that the half-life of ATX-a in sedi-
ments containing microbial communities was 21 days at pH 
4, 14 days at pH 8 and 10, and 5 days at neutral pH. Addi-
tionally, the strain AMRI-03 showed similar effects of pH 
on CYN degradation, with highest rates (16.7 and 15.6 µg 
L− 1 d− 1) obtained at pH7 and 8 and lowest recorded at pH10 
and 11 (Mohamed and Alamri 2012).

Similar results of bacterial biodegradation were also 
reported for another cyanotoxin (CYN), where complete 
degradation occurred at higher initial concentrations but 
not observed at lower concentrations (Smith et al. 2008; 
Mohamed and Alamri 2012). It seems that this is the most 
common trait of the biodegradation of many organic pol-
lutants. In this respect, the presence of aniline was found to 
induce the genes involved in biodegradation of aniline by 
Pseudomonas sp. (Thomas and Peretti 1998), and the pres-
ence of biphenyl induced the genes involved in their degra-
dation (Ohtsubo et al. 2000). This reflects that ATX-a can 
enter the bacterial cell and acts as an inducer activating the 
genes expressing the enzymes involved in the toxin degra-
dation. In this respect, it has been reported that the cyano-
toxin, microcystin after uptake into Sphingopyxis cells, is 
firstly hydrolyzed from cyclic form to linear intermediate by 
the microcystin-degrading enzyme, MlrA, in the periplas-
mic space, and this linear microcystin is then degraded in 
the periplasmic space by the enzyme MlrB into tetrapeptide, 
which in turn is degraded by the enzyme, MlrC in the cyto-
plasm (Maseda et al. 2012).

Given that the periplasm is exclusive to gram-negative 
bacteria, it is unlikely to be the site of ATX-a degradation 
by our Bacillus strain AMRI-03 (Gram positive bacteria). 
Instead, Gram-positive bacteria secrete degradative enzymes 
into the surrounding environment, and these enzymes act 
beyond the cell to digest or alter toxic substances to forms 
that are harmless to cells (Zuber et al. 2006).
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Res 193:110590. https://doi.org/10.1016/j.envres.2020.110590
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org/10.1016/j.envpol.2022.119947
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files/2015-09/documents/fra009.pdf
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biological sand filter. Water Res 41:4685–4695. https://doi.
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studies on linoleic acid epoxidation products. J Amer Oil Chem 
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on initial ATX-a concentration, temperature, and pH. The 
highest degradation rates were obtained at higher initial 
ATX-a concentrations (50&100 µg L− 1), pH8, and 25ºC and 
30ºC. Under these circumstances, strain AMRI-03 degraded 
ATX-a completely in five days. The results of present study 
have two possible application sides. First, the Bacillus strain 
AMRI-03 has a great deal of potential for application in the 
bioremediation of water bodies contaminated with ATX-a, 
and it may even be implicated in the degradation of ATX-a 
during the collapse of cyanobacterial blooms. Second, since 
strain AMRI-03 and its ATX-a biodegradation byproduct are 
nontoxic, this bacterial strain could be immobilized within 
a biofilm on sand filters and or/drinking water sludge for 
degradation and removal of ATX-a and other cyanotoxins 
during water treatment processes. However, prior to taking 
this move, mesocosm experiments should be set up to assess 
the potential effects of this bacterium on water quality.
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