
Fuzzy preuniform structure based on way
below relation

M. A. Abd-Allah , O. R. Sayed and O. G. Hammad
Departement of Mathematics, Faculty of Science, Assiut University, Egypt

Abstract. In this paper, we will define an L-fuzzifying preuniform structure based on way below
relation (or L-fuzzifying preuniform structure) and study their properties. Also, the concept of interior and
closure operators in L-fuzzifying setting were established. Furthermore,the relation between L-fuzzifying
preuniform and L-fuzzifying topology were explained.

1 Introduction and Preliminaries

In the last few years fuzzy topology, as an important research field in fuzzy set theory, has been developed
into a quite mature discipline [5, 6, 7, 14, 16]. In contrast to classical topology, fuzzy topology is endowed
with richer structure, to a certain extent, which is manifested with different ways to generalize certain clas-
sical concepts. So far, according to Ref. [6], the kind of topologies were defined by Chang [1] and Goguen [3]
is called the topologies of fuzzy subsets, and further is naturally called L-topological spaces if a lattice L of
membership values has been chosen. Loosely speaking, a topology of fuzzy subsets (resp. an L-topological
space) is a family s of fuzzy subsets (resp. L-fuzzy subsets) of nonempty set X, and satisfy the basic condi-
tions of classical topologies [13]. On the other hand, Höhle in [8] proposed the terminology L-fuzzy topology
to be an L-valued mapping on the traditional powerset P(X) of X. The authors in [9, 14, 16, 22] defined
an L-fuzzy topology to be an L-valued mapping on LX of X. In 1952, Rosser and Turquette [23] proposed
emphatically the following problem: If there are many-valued theories beyond the level of predicates calculus,
then what are the detail of such theories? As an attempt to give a partial answer to this problem in the case
of point set topology. Also, In [16], Ming introduced the concept of a fuzzifying uniform space and established
some of its fundamental properties. In 2003, [15] the authors introduced the concept of a strong fuzzifying
uniformity. Also, they established the relations between fuzzifying proximities, strong fuzzifying uniformities
and corresponding fuzzifying topologies. The fuzzy quasi-uniformities were introduced by Hutton in [11].
Two other notions of fuzzy uniformities were given by Lowen in [15] and by Höhle in [10]. Some properties
of the fuzzy quasi-uniformity due to Hutton were investigated in [12] by Katsaras for the lattice L = [0, 1].
In this paper was organized as follow: In section 2, the notion of uniform space was established and some
of its properties were studied. In section 3, the uniform topology was studied. Furthermore, the concepts of
interior and closure relative to uniform topology were investigated. In section 4, the uniform continuity was
studied.
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Throughout this work L = (L,≤,∧,∨,′ ) is a completely distributive complete lattice with an order reversing
involution ′, i.e,(L,≤,∧,∨,′ ) is a complete lattice, for every i ∈ I and for Ai ⊆ L,∧
i∈I

∨
Ai =

∨
Ψ∈ Π

i∈I
Ai

∧
i∈I
Ψ(i). and ′ : L −→ L is a function such that for every α, β ∈ L, (α′)′ = α and if

α ≤ β, then α′ ≥ β′. The upper(resp.lower) universal element of L will denoted by > (resp.⊥).
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Definition 1.1. [2] Let L be a complete lattice. We say that x is way below y, in symbols x � y, if
for any directed subset D ⊆ L the relation y ≤ supD always implies the existence of a d ∈ D with x ≤ d.

Proposition 1.2 [2] In a complete lattice L one has the following statements for all u, x, y, z ∈ L:
(i) x� y implies x ≤ y;
(ii) u ≤ x� y ≤ z implies u� z;
(iii) x� z and y � z together imply x ∨ y � z;
(iv) ⊥ � x.
(v) x� y and z ≤ y implies x� z.
(vi) If > 6� >, then

∨
α<>

α = >.

Definition 1.3. [4] Let X be a nonempty set, L be a complete lattice and τ : 2X −→ L be a function
that satisfies the following conditions:
(O1) τ(X) = τ(φ) = 1,
(O2) τ(A ∩B) ≥ τ(A) ∧ τ(B), for all A,B ⊆ 2X ;
(O3) for each {Aj : j ∈ J} ⊆ 2X , τ(

⋃
j∈J

Aj) ≥
∧
j∈J

τ(Aj).

Then τ is called an L-fuzzifying topology on X and the pair (X, τ) is called an L-fuzzifying topological space.

Definition 1.4. [4] Let (X, τ1) and (Y, τ2) be two L-fuzzifying topological spaces.
A function f : (X, τ1) −→ (Y, τ2) is called an L-fuzzifying continuous if for all B ∈ 2Y , τ2(B) ≤ τ1(f−1(B)).

2 L-fuzzifying preuniform structure

In this section, the notion of L-fuzzifying preuniform structure was established and some of its properties
were studied. Furthermore, the concepts of L-fuzzifying preuniform interior and L-fuzzifying preuniform
closure were investigated.

Definition 2.1. A function U : 2X×X −→ L is called an L-fuzzifying preuniform structure on X if it
satisfies the following axioms:
PU1 : For any u ∈ 2X×X , if U(u) 6= ⊥, then ∆ ⊆ u.
PU2 : If U(u)� r and u ⊆ v, then U(v)� r. Where r ∈ L− {⊥}.
The pair (X,U) is called an L-fuzzifying preuniform space.
An L-fuzzifying preuniform is called of type D for any u1, u2 ∈ 2X×X .
PU3 : If (U(u1) ∧ U(u2))� r, then U(u1 ∩ u2)� r.
An L-fuzzifying preuniform is called symmetrical for any u ∈ 2X×X .
PU4 : If U(u)� r, then U(u−1)� r.

Proposition 2.2. Let U1 and U2 two L-fuzzifying pre-uniform structure. Then satisfies the following:-
(1) U1 ∧ U2 and U1 ∨ U2 are L-fuzzifying preuniform structures.
(2) When U1 , U2 are symmetrical, then so are U1 ∧ U2 and U1 ∨ U2.
(3) When U1 , U2 are of type D, then so is U1 ∧ U2, but U1 ∨ U2 is not of type D.
Proof.
(1) First, we prove that U1 ∧ U2 is an L-fuzzifying preuniform structure.
PU1 : If (U1 ∧ U2)(u) 6= ⊥, then U1(u) ∧ U2(u) 6= ⊥. So, U1(u) 6= ⊥ and U2(u) 6= ⊥. Hence ∆ ⊆ u for any
u ∈ 2X×X .
PU2: Suppose u ⊆ v. If (U1 ∧ U2)(u)� r, then U1(u) ∧ U2(u)� r.
So, U1(u) � r or U2(u) � r. Hence U1(v) � r or U2(v) � r. Thus (U1 ∧ U2)(v) = U1(v) ∧ U2(v) � r.
Therefore U1 ∧ U2 is an L-fuzzifying preuniform structure.
Second, we prove that U1 ∨ U2 is an L-fuzzifying pre-uniform structure.
PU1 : If (U1 ∨ U2)(u) 6= ⊥, then U1(u) ∨ U2(u) 6= ⊥. So, U1(u) 6= ⊥ or U2(u) 6= ⊥. Hence ∆ ⊆ u for any
u ∈ 2X×X

PU2: Suppose u ⊆ v. If (U1 ∨ U2)(u) � r, then U1(u) ∨ U2(u) � r. So, U1(u) � r and U2(u) � r. Hence
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U1(v) � r and U2(v) � r. Thus (U1 ∨ U2)(v) = U1(v) ∨ U2(v) � r. Therefore U1 ∨ U2 is an L-fuzzifying
preuniform structure.

(2) Suppose U1 and U2 are symmetrical.
If (U1 ∧ U2)(u) = U1(u) ∧ U2(u)� r, then U1(u)� r or U2(u)� r. So, U1(u−1)� r or U2(u−1)� r which
implies (U1(u−1) ∧ U2(u−1)) = (U1 ∧ U2)(u−1)� r. Hence U1 ∧ U2 is symmetrical.
If (U1 ∨ U2)(u) = U1(u) ∨ U2(u) � r, then U1(u) � r and U2(u) � r. So, U1(u−1) � r and U2(u−1) � r
which implies (U1(u−1) ∨ U2(u−1)) = (U1 ∨ U2)(u−1)� r. Hence U1 ∨ U2 is symmetrical.

(3) Suppose U1 , U2 are of type D.
If ((U1 ∧ U2)(u) ∧ (U1 ∧ U2)(v))� r, then ((U1(u) ∧ U1(v)) ∧ (U2(u) ∧ U2(v)))� r. So, (U1(u) ∧ U1(v))� r
or (U2(u) ∧ U2(v))� r. Hence (U1(u ∩ v) ∧ U2(u ∩ v))� r. Then (U1 ∧ U2)(u ∩ v)� r. Therefore, U1 ∧ U2

is of type D.

Definition 2.3. Let U1, U2 are two L-fuzzifying preuniform structures on X. We denote U1�U2 : 2X×X −→
L defined by (U1 � U2)(u) =

∨
{U1(v) ∧ U2(w) |v ∩ w ⊆ u}

Proposition 2.4. Let U1, U2 are two L-fuzzifying preuniform structures on X. Then
(i) U1 � U2 is an L-fuzzifying preuniform structure.
(ii) When U1 and U2 are symmetrical, then so is U1 � U2.
(iii) When U1 and U2 are of type D, then so is U1 � U2.
Proof.
(i) Suppose U1, U2 are two L-fuzzifying preuniform structures on X.
PU1 : If U1 � U2(u) =

∨
{U1(v) ∧ U2(w) |v ∩ w ⊆ u} 6= ⊥, then there exist v, w ∈ 2X×X such that

U1(v) ∧ U2(w) 6= ⊥ and v ∩ w ⊆ u. So, U1(v) 6= ⊥ and U2(w) 6= ⊥. Hence ∆ ⊆ v ∩ w ⊆ u.
PU2 : is an L-fuzzifying preuniform structure.

(ii) Suppose that U1 and U2 are symmetrical.
If (U1 � U2)(u) =

∨
{U1(v) ∧ U2(w) |v ∩ w ⊆ u} � r, then (U1(v) ∧ U2(w)) � r for all v ∩ w ⊆ u. So,

U1(v) � r or U(w) � r which implies U1(v−1) � r or U(w−1) � r. Thus (U1(v−1) ∧ U2(w−1)) � r for all
v−1 ∩ w−1 ⊆ u−1.
Then

∨{
U1(v−1) ∧ U2(w−1)

∣∣v−1 ∩ w−1 ⊆ u−1
}

= (U1 � U2)(u−1)� r. Therefore U1 � U2 is symmetrical.

(iii) Suppose that U1 and U2 are D and
(U1 � U2)(u1 ∩ u2) < t < (U1 � U2)(u1) ∧ (U1 � U2)(u2), t ∈ (0, 1). So
(U1 � U2)(u1) ∧ (U1 � U2)(u2) > t which implies (U1 � U2)(u1) > t and (U1 � U2)(u2) > t. Then
sup {U1(x1) ∧ U2(y1) |x1 ∩ y1 ⊆ u1} > t and sup { U1(x2) ∧ U2(y2) |x2 ∩ y2 ⊆ u2} > t.
Suppose α = sup { U1(x1)∧U2(y1) |x1 ∩ y1 ⊆ u1}, then U1(x1)∧U2(y1) ≤ α and β = sup {U1(x2) ∧ U2(y2) |x2 ∩ y2 ⊆ u2} ,
then U1(x2) ∧ U2(y2) ≤ β. So, (U1(x1) ∧ U2(y1)) ∧ (U1(x2) ∧ U2(y2)) ≤ α ∧ β.
Hence (U1(x1) ∧ U1(x2)) ∧ (U2(y1) ∧ U2(y2)) ≤ α ∧ β.
Since U1(x1 ∩ x2) ∧ U2(y1 ∩ y2) ≥ (U1(x1) ∧ U1(x2)) ∧ (U2(y1) ∧ U2(y2)).
So, U1(x1 ∩ x2) ∧ U2(y1 ∩ y2) ≥ α ∧ β, then
sup {U1(x1 ∩ x2) ∧ U2(y1 ∩ y2) |(x1 ∩ x2) ∩ (y1 ∩ y2) ⊆ u ∩ v} ≥ α ∧ β > t . Thus sup {U1(x) ∧ U2(y) |x ∩ y ⊆ u ∩ v} > t .
Hence (U1 � U2)(u1 ∩ u2) > t. It is contradiction, then (U1 � U2)(u1 ∩ u2) ≥ (U1 � U2)(u1) ∧ (U1 � U2)(u2).
If (U1 � U2)(u1 ∩ u2)� r, then (U1 � U2)(u1) ∧ (U1 � U2)(u2)� r. Wherefore, (U1 � U2) is of type D.

Theorem 2.5. Let (X,U) be an L-fuzzifying preuniform space. Define the function IU (A, r) : 2X ×
(L− {>}) −→ 2X as follows:-

IU (A, r) =
⋃{

D ∈ 2X

∣∣∣∣∣
( ∧
w∈2X×X ,w[D]⊆A

(U(w))′

)
� r′

}
.

satisfies the following:
(1) IU (X, r) = X; IU (φ, r) = φ.
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(2) IU (A, r) ⊆ A.
(3) If A ⊆ B, then IU (A, r) ⊆ IU (B, r).
(4) IU (A ∩B, r) ⊆ IU (A, r) ∩ IU (B, r), but if U is of type D the equality holds.
(5) If r1 ≤ r2, then IU (A, r1) ⊇ IU (A, r2).
The function IU is called an L-fuzzifying preuniform interior.
Proof.

(1) Since w[D] ⊆ X, then IU (X, r) =
⋃{

D ∈ 2X

∣∣∣∣∣
( ∧
w∈2X×X ,w[D]⊆X

(U(w))′

)
� r′

}
= X. So, IU (X, r) =

X.

Since w[D] ⊆ φ, then w[D] = D = φ for all r. So, IU (φ, r) =
⋃{

D ∈ 2X

∣∣∣∣∣
( ∧
w∈2X×X ,w[D]⊆φ

(U(w))′

)
� r′

}
=⋃

φ = φ

(2) suppose x ∈ IU (A, r), then there exist D ∈ 2X s.t.

x ∈ D,

( ∧
w∈2X×X ,w[D]⊆A

(U(w))′

)
� r′, where x ∈ D ⊆ w[D] ⊆ A, then x ∈ A. So IU (A, r) ⊆ A.

(3) Suppose A ⊆ B, then

( ∧
w∈2X×X ,w[D]⊆A

(U(w))′

)
≥

( ∧
w∈2X×X ,w[D]⊆B

(U(w))′

)
.

When

( ∧
w∈2X×X ,w[D]⊆A

(U(w))′

)
� r′, then

( ∧
w∈2X×X ,w[D]⊆B

(U(w))′

)
� r′. Hence IU (A, r) ⊆ IU (B, r).

(4) It is clear from (3) when A ∩ B ⊆ A, then IU (A ∩ B, r) ⊆ IU (A, r) and when A ∩ B ⊆ B, then
IU (A ∩B, r) ⊆ IU (B, r). Hence IU (A ∩B, r) ⊆ IU (A, r) ∩ IU (B, r).
Let x ∈ IU (A, r) ∩ IU (B, r), then x ∈ IU (A, r) and x ∈ IU (B, r). Then there exist D1, D2 ∈ 2X such that

x ∈ D1,

( ∧
w1∈2X×X ,w1[D1]⊆A

(U(w1))′

)
� r′ and x ∈ D2,

( ∧
w2∈2X×X ,w2[D2]⊆B

(U(w2))′

)
� r′. So, x ∈ D1∩D2

such that

(( ∧
w1∈2X×X ,w1[D1]⊆A

(U(w1))′

)
� r′

)
∧

(( ∧
w2∈2X×X ,w2[D2]⊆B

(U(w2))′

)
� r′

)
. Then x ∈ D1∩D2

such that

( ∧
w1∈2X×X ,w1[D1]⊆A

(U(w1))′

)
∨

( ∧
w2∈2X×X ,w2[D2]⊆B

(U(w2))′

)
� r′. Thus( ∧

w1∈2X×X ,w1[D1]⊆A,w2∈2X×X ,w2[D2]⊆B
(U(w1) ∧ U(w2))

′ � r′

)
. Where U is of type D, then( ∧

w1∩w2∈2X×X ,(w1∩w2)[D1∩D2]⊆A∩B
(U(w1 ∩ w2))′ � r′

)
. Therefore x ∈ D such that

( ∧
w∈2X×X ,w[D]⊆A∩B

(U(w))′ � r′

)
,

then x ∈ IU (A ∩B, r). Hence IU (A ∩B, r) = IU (A, r) ∩ IU (B, r).

(5) Suppose r1 ≤ r2, IU (A, r2) = ∪

{
D ∈ 2X

∣∣∣∣∣
( ∧
w∈2X×X ,w[D]⊆A

(U(w))′

)
� r′2

}
. Since r′2 ≤ r′1, then( ∧

w∈2X×X ,w[D]⊆A
(U(w))′

)
� r′1. So, IU (A, r1) ⊇ IU (A, r2).

Theorem 2.6. Let (X,U) be an L-fuzzifying preuniform space. Define the function CU (A, r) : 2X ×
(L− {>}) −→ 2X as follows:-

CU (A, r) =
⋂{

D ∈ 2X

∣∣∣∣∣
( ∧
w∈2X×X ,A⊆w[D]

(U(w))′

)
� r′

}
.

satisfies the following:
(1) CU (φ, r) = φ; CU (X, r) = X.
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(2) CU (A, r) ⊇ A.
(3) If A ⊆ B, then CU (A, r) ⊆ CU (B, r).
(4) CU (A ∪B, r) ⊇ CU (A, r) ∪ CU (B, r), but if U is of type D the equality holds.
(5) If r1 ≤ r2, then CU (A, r1) ⊆ CU (A, r2).
The function CU is called an L-fuzzifying preuniform closure.
Proof.

(1) Since φ ⊆ w[D], then CU (φ, r) =
⋂{

D ∈ 2X

∣∣∣∣∣
( ∧
w∈2X×X ,φ⊆w[D]

(U(w))′

)
� r′

}
= φ. So, CU (φ, r) = φ.

Since X ⊆ w[D], then D = X for all r. So, CU (X, r) =
⋂{

D ∈ 2X

∣∣∣∣∣
( ∧
w∈2X×X ,X⊆w[D]

(U(w))′

)
� r′

}
=⋂

X = X

(2) Suppose x ∈ CU (A, r), then for all D ∈ 2X such that x ∈ D,

( ∧
w∈2X×X ,A⊆w[D]

(U(w))′

)
� r′. So,

CU (A, r) ⊇ A.

(3) Suppose A ⊆ B, then

( ∧
w∈2X×X ,B⊆w[D]

(U(w))′

)
≥

( ∧
w∈2X×X ,A⊆w[D]

(U(w))′

)
.

When

( ∧
w∈2X×X ,B⊆w[D]

(U(w))′

)
� r′, then

( ∧
w∈2X×X ,A⊆w[D]

(U(w))′

)
� r′. Hence CU (A, r) ⊆ CU (B, r).

(4) It is clear from (3) when A ∪ B ⊇ A, then CU (A ∪ B, r) ⊇ CU (A, r) and when A ∪ B ⊇ B, then
CU (A ∪B, r) ⊇ CU (B, r). Hence CU (A ∪B, r) ⊇ CU (A, r) ∪ CU (B, r).

CU (A, r)∪CU (B, r) =
⋂{

D1 ∈ 2X

∣∣∣∣∣
( ∧
w1∈2X×X ,A⊆w1[D1]

(U(w1))′

)
� r′

}
∪
⋂{

D2 ∈ 2X

∣∣∣∣∣
( ∧
w2∈2X×X ,B⊆w2[D2]

(U(w2))′

)
� r′

}
.

=
⋂{

D1 ∪D2 ∈ 2X

∣∣∣∣∣
(( ∧

w1∈2X×X ,A⊆w1[D1]

(U(w1))′

)
� r′

)
or

(( ∧
w2∈2X×X ,B⊆w2[D2]

(U(w2))′

)
� r′

)}

=
⋂{

D1 ∪D2 ∈ 2X

∣∣∣∣∣
(( ∧

w1∈2X×X ,A⊆w1[D1]

(U(w1))′

)
∧

( ∧
w2∈2X×X ,B⊆w2[D2]

(U(w2))′

))
� r′

}

=
⋂{

D1 ∪D2 ∈ 2X

∣∣∣∣∣
( ∧
w1∈2X×X ,A⊆w1[D1],w2∈2X×X ,B⊆w2[D2]

(U(w1) ∨ U(w2))
′ � r′

)}

⊇
⋂{

D1 ∪D2 ∈ 2X

∣∣∣∣∣
( ∧
w1∈2X×X ,A⊆w1[D1],w2∈2X×X ,B⊆w2[D2]

(U(w1) ∧ U(w2))
′ � r′

)}

⊇
⋂{

D1 ∪D2 ∈ 2X

∣∣∣∣∣
( ∧
w1∩w2∈2X×X ,A∪B⊆(w1∩w2)[D1∪D2]

(U(w1 ∩ w2))′ � r′

)}

=
⋂}

D ∈ 2X

∣∣∣∣∣
( ∧
w∈2X×X ,A∪B⊆w[D]

(U(w))′

)
� r′

}
= CU (A ∪B, r).

Such that (w1 ∩ w2)[D1 ∪D2] ⊆ w1[D1] ∩ w2[D2]. Hence CU (A ∪B, r) = CU (A, r) ∪ CU (B, r).

(5) Suppose r1 ≤ r2, CU (A, r2) = ∩

{
D ∈ 2X×X

∣∣∣∣∣
( ∧
w∈2X×X ,A⊆w[D]

(U(w))′

)
� r′2

}
. Since r′2 ≤ r′1, then( ∧

w∈2X×X ,A⊆w[D]

(U(w))′

)
� r′1. So, CU (A, r1) ⊆ CU (A, r2).
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3 The relation between L-fuzzifying preuniform and

L-fuzzifying topology

In this section, the relation between L-fuzzifying preuniform structure and L-fuzzifying topologies are
established.

Theorem 3.1. Let (X,U) is an L-fuzzifying preuniform space of type D and > 6� >. Define a map
τU : 2X −→ L by

τU (A) = sup {r ∈ (L− {>}) |IU (A, r) = A}

Then τU is an L-fuzzifying topology on X.
Proof.
(O1) Since IU (X, r) = X and IU (φ, r) = φ, for all r ∈ (L− {>}). Then τU (X) = τU (φ) = >.

(O2) Suppose there exist A,B ∈ 2X and t ∈ L − {>} such that τU (A) ∧ τU (B) > t > τU (A ∩ B). Then
τU (A) > t and τU (B) > t. So there exist r1, r2 > t such that IU (A, r1) = A and IU (B, r2) = B. Put r = r1∧r2

and from Theorem 2.5 (4) and (5), we have IU (A ∩ B, r) = IU (A, r) ∩ IU (B, r) ⊇ IU (A, r1) ∩ IU (B, r2) =
A ∩ B. So, IU (A ∩ B, r) = A ∩ B. Thus, τU (A ∩ B) ≥ r and r > t and this is a contradiction. Hence
τU (A ∩B) ≥ τU (A) ∧ τU (B).

(O3) Suppose there exists a family
{
Ai ∈ 2X |i ∈ Γ} and t ∈ L−{>} such that τU

( ⋃
i∈Γ

Ai

)
< t <

∧
i∈Γ

τη(Ai).

Since
∧
i∈Γ

τU (Ai) > t for each i ∈ Γ.There exist ri > t such that IU (Ai, ri) = Ai. Put r =
∧
i∈Γ

ri. We have

IU (
⋃
i∈Γ

Ai, r) ⊇ (
⋃
i∈Γ

IU (Ai, r)) ⊇ (
⋃
i∈Γ

IU (Ai, ri)) =
⋃
i∈Γ

Ai.

So, IU (
⋃
i∈Γ

Ai, r) =
⋃
i∈Γ

Ai. Thus, τU

( ⋃
i∈Γ

Ai

)
≥ r and r > t and this is a contradiction.

Hence τU

( ⋃
i∈Γ

Ai

)
≥
∧
i∈Γ

τU (Ai). Thus, τU is an L-fuzzifying topology on X.

Theorem 3.2. Let (X,U) is an L-fuzzifying preuniform space of type D and > 6� >. Define a map
τU : 2X −→ L by

τU (A) = sup {r ∈ (L− {>}) |CU (Ac, r) = Ac}

Then τU is an L-fuzzifying topology on X.
proof
(O1) Since CU (X, r) = X and CU (φ, r) = φ, for all r ∈ (L− {>}). Then τU (X) = τU (φ) = >.

(O2) Suppose there exist A,B ∈ 2X and t ∈ L − {>} such that τU (A) ∧ τU (B) > t > τU (A ∩ B). Then
τU (A) > t and τU (B) > t. So there exist r1, r2 > t such that CU (Ac, r1) = Ac and CU (Bc, r2) = Bc.
Put r = r1 ∧ r2 and from Theorem 2.5 (4) and (5), we have CU (Ac ∪ Bc, r) = CU (Ac, r) ∪ CU (Bc, r) ⊆
CU (Ac, r1) ∪ CU (Bc, r2) = Ac ∪ Bc. So, CU ((A ∩ B)c, r) = (A ∩ B)c. Thus, τU (A ∩ B) ≥ r > t and this is a
contradiction. Hence τU (A ∩B) ≥ τU (A) ∧ τU (B).

(O3) Suppose there exists a family
{
Ai ∈ 2X |i ∈ Γ} and t ∈ L−{>} such that τU

( ⋃
i∈Γ

Ai

)
< t <

∧
i∈Γ

τη(Ai).

Since
∧
i∈Γ

τU (Ai) > t for each i ∈ Γ.There exist ri > t such that CU ((Ai)
c, ri) = (Ai)

c. Put r =
∧
i∈Γ

ri. We

have CU (
⋂
i∈Γ

(Ai)
c, r) ⊆ (

⋂
i∈Γ

CU ((Ai)
c, r)) ⊆ (

⋂
i∈Γ

CU ((Ai)
c, ri)) =

⋂
i∈Γ

(Ai)
c.

So, CU ((
⋃
i∈Γ

Ai)
c, r) = (

⋃
i∈Γ

Ai)
c. Thus, τU

( ⋃
i∈Γ

Ai

)
≥ r > t and this is a contradiction.
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Hence τU

( ⋃
i∈Γ

Ai

)
≥
∧
i∈Γ

τU (Ai). Thus, τU is an L-fuzzifying topology on X.

Theorem 3.3. Let (X,U) is an L-fuzzifying preuniform space of type D. Define a map τU : 2X −→ L
by

τU (A) =
∧
x∈A

∨
u[x]⊆A

U(u)

Then τU is an L-fuzzifying topology on X.
Proof.
(O1) It is clear τU (X) = >.
(O2) τU (A) ∧ τU (B) = (

∧
x∈A

∨
u1[x]⊆A

U(u1)) ∧ (
∧
x∈B

∨
u2[x]⊆B

U(u2)) ≤
∧

x∈A,x∈B

∨
u1[x]⊆A,u2[x]⊆B

(U(u1) ∧ U(u2))

(O3) τU (
⋃
i∈Γ

Ai) =
∧

x∈
⋃
i∈Γ

Ai

∨
u[x]⊆

⋃
i∈Γ

Ai

U(u) =
∧
i∈Γ

 ∧
x∈Ai

∨
u[x]⊆

⋃
i∈Γ

Ai

U(u)

 ≥ ∧
i∈Γ

( ∧
x∈Ai

∨
u[x]⊆Ai

U(u)

)
=
∧
i∈Γ

τU (Ai).
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