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Abstract: Salinity is a serious abiotic stress that limits crop production and food security. Micronutri-
ent application has shown promising results in mitigating the toxic impacts of salinity. This study
assessed the impacts of zinc seed priming (ZSP) on the germination, growth, physiological and
biochemical functioning of sorghum cultivars. The study comprised sorghum cultivars (JS-2002 and
JS-263), salinity stress (control (0 mM) and 120 mM)), and control and ZSP (4 mM). Salinity stress
reduced germination and seedling growth by increasing electrolyte leakage (EL: 60.65%), hydrogen
peroxide (H2O2: 109.50%), malondialdehyde (MDA; 115.30%), sodium (Na), and chloride (Cl) accu-
mulation and decreasing chlorophyll synthesis, relative water contents (RWC), total soluble proteins
(TSPs), and potassium (K) uptake and accumulation. Nonetheless, ZSP mitigated the deleterious
impacts of salinity and led to faster germination and better seedling growth. Zinc seed priming
improved the chlorophyll synthesis, leaf water contents, antioxidant activities (ascorbate peroxide:
APX, catalase: CAT, peroxidase: POD, superoxide dismutase: SOD), TSPs, proline, K uptake and
accumulation, and reduced EL, MDA, and H2O2 production, as well as the accumulation of toxic
ions (Na and Cl), thereby promoting better germination and growth. Thus, these findings suggested
that ZSP can mitigate the toxicity of salinity by favoring nutrient homeostasis, antioxidant activities,
chlorophyll synthesis, osmolyte accumulation, and maintaining leaf water status.

Keywords: antioxidants; germination; oxidative stress; salinity; zinc

1. Introduction

Agricultural productivity is affected by various abiotic stresses, including salinity,
heat, drought, and heavy metals [1]. Soil salinity is a serious concern and a major abiotic
stress that causes huge yield losses [2]. Its intensity is increasing over time due to intensive
agricultural practices and climate change [3,4]. Globally, more than 1125 million hectares
are affected by salinity, and this extent is increasing at a rate of 1.5 million hectares per
year, highlighting the attention needed to tackle this serious problem [5]. Salinity stress
hampers plant growth and development and accounts for a 50–60% yield reduction in
various crops [6–8]. Salinity stress causes osmotic stress by reducing water availability, thus
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leading to an increase in solute concentration in the growing medium. This subsequently
generates ionic stress owing to the excessive accumulation of sodium (Na) and chloride
(Cl). Salinity-induced oxidative and ionic stresses damage proteins, membranes, and DNA,
resulting in poor plant growth [9].

Salinity stress also damages thylakoid membranes, disrupts chlorophyll synthesis,
electron transport, and the efficiency of PS-II, and impairs the synthesis of ATP and NADPH,
resulting in lower assimilate production and plant growth [10,11]. Furthermore, salinity
stress causes nutritional imbalances in plants, for instance, an increase in Na+ influx
decreases the uptake and accumulation of K+, Ca2+, and Mg2+, leading to a serious growth
reduction [12–14]. Plants have developed diverse strategies to counteract salinity, for
instance, they maintain osmotic potential through osmotic regulation and ionic balance
by preventing the uptake of toxic ions (Cl and Na) [15]. Further, the antioxidant system
also plays a crucial role in cell functioning counteracting ROS [16]. Plants also regulate
ionic homeostasis, increase protein synthesis, enhance gene expression, and produce stress-
responsive proteins and sugars to mitigate salinity stress [17].

Different strategies are being used globally to mitigate the toxicity of salinity. The
application of micronutrients has shown promising results in mitigating the adversities of
salinity [18,19]. For plants, zinc (Zn) is an essential nutrient, and it has shown significant
potential in counteracting abiotic stresses [20,21]. Zinc plays a crucial role in the synthesis
of auxin [22] and the production of secondary metabolites that help to counteract the lethal
effects of abiotic stresses [23]. Germination is the most critical phase in a plant’s life, playing
a crucial role in seedling growth and stand establishment [24]. Salinity stress decreases
seed germination and delays it by inducing osmotic and ionic toxicity [25]. Seed priming
can assist in mitigating the toxicity of salinity via regulating defense mechanisms and
neutralizing ionic toxicity [26]. Zinc seed priming increases germination rates, decreased
germination time, and improved growth, development, and antioxidant activities under
saline conditions [27–29]. Recent findings showed that nano-Zn seed priming mitigated
the adversities of salinity and improved the seedling growth of Brassica by increasing
chlorophyll and osmolyte synthesis, nutrient absorption, and antioxidant activities [30].
Zinc also maintains osmotic balance, enzyme activities, and gene expression, which help
the plants to mitigate salinity toxicity [31,32].

Sorghum (Sorghum bicolor L.) is the fifth most imperative cereal crop, and it is well
adapted globally due to its appreciable ability to tolerate abiotic stresses [33,34]. Many
studies have witnessed a higher genetic variation in sorghum cultivars in response to
salinity [35], and these variations can be used in identifying salt-tolerant cultivars. There-
fore, salt tolerance should be monitored at critical and sensitive growth stages [36], with
germination and emergence being important stages to evaluate the effects of salinity in
sorghum [35].

In this context, we hypothesized that Zn seed priming can mitigate the toxic effects of
salinity on sorghum cultivars by improving osmolyte accumulation, antioxidant activities,
and ionic homeostasis. Therefore, the present study was performed with the following
objective: to determine the impacts of Zn seed priming on germination, growth, nutrient
homeostasis, osmolyte accumulation, and antioxidant activities of sorghum cultivars under
salinity stress.

2. Materials and Methods
2.1. Experimental Details

This study was conducted to test the impact of Zn seed priming on the germination,
growth, physiological, and biochemical functioning of sorghum cultivars to salinity stress.
This study was conducted at Jiangxi Agricultural University Nanchang, China, in an open
greenhouse. The soil for the experiment was collected from rice field and it had a silt loam
texture with a pH of 5.39, available phosphorus and potassium of 26.33 and 108.13 mg kg−1,
total nitrogen of 1.56 g kg−1, and organic carbon of 11.62 g kg−1. The sorghum cultivars
used in the study were JS-2002 (salt-sensitive) and JS-263 (salt-tolerant) [37]. The salinity
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stress level was 0 mM (control) and 120 mM [37], and control (no priming) and 4 mM Zn
priming. The pots with a capacity of 5 kg were filled with 3 kg of dry soil, and 120 mM
of salt stress solution was applied to the pots to impose salinity stress. NaCl solution
(120 mM) was applied in 2-day intervals to replenish the evaporated water. Eight seeds of
sorghum were sown in each pot and after germination five plants were kept in each pot.
The weeds grown in pots were manually uprooted and coleoptile emergence above the soil
was considered seedling emergence. Moreover, seedlings were harvested after 25 days to
study different growth, physiological, and biochemical traits [38].

2.2. Germination and Growth Parameters

The experiment was visited daily, and germination was counted until constant scores,
and mean germination time (MGT) and time to 50% emergence and final emergence
percentages were assessed following standard protocols [39]. The plants were carefully
harvested; the roots and shoots were separated to measure their fresh and dry weights and
their lengths.

2.3. Relative Water Contents, Oxidative Stress Markers, and Photosynthetic Pigments

For RWC, fresh leaf slices were sampled and weighed (FW) and then soaked in water
for 24 h and weighed again (TW). Later, they were oven-dried (70 ◦C) for 24 h until constant
weight was reached and weighed again (DW) to determine RWC [40]. To determine
electrolyte leakage (EL), leaves were placed in water (10 mL) vials and incubated (25 ◦C)
for 30 min to measure the first EC (EC1). The leaf sample was then placed in a water bath
(90 ◦C) for 24 h and a second EC (EC2) was measured, and EL was assessed as follows:
EL = EL1/EC2 × 100.

To determine MDA and H2O2 concentrations, 0.5 g of fresh samples was homogenized
with trichloroacetic acid (TCA: 5 mL). Then, the samples were centrifuged (12,000 rpm)
for 15 min at 4 ◦C and supernatant was mixed with 5 mL of thiobarbituric acid (0.1%;
dimethylsulfoxide) and boiled for 30 min at 100 ◦C, cooled, and absorbance readings were
measured at 532 nm and 600 nm to determine the MDA concentration [41]. To assess the
H2O2 concentration, the plant supernatant was mixed with potassium iodide (1 M) and
potassium phosphate buffer (PPB: 100 µL; pH: 7.8), incubated at room temperature for
30 min, and H2O2 was assessed by measuring absorbance at 390 nm [42]. For photosyn-
thetic pigments, leaf sample were washed to remove contaminations. Thereafter, 1 g of
the leaf sample was homogenized with 90% acetone and centrifuged to obtain the extract.
Absorbance was measured at 663 nm (chlorophyll-a), 645 nm (chlorophyll-b), and 470 nm
(carotenoid), respectively [43].

2.4. Antioxidant Enzymes

The fresh leaf samples (0.5 g) were collected and extracted using the 50 mM chilled
potassium phosphate buffer (pH: 7.8). The extraction was carried out in a pre-cooled
pestle and mortar and, thereafter, the homogenate was centrifuged (12,000 rpm) at 4 ◦C
and supernatant was collected that was used to determine antioxidant activities. For
the determination of APX contents, 100 µL of enzyme extract was mixed with 100 µL of
ascorbate and H2O2, and absorbance (290 nm) was measured to determine APX activity
by the procedures of Nakano and Asada [44]. The activity of CAT was determined by
measuring H2O2 degradation in a reaction mixture consisting of 50 mM of PPB (pH: 7.8),
10 mM of H2O2, and 2 mL of enzyme extract; thereafter, absorbance was measured at
240 nm [45]. To determine POD, the enzyme extract (100 µL), PPB buffer (50 mM: pH: 7.8),
and H2O2 (300 mM) were mixed and absorbance was taken on a spectrophotometer at a
wavelength of 470 nm [46]. For SOD activity, an enzyme mixture was prepared by adding
400 µL of H2O2, 25 mL of PPB buffer, 100 µL of Triton, 50 µL of nitro-blue tetrazolium
(NBT), and riboflavin, and absorbance was recorded at 560 nm [47].
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2.5. Determination of Potential Osmolytes and Ions Concentration

To assess total soluble proteins (TSPs), samples were ground using PPB and then
centrifuged for 15 min at 15,000 rpm. Then, 1 mL of extract was collected and mixed with
Bradford reagent (3 mL), and absorbance was taken at 595 nm. For proline, fresh leaf
samples (0.5 g) were ground in 10 mL of 3% sulfosalicylic acid. The obtained extract was
centrifuged (10,000 rpm) for 10 min; thereafter, it was incubated in a water bath (90 ◦C) for
30 min after mixing with 2 mL each of glacial acetic acid and acid ninhydrin. Thereafter,
the prepared mixture was cooled down, toluene was added to the mixture, and absorbance
was taken at 532 nm [48]. The roots and shoots of the sorghum plants were taken, dried at
65 ◦C, powdered, and digested using HCL and HNO3 in a 1:2 concentration. Sodium (Na)
and potassium (K) concentrations in the samples were analyzed using a flame photometer,
while the chloride (Cl) concentration was determined by a chloride analyzer.

2.6. Data Analysis

This study was carried out in a completely randomized design with a factorial arrange-
ment and three replications. Data were collected from five randomly selected plants from
each pot. The data collected on various traits were analyzed using a three-way ANOVA for
the factors, including sorghum cultivars, seed priming, salinity stress, and their interactions.
The significance among the means was compared by the least significant difference test
(LSD) at p ≤ 0.05 [49]. Moreover, the figures were prepared using SigmaPlot-10, and the
PCA was drawn using R-studio.

3. Results
3.1. Germination and Growth Traits

Salinity stress, and zinc seed priming (ZSP), showed a significant impact on ger-
mination and growth traits of sorghum cultivars (Table 1). Salinity stress delayed seed
germination, and plants under salinity stress took more time for 50% emergence (20.19%)
and final emergence (19.55%) compared to those under normal conditions. ZSP significantly
improved germination, resulting in earlier germination compared to non-priming (Table 1).
The cultivar JS-263 outperformed JS-2002 and took less time for 50% emergence and final
emergence (Table 1). The maximum root (RL: 23.39 cm) and shoot length (SL: 34.73 cm)
were observed in cultivar JS-263 with ZSP under control conditions, while the lowest SL
(12.81 cm) and RL (17.73 cm) were observed in JS-2002 with non-primed seeds under
salinity stress (Table 1). Furthermore, maximum root and shoot fresh and dry biomass was
observed in JS-263 with ZSP growing under normal conditions, while the lowest was noted
in JS-2002 with non-priming under salinity stress (Table 1).
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Table 1. The effects of zinc seed priming on germination and growth characteristics of sorghum cultivars growing under salinity stress.

Treatment Cultivars Priming T50 (days) MET (days) FEP (%) RL (cm) SL (cm) RFW (g) RDW (g) SFW (g) SDW (g)

CK JS-2002 NP 3.18 de ± 0.18 4.28 c ± 0.21 87 18.02 c ± 0.98 27.80 bc ± 1.15 6.55 bc ± 0.09 4.44 de ± 0.14 14.99 b ± 0.78 6.91 c ± 0.29
CK JS-2002 ZSP 2.95 ef ± 0.22 3.84 e ± 0.18 93 22.03 a ± 1.23 31.43 ab ± 0.92 7.19 ab ± 0.19 4.93 b ± 0.21 16.42 a ± 1.12 7.57 b ± 0.41
CK JS-263 NP 3.11 ef ± 0.09 4.05 d ± 0.33 93 20.31 b ± 1.76 29.10 bc ± 2.23 6.89 b ± 0.065 4.75 bc ± 0.34 15.36 b ± 0.87 7.20 c ± 0.49
CK JS-263 ZSP 2.89 f ± 0.21 3.59 f ± 0.22 100 23.39 a ± 2.82 34.73 a ± 0.79 7.71 a ± 0.41 5.29 a ± 0.33 17.31 a ± 0.56 8.34 a ± 0.55
SS JS-2002 NP 3.89 a ± 0.14 4.99 a ± 0.17 73 12.81 f ± 2.22 17.73 e ± 0.98 5.09 f ± 0.45 3.50 g ± 0.19 10.66 f ± 0.55 5.19 f ± 0.32
SS JS-2002 ZSP 3.59 bc ± 0.19 4.64 b ± 0.29 87 14.43 de ± 1.14 21.87 de ± 1.01 5.81 de ± 0.52 3.91 ef ± 0.14 12.66 d ± 0.48 5.98 d ± 0.29
SS JS-263 NP 3.75 ab ± 0.26 4.77 b ± 0.32 80 13.67 ef ± 1.76 20.49 e ± 0.67 5.37 ef ± 0.13 3.77 fg ± 0.29 11.72 e ± 0.78 5.64 e ± 0.24
SS JS-263 ZSP 3.35 cd ± 0.17 4.43 c ± 0.18 87 15.34 d ± 1.92 25.22 cd ± 1.17 6.16 cd ± 0.21 4.17 de ± 0.32 13.84 b ± 0.82 6.24 d ± 0.41

CK: control, SS: salinity stress, NP: non-priming, ZSP: zinc seed priming, T50: time to 50% emergence, FEP: final emergence percentage, RL: root length, SL: shoot length, RFW and RDW:
root fresh and dry weight, SFW and SDW: shoot fresh and dry weight. The data are mean (n = 3) with ±SE, and different letters indicate significance among means (p ≤ 0.05).
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3.2. Photosynthetic Pigments

A significant difference in chlorophyll and carotenoid contents was observed under
different treatments. Salinity stress reduced chlorophyll and carotenoid synthesis; nonethe-
less, ZSP increased chlorophyll and carotenoid synthesis (Figure 1). The maximum Chl-a
(1.87 mg g−1 FW) and Chl-b (1.10 mg g−1 FW) were observed in JS-263 with ZSP under
non-saline conditions, and the lowest Chl-a (1.24 mg g−1 FW) and Chl-b (0.62 mg g−1 FW)
were noted in JS-2002 with non-priming under saline conditions (Figure 1). Additionally,
the highest carotenoid content and relative water content (RWC) were found in JS-263
with ZSP under non-saline conditions, while the lowest carotenoid content and RWC were
reported in JS-2002 grown under salinity stress (Figure 1).
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3.3. Oxidative Stress Markers and Potential Osmolyte

Salt stress augmented the synthesis of oxidative stress markers, including EL, MDA,
and H2O2 (Figure 2). However, ZSP reversed the toxic effects of salinity, as evidenced
by a substantial decrease in all the tested oxidative markers (Figure 2). Sorghum cultivar
JS-263 showed better performance and had the lowest EL, MDA, and H2O2 production
compared to JS-2002 (Figure 2). Overall, maximum EL (55%), MDA (8.24 µmol g−1 FW),
and H2O2 production (12.70 µmol g−1 FW) were observed in cultivar JS-2002 with non-
priming seeds under saline conditions, while lowest EL (27.33%), MDA (2.93 µmol g−1

FW), and H2O2 production (4.21 µmol g−1 FW) were observed in JS-263 with ZSP under
normal conditions (Figure 2). Salinity stress also reduced the synthesis of total soluble
proteins (TSPs), while ZSP increased TSP synthesis (Figure 3). Salinity stress increased
proline synthesis in sorghum cultivars (Figure 3). Further, ZSP also effectively increased
the synthesis of proline in both sorghum cultivars, which reversed the toxic impacts of
salinity (Figure 3).
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3.4. Antioxidant Activities

Antioxidants play a crucial role in plant defense against abiotic stress conditions. In
this study, antioxidant (APX, CAT, POD, and SOD) activity was evidently augmented under
salinity conditions compared to non-saline conditions (Figure 4).

ZSP also caused a marked increase in antioxidant activities, and it significantly in-
creased APX, CAT, POD, and SOD activities by 7.25%, 12.33%, 16.33%, and 15.12%, re-
spectively (Figure 4). Furthermore, significant differences in antioxidant activities were
observed among cultivars, with JS-263 exhibiting higher antioxidant activities compared to
JS-2002 (Figure 4).

3.5. Nutrient Accumulation in Plants

Salinity stress, ZSP, and sorghum cultivars significantly impacted the concentrations
of Na, Cl, and K in sorghum plant parts (Table 2). Salinity stress enhanced Na and Cl
accumulation, with the highest concentrations were observed in roots compared to shoots.
Conversely, ZSP reduced Na and Cl accumulation in plant parts compared to the control.
Moreover, JS-263 showed a better ability for less accumulation of Na and Cl in roots than
JS-2002 (Table 2). Conversely, salinity stress decreased K accumulation in roots and shoots,
while ZSP considerably increased K accumulation in these plant parts (Table 2). Sorghum
cultivar JS-2002 exposed to salinity showed a lower root and shoot K concentration than
JS-263 (Table 2).
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Agronomy 2024, 14, 1815 10 of 16

Table 2. The effects of zinc seed priming on root and shoot sodium and chloride and potassium concentration of sorghum cultivars growing under salinity stress.

Treatment Cultivars Priming Root-Na Shoot-Na Root-Cl Shoot-Cl Root-K Shoot-K

CK JS-2002 NP 5.95 c ± 0.78 3.66 cd ± 0.26 6.80 cd ± 0.41 5.66 c ± 0.44 9.70 d ± 0.82 7.55 c ± 0.44
CK JS-2002 ZSP 6.12 bc ± 0.82 3.89 bc ± 0.29 7.02 bc ± 0.73 5.96 bc ± 0.19 10.18 bc ± 0.66 7.85 bc ± 0.62
CK JS-263 NP 6.35 ab ± 0.56 4.09 ab ± 0.33 7.24 ab ± 0.39 6.18 ab ± 0.28 10.76 ab ± 0.78 8.08 ab ± 0.54
CK JS-263 ZSP 6.56 a ± 0.43 4.30 a ± 0.41 7.45 a ± 0.48 6.29 a ± 0.35 10.95 a ± 0.81 8.26 a ± 0.39
SS JS-2002 NP 4.72 e ± 0.66 2.89 g ± 0.25 5.28 f ± 0.67 4.25 e ± 0.56 7.22 f ± 0.59 5.95 e ± 0.33
SS JS-2002 ZSP 4.93 e ± 0.44 3.13 fg ± 0.22 5.86 e ± 0.44 4.53 e ± 0.61 7.82 ef ± 0.67 6.22 e ± 0.49
SS JS-263 NP 5.04 de ± 0.29 3.28 ef ± 0.41 6.15 e ± 0.56 4.98 d ± 0.49 8.23 de ± 0.49 6.73 d ± 0.39
SS JS-263 ZSP 5.29 d ± 0.33 3.51 de ± 0.20 6.50 d ± 0.88 5.24 d ± 0.32 8.59 d ± 0.55 6.95 d ± 0.34

Na: sodium, Cl: chloride, K: potassium. NP: non-priming, ZSP: zinc seed priming. The data are mean (n = 3) with ±SE, and different letters indicate significance among means (p ≤ 0.05).
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3.6. Principal Component Analysis

The results indicated that two PCA components showed a total variance of 93.6%, and
PC1 had a share of 85.7% while PC2 had a share of 7.6% (Figure 5). These results indicate
that ZSP significantly mitigated the toxic effects of salinity and improved the performance
of sorghum plants (Figure 5). The results also indicate a negative relationship between
H2O2, T50, and MET and a positive association between APX, CAT, POD, SOD, MDA,
EL, FEP, RL, SL, RFW, RDW, root-Na, shoot-Na, root-Cl, shoot-Cl, root-K, and shoot-K
(Figure 5).
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4. Discussion

Salinity stress caused a significant reduction in sorghum growth by disturbing water
and nutrient uptake (Table 2) [50]. The excessive concentrations of Na decrease cell turgid
pressure, causing cells to become rigid and preventing them from reaching their maximum
size, leading to a reduction in plant growth [51,52]. Apart from this, salinity also increased
the production of oxidative stress markers (MDA and EL) and ROS that damage cellular
structures, thereby leading to growth losses. We found that ZSP significantly improved
seedling growth. Zinc is crucial for metabolic activities and osmoregulation, protecting
plants from the damaging effects of salinity by increasing antioxidant activities, thus
ensuring better plant growth [53]. Zinc also plays a supportive role in auxin biosynthesis,
and optimum auxin production accelerates cell division and elongation, thereby enhancing
plant growth and biomass production. Furthermore, Zn regulates membrane stability by
binding with phospholipids and sulfhydryl groups that protect plants from the damaging
effects of abiotic stresses [54,55]. Therefore, exogenous Zn application enhances plant
growth by mitigating oxidative and ionic toxicity and protecting cellular structures [56].

Salinity stress also induces ROS production, which causes the oxidation of DNA and
cellular membranes, leading to a substantial increase in EL (Figure 2), which affects the



Agronomy 2024, 14, 1815 12 of 16

cell osmotic potential and subsequent plant growth [57]. In the present study, salinity also
inhibited K uptake (Table 2), which likely disrupted stomata movements and impaired
photosynthesis and plant growth [58]. ZSP substantially reduced the ROS and oxidative
stress markers therefore, ensured better plant growth, which is consistent with earlier
studies [59,60]. Besides this, Zn also promoted the synthesis of photosynthetic pigments,
which ensured the better growth of sorghum plants under saline conditions [30]. In the
present study, ZSP increased chlorophyll synthesis, which helps to capture light and
drive photosynthesis. Better light capture leads to better assimilates production and
subsequent plant growth; however, a larger amount of chlorophyll might cause photo-
oxidative damage. Nonetheless, ZPS also increased the synthesis of carotenoids that
counteract photo-oxidative damages by dissipating excessive light energy. Therefore, ZPS
might maintain balanced chlorophyll and carotenoid production, which helped to maintain
better photosynthetic efficiency and subsequent plant growth under saline conditions.

Salinity stress significantly decreased chlorophyll synthesis, which could be due
to the enhanced activity of chlorophyll-degrading enzymes [61]. Soil salinity decreases
magnesium uptake, which plays a critical role in chlorophyll synthesis [55]. Soil salinity
damages the structure of chloroplasts by causing oxidative damage, thereby leading to a
substantial reduction in chlorophyll synthesis [62]. Zinc seed priming improved chlorophyll
and carotenoid synthesis by protecting photosynthetic apparatus owing to the decrease in
salinity-induced oxidative damages [63]. ZSP increased antioxidant activities (Figure 4),
which protect photosynthetic apparatus and ensure better chlorophyll synthesis [64,65].
Zinc plays a critical role in protochlorophyllide formation and repairs PS-II, protecting
the chloroplast and increasing photosynthetic pigments [28]. The stabilization of the
photosynthetic apparatus in response to ZSP improves net photosynthesis, ensuring better
plant growth under stress conditions [66].

We found that salinity increased MDA production, causing substantial membrane
damage, as indicated by higher EL (Figure 2). The excessive concentration of Na in the
growth medium damages cellular membranes by increasing MDA production. Seed prim-
ing with Zn mitigated membrane damage by enhancing antioxidant activities (Figure 4), as
witnessed by lower MDA and EL levels [67]. Leaf water contents (RWCs) were markedly
decreased under saline conditions (Figure 1); nonetheless, ZSP reversed this reduction.
Salinity causes osmotic stress, which decreases water uptake thereby, reduces leaf RWC [55].
The enhanced availability of Zn ensures better root growth (Table 1) and membrane stability,
enzyme activity, and maintains stomata functioning. All these changes improved water
uptake by plants and ensured better plant water status under stress conditions.

The results indicated that salinity reduced the concentration of soluble proteins while
it increased proline synthesis. The present decrease in TSP synthesis under salinity stress
was linked with reduced nitrogen uptake and protein degradation. Proline is an important
osmolyte, and its synthesis was enhanced by both salinity and ZSP. Zinc is an important
co-factor for different enzymes involved in proline biosynthesis, and it also increases the
gene expression involved in proline metabolism [68]. Therefore, in the present study, ZSP
might increase enzyme activity and gene expression, thereby leading to increased proline
synthesis, which protected sorghum plants against salinity stress.

The activities of all antioxidants were regulated under saline stress, indicating that
sorghum plants up-regulated their antioxidants to counteract salinity stress (Figure 4).
These findings align with the results of Beyaz and Kır [69] and Beyaz [70], who also found
that salinity stress increases antioxidant activities. The activities of all the antioxidants
enhanced under saline conditions; however, H2O2 production was also higher under saline
conditions. This indicates that salinity-induced H2O2 production overwhelms the capacity
of antioxidants to scavenge H2O2 or antioxidant enzymes become less efficient under salt
stress. Nonetheless, ZPS enhanced the efficiency of antioxidants and led to a significant
decrease in H2O2 production. SOD is involved in the decomposition of O2-radical into
H2O2 and serves as the first defense line against SS. The observed increase in antioxidants
under salinity aligns with the outcomes El-Esawi et al. [71], who also documented a
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substantial increase in antioxidant activities under saline conditions. Seed primed with
Zn significantly boosted antioxidant levels, and it is consistent with the earlier findings of
Rizwan et al. [72]. Zinc application increases gene expression associated with antioxidants,
thereby maintaining a better activity of antioxidants under stress conditions [73]. Zinc
deficiency can lead to a reduction in Zn-SOD activities, but its supplementation restores
SOD activities because Zn is a crucial structural component of Zn-SOD [74]. Zinc also
maintains higher CAT activities, which play a crucial part in H2O2 detoxification [75]. Seed
priming with Zn also increases both APX and POD activities, owing to Zn’s capacity to
facilitate the synthesis of these antioxidants [76].

Salinity also negatively affects plant growth by imposing ionic toxicity and disturbing
ionic homeostasis. We found that salinity stress enhanced Na and Cl in plant parts (Table 2)
and reduced K accumulation. Under salinity stress, plants absorb salts along with water,
which are then transported to aerial plants, leading to the excessive accumulation of Na [77].
The excessive Na causes ionic imbalance which reduces K uptake [77,78]. Additionally, soil
salinity also diminishes the effectiveness of Na/K antiporters in excluding excessive Na,
leading to increased Na accumulation [77]. Potassium plays a crucial role in cell turgidity
and enzyme activity linked to metabolic activities, and salinity stress reduces K uptake,
limiting plant growth and development [79,80]. Nonetheless, Zn priming maintained a
better K concentration while reducing Na accumulation. This could also be linked to the
fact that Zn maintains the stability of root cell membranes, thereby maintaining higher K
levels while reducing Na accumulation. Potassium, being an important nutrient, ensures
membrane stability by maintaining osmotic balance and membrane potential. It also
reduces the accumulation of Na by causing Na efflux, thus leading to higher K levels.
Additionally, a higher level of K maintains a better stability of root cell membranes under
salinity stress by protecting it from the damaging impacts of Na.

5. Conclusions

Salinity stress significantly reduced the germination and growth of sorghum plants
by decreasing photosynthetic pigments, and leaf water status, while increasing the uptake
and accumulation of toxic ions. Zinc seed priming has shown profound impacts in terms of
mitigating these issues, resulting in improved germination and growth. This improvement
was linked with enhanced photosynthetic pigments, better leaf water status, osmolyte
accumulation, antioxidant activities, and higher potassium accumulation. Therefore, zinc
seed priming can be an effective and economical approach to improve salinity tolerance
in sorghum. Nonetheless, future studies are required to test the molecular basis of these
findings, which are lacking in the current research. Further, field studies are also necessary to
optimize zinc seed priming rates and understand their mechanisms in inducing salt tolerance.
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