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Abstract

The concepts of fuzzy pre-continuity and fuzzy cpre-continuity are introduced and studied in fuzzifying topology
essentially in order to give decompositions of fuzzy continuity. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ying pointed out a new approach for fuzzy topology with fuzzy logic [7]. The concept of fuzzifying
topology with the semantic method of continuous-valued logic was discussed by him [7] as a preliminary
of the research on bifuzzy topology. All the conventions in [7–9] are good in this paper. The concept of
pre-continuity was introduced by Mashhour et al. [5] and the concept of D(c; p)-continuity was introduced
by Przemski [6]. The concept of D(c; p)-continuity will be renamed in the present paper as cpre-continuity.
It is worth mentioning that the concept of pre-continuity was introduced in fuzzy topology [2] by Bin Shahna
[1]. In the present paper we extend and study the concepts of pre-continuity and cpre-continuity in fuzzifying
topology. The main result gives some decompositions of fuzzy continuity in fuzzifying topology. Furthermore,
the concept of cpre-neighborhood system is presented and a fuzzifying topology induced by it is introduced.
Also comparisons of some types of fuzzy continuity and fuzzy cpre-continuity are studied.

2. Preliminaries

For the fuzzy logical and corresponding set theoretical notations we refer to [7,8]. We note that the set of
truth values is the unit interval and we often do not distinguish the connectives and their truth value functions
and state strictly our results on formalization as Ying does. For the de?nitions and results in fuzzifying
topology which are used in the sequel we refer to [7–9].

We now give some de?nitions and results as introduced in [4] which are useful in the rest of the present
paper.
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De�nition 2.1. For any Ã∈F(X ),

|= (Ã)◦ ≡ X ∼ (X ∼ Ã):

Lemma 2.1. If [Ã⊆ B̃] = 1; then
(1) |= ẼA⊆ ẼB;
(2) |= (Ã)◦ ⊆ (B̃)◦:

Lemma 2.2. Let (X; 	) be a fuzzifying topological space. For any Ã; B̃;
(1) |= X ◦ ≡ X ;
(2) |= (Ã)◦ ⊆ Ã;
(3) |= (Ã∩ B̃)◦ ≡ (Ã)◦ ∩ (B̃)◦;
(4) |= (Ã)◦◦ ⊇ (Ã)◦.

One can add the following lemma.

Lemma 2.3. Let (X; 	) be a fuzzifying topological space. For any Ã∈F(X );
(1) |= X ∼ (Ã)−◦ ≡ (X ∼ Ã)◦−;
(2) if [Ã⊆ B̃] = 1; then |= (Ã)−◦ ⊆ (B̃)−◦:

3. Fuzzifying pre-open sets and fuzzifying cpre-open sets

De�nition 3.1. Let (X; 	) be a fuzzifying topological space.
(1) The family of fuzzifying pre- (resp. cpre-) open sets is denoted by p	 (resp. cp	)∈F(P(X )) and

de?ned as follows:

A∈p	 :=∀x(x∈A→ x∈A−◦) (resp: A∈ cp	 :=∀x(x∈A∩A−◦ → x∈A◦)):

(2) The family of fuzzifying pre- (resp. cpre-) closed sets is denoted by pF (resp: cpF)∈F(P(X )) and
de?ned as follows:

A∈pF (resp: cpF) := X ∼ A∈p	 (resp: cp	):

Lemma 3.1. For any ; �; �; �∈ I;

(1 −  + �)∧ (1 − � + �)61 − (∧ �) + (�∧ �):

Lemma 3.2. For any A∈P(X );

|= A◦ ⊆A−◦:

Proof. From Theorem 5.3 [7] we have [A⊆A−] = 1 and from Lemma 2.1(2), [A◦ ⊆A−◦] = 1.

Theorem 3.1. Let (X; 	) be a fuzzifying topological space. Then
(1) (a) p	(X ) = 1; p	(�) = 1;

(b) for any {A�: �∈�}; p	(
⋃

�∈� A�)¿
∧

�∈� p	(A�);
(2) (a) cp	(X ) = 1; cp	(∅) = 1;

(b) cp	(A∩B)¿cp	(A)∧ cp	(B):
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Proof. The proof of (a) in (1) and (a) in (2) are straightforward.
(1) (b) From Lemma 2.3, |= A−◦

� ⊆ (
⋃

�∈� A�)−◦: So,

p	

( ⋃
�∈�

A�

)
= inf

x∈∪�∈� A�

(⋃
�∈�

A�

)−◦
(x) = inf

�∈�
inf
x∈A�

(⋃
�∈�

A�

)−◦
(x)

¿ inf
�∈�

inf
x∈A�

A−◦
� (x) =

∧
�∈�

p	(A�):

(2) (b) Applying Lemmas 2.2(3), 2.3(2) and 3.1 we have

cp	(A)∧ cp	(B) = inf
x∈A

(1 − A−◦(x) + A◦(x))∧ inf
x∈B

(1 − B−◦(x) + B◦(x))

6 inf
x∈A∩B

((1 − A−◦(x) + A◦(x))∧ (1 − B−◦(x) + B◦(x)))

6 inf
x∈A∩B

(1 − (A−◦ ∩B−◦)(x) + (A◦ ∩B◦)(x))

6 inf
x∈A∩B

(1 − (A∩B)−◦(x) + (A∩B)◦(x))

= cp	(A∩B):

From Theorem 3.1, we can have the following theorem.

Theorem 3.2. Let (X; 	) be a fuzzifying topological space. Then
(1) (a) pF(X ) = 1; pF(∅) = 1;

(b) pF(
⋂

�∈� A�)¿
∧

�∈� pF(A�);
(2) (a) cpF(X ) = 1; cpF(∅) = 1;

(b) cpF(A∪B)¿cpF(A)∧ cpF(B).

Theorem 3.3. Let (X; 	) be a fuzzifying topological space. Then
(1) (a) |= 	⊆p	;

(b) |= 	⊆ cp	;
(2) (a) |= F ⊆pF ;

(b) |= F ⊆ cpF .

Proof. From Theorems 2.2(3) [8] and 3.2, we have
(1) (a) [A∈ 	] = [A⊆A◦]6[A⊆A−◦] = [A∈p	].

(b) [A∈ 	] = [A⊆A◦]6[A∩A−◦ ⊆A◦] = [A∈ cp	].
(2) The proof is obtained from (1).

Remark 3.1. In crisp setting, i.e., if the underlying fuzzifying topology is the ordinary topology, one can
have

|= (A∈p	∧A∈ cp	)→A∈ 	:

But this statement may not be true in general in fuzzifying topology as illustrated by the following counter-
example.

Counterexample 3.1. Let X = {a; b; c} and let 	 be a fuzzifying topology on X de?ned as follows:
	(X ) = 	(∅) = 	({a}) = 	({a; c}) = 1; 	({b}) = 	({a; b}) = 0 and 	({c}) = 	({b; c}) = 1

6 . One can have that
p	({a; b}) = 5

6 ; cp	({a; b}) = 1
6 and hence, p	({a; b})∧ cp	({a; b}) = 5

6 ∧ 1
6 = 1

6 � 0 = 	({a; b}).
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Theorem 3.4. Let (X; 	) be a fuzzifying topological space.
(1) |= A∈ 	→ (A∈p	∧A∈ cp	):
(2) If [A∈p	] = 1 or [A∈ cp	] = 1; then |= A∈ 	 ↔ (A∈p	∧A∈ cp	).

Proof. (1) Obtained from Theorem 3.3(1).
(2) If [A∈p	] = 1, then for each x∈A; A−◦(x) = 1 and so for each x∈A; 1−A−◦(x) + A◦(x) = A◦(x).

Thus from Lemma 3.2 |= A◦ ⊆A−◦ and so we have, [A∈p	]∧ [A∈ cp	] = [A∈ cp	] = [A∈ 	]. If [A∈ cp	] = 1
then for each x∈A, 1−A−◦(x) + A◦(x) = 1 and so for each x∈A, we have A−◦(x) = A◦(x). Thus [A∈p	]∧
[A∈ cp	] = [A∈p	] = [A∈ 	].

Theorem 3.5. Let (X; 	) be a fuzzifying topological space. Then

|= (A∈p	∧· A∈ cp	)→A∈ 	:

Proof.

p	(A)∧· cp	(A) = inf
x∈A

A−◦(x)∧· inf
x∈A

(1 − A−◦(x) + A◦(x))

= max
(

0; inf
x∈A

A−◦(x) + inf
x∈A

(1 − A−◦(x) + A◦(x)) − 1
)

6 inf
x∈A

A◦(x) = [A∈ 	]:

4. Fuzzifying pre- (resp. cpre-) neighborhood structure of a point

De�nition 4.1. Let x∈X . The pre- (resp. cpre-) neighborhood of x is denoted by pNx (resp: cpNx)∈F(P(X ))
and de?ned as

pNx(A) = sup
x∈B⊆A

p	(B)

(
resp: cpNx(A) = sup

x∈B⊆A
cp	(B)

)
:

Theorem 4.1. (1) |= A∈p	↔∀x(x∈A→∃B(B∈p	∧ x∈B⊆A));
(2) |= A∈p	↔∀x(x∈A→∃B(B∈pNx ∧B⊆A)):

Proof. (1) Now, [∀x(x∈A→∃B(B∈p	∧ x∈B⊆A))] = inf x∈A supx∈B⊆A p	(B). It is clear that inf x∈A

supx∈B⊆A p	(B)¿p	(A). In the other hand, let �x = {B: x∈B⊆A}. Then, for any f∈ ∏x∈A Bx we have⋃
x∈A f(x) = A and so p	(A) = p	(

⋃
x∈A f(x))¿ inf x∈A p	(f(x)). Thus,

p	(A)¿ sup
f∈∏x∈ABx

inf
x∈A

p	(f(x)) = inf
x∈A

sup
x∈B⊆A

p	(B):

(2) From (1) we have,

[∀x(x∈A→∃B(B∈pNx ∧B⊆A))] = inf
x∈A

sup
B⊆A

pNx(B)

= inf
x∈A

sup
B⊆A

sup
x∈C⊆B

p	(C)

= inf
x∈A

sup
x∈C⊆A

p	(C) = [A∈p	]:
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Corollary 4.1. inf x∈A pNx(A) = p	(A).

Theorem 4.2. The mapping pN : X →FN (P(X )); x �→ pNx where FN (P(X )) is the set of all normal fuzzy
subset of P(X ) has the following properties:
(1) for any x; A; |= A∈pNx → x∈A;
(2) for any x; A; B; |= A⊆B→ (A∈pNx →B∈pNx);
(3) for any x; A; |= A∈pNx →∃H (H ∈pNx ∧ H ⊆A ∧ ∀y(y∈H →H ∈pNy)):

Proof. One can easily have that for each x∈X; pNx(X ) = 1; i.e. each pNx is normal.
(1) If pNx(A) = 0; the result holds. Suppose pNx(A)¿0; then supx∈H⊆A p	(H)¿0 and so there exists H0

such that x∈H0 ⊆A. Thus [x∈A] = 1¿pNx(A).
(2) Immediate.
(3)

[∃H (H ∈pNx ∧ H ⊆A ∧ ∀y(y∈H →H ∈pNy))]

= sup
H⊆A

(
pNx(H) ∧ inf

y∈H
pNy(H)

)
= sup

H⊆A
(pNx(H) ∧ p	(H))

= sup
H⊆A

p	(H)¿ sup
x∈H⊆A

p	(H) = [A∈pNx]:

Theorem 4.3. The mapping cpN : X →FN (P(X )); x �→ cpN x; where FN (P(X )); is the set of all normal
fuzzy subsets of P(X ) has the following properties:
(1) for any x; A; |= A∈ cpN x → x∈A;
(2) for any x; A; B; |= A⊆B→ (A∈ cpN x →B∈ cpN x);
(3) for any x; A; B; |= A∈ cpNx ∧ B∈ cpN x →A ∩ B∈ cpN x:
Conversely; if a mapping cpN satis6es (2) and (3); then cpN assigns a fuzzifying topology on X; denoted

by 	cpN ∈F(P(X )) and de6ned as

A∈ 	cpN :=∀x(x∈A→A∈ cpN x):

Proof. It is clear that each cpN x is normal.
The proof of (1) and (2) are similar to the corresponding results in Theorem 4.2.
(3) From Theorem 3.1(2)(b) we have

[A ∩ B∈ cpN x] = sup
x∈H⊆A∩B

cp	(H)

= sup
x∈H1⊆A; x∈H2⊆B

cp	(H1 ∩ H2)

¿ sup
x∈H1⊆A; x∈H2⊆B

(cp	(H1) ∧ cp	(H2))

= sup
x∈H1⊆A

cp	(H1) ∧ sup
x∈H2⊆B

cp	(H2)

= cpN x(A) ∧ cpN x(B):

Conversely, we need to prove that 	cpN = inf x∈A cpN x(A) is a fuzzifying topology. From Theorem 3.2 [7]
and since 	cpN satis?es properties (2) and (3), then 	cpN is a fuzzifying topology.
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Theorem 4.4. Let (X; 	) be a fuzzifying topological space. Then

|= cp	⊆ 	cpN :

Proof. Let B∈P(X ); 	cpN (B) = inf x∈B cpN x(B) = inf x∈B supx∈A⊆B cp	(A)¿cp	(B).

5. pre- (resp. cpre-) Closure and pre- (resp. cpre-) interior

De�nition 5.1. (1) The pre- (resp. cpre-) closure of A is denoted by p-cl (resp. cp-cl)∈F(P(X )) and
de?ned as follows:

p-cl(A)(x) = inf
x =∈B⊇A

(1 − pF(B))
(

resp: cp-cl(A)(x) = inf
x =∈B⊇A

(1 − cpF(B))
)

:

(2) The pre- (resp. cpre-) interior of A is denoted by p-int(A) (resp. cp-int(A))∈F(P(X )) and de?ned
as follows:

p-int(A)(x) = pNx(A) (resp: cp-int(A)(x) = cpN x(A)):

Theorem 5.1.
(1) (a) p-cl(A)(x) = 1 − pNx(X ∼A);

(b) |= p-cl(∅) ≡ ∅;
(c) |= A⊆p-cl(A);
(d) |= x∈p-cl(A) ↔ ∀B(B∈pNx →A ∩ B �= ∅);
(e) |= A ≡ p-cl(A) ↔ A∈pF ;
(f) |= B

:≡ p-cl(A)→B∈pF:
(2) (a) cp-cl(A)(x) = 1 − cpN x(X ∼A);

(b) |= cp-cl(∅) ≡ ∅;
(c) |= A⊆ cp-cl(A);
(d) |= x∈ cp-cl(A) ↔ ∀B(B ∈ cpN x →A ∩ B �= ∅);
(e) |= A ≡ cp-cl(A) ↔ A∈F	cpN ;
(f) |= B

:≡ cp-cl(A)→B∈F	cpN :

Proof. (1) (a) p-cl(A)(x) = inf x =∈B⊇A(1 − pF (B)) = inf x∈X∼B⊆X∼A(1 − p	(X ∼B)) = 1 − supx∈X∼B⊆X∼A
p	(X ∼B) = 1 − pNx(X ∼A):

(b) p-cl(∅)(x) = 1 − pNx(X ∼∅) = 0:
(c) It is clear that for any A∈P(X ) and any x∈X; if x =∈ A; then pNx(A) = 0: If x∈A; then p-cl(A)(x) =

1 − pNx(X ∼A) = 1 − 0 = 1. Then [A⊆p-cl(A)] = 1.
(d) [∀B(B∈pNx →A ∩ B �= ∅)] = inf B⊆X∼A(1 − pNx(B)) = 1 − pNx(X ∼A) = [x∈p-cl(A)]:
(e) From Corollary 4.1 and from (a) and (c) above we have

[A ≡ p-cl(A)] = inf
x∈X∼A

(1 − (p-cl(A))(x))

= inf
x∈X∼A

pNx(X ∼A) = p	(X ∼A) = [A∈pF]:

(f) If [A⊆B] = 0; then [B
:≡ p-cl(A)] = 0: Now, we suppose [A⊆B] = 1; and have [B⊆p-cl(A)] = 1 −

supx∈B∼A pNx(X ∼A); [p-cl(A)⊆B] = inf x∈X∼B pNx(X ∼A). So, [B
:≡ p-cl(A)] = max(0; inf x∈X∼B pNx

(X ∼A)− supx∈B∼A pNx(X ∼A)). If [B
:≡ p-cl(A)]¿t; then inf x∈X∼B pNx(X ∼A)¿t +supx∈B∼A pNx(X ∼A):

For any x∈X ∼B; supx∈C⊆X∼A p	(C)¿t+supx∈B∼A pNx(X ∼A), i.e., there exists Cx such that x∈Cx ⊆X ∼A
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and p	(Cx)¿t + supx∈B∼A pNx(X ∼A). Now we want to prove that Cx ⊆X ∼B. If not, then there exists
x′ ∈B∼A with x′ ∈Cx. Hence, we obtain supx∈B∼A pNx(X ∼A)¿pNx′(X ∼A)¿p	(Cx)¿t + supx∈B∼A
pNx(X ∼A); a contradiction. Therefore, pF(B) = p	(X ∼B) = inf x∈X∼B pNx(X ∼B)¿ inf x∈X∼B p	(Cx)¿t +
supx∈B∼A pNx(X ∼A)¿t. Since t is arbitrary, it holds that [B

:≡ p-cl(A)]6[B∈pF].
(2) The proof is similar to (1).

Theorem 5.2. For any x; A; B;
(1) (a) |= p-int(A) ≡ X ∼p-cl(X ∼A);

(b) |= p-int(X ) ≡ X ;
(c) |= p-int(A)⊆A;
(d) |= B

:≡ p-int(A)→B∈p	;
(e) |= B∈p	 ∧ B⊆A→B⊆p-int(A);
(f ) |= A ≡ p-int(A) ↔ A∈p	:

(2) (a) |= cp-int(A) ≡ X ∼ cp-cl(X ∼A);
(b) |= cp-int(X ) ≡ X ;
(c) |= cp-int(A)⊆A;
(d) |= B

:≡ cp-int(A)→B∈ 	cpN ;
(e) |= B∈ 	cpN ∧ B⊆A→B⊆ cp-int(A);
(f ) |= A ≡ cp-int(A) ↔ A∈ 	cpN :

Proof. (1) (a) From Theorem 5.1(a) p-cl(X ∼ A)(x) = 1 − pNx(A) = 1 − (p-int(A))(x): Then, [p-int(A) ≡
X ∼p-cl(X ∼A)] = 1.

(b) and (c) are obtained from (a) above and from Theorem 5.1(1) (b) and (1) (c).
(d) From (a) above and from Theorem 5.1(1) (f) we have [B

:≡ p-int(A)] = [X ∼B
:≡ p-cl(X ∼A)]6

[X ∼B∈pF] = [B∈p	]:
(e) If [B⊆A] = 0; then the result holds. If [B⊆A] = 1; then we have that [B⊆p-int(A)] =

inf x∈B(p-int(A))(x) = inf x∈B pNx(A)¿ inf x∈B pNx(B) = p	(B) = [B∈p	 ∧ B⊆A].
(f) From Corollary 4.1, we have

[A ≡ p-int(A)] = min
(

inf
x∈A

(p-int(A))(x); inf
x∈X∼A

(1 − (p-int(A))(x))
)

= inf
x∈A

(p-int(A))(x) = inf
x∈A

pNx(A) = p	(A) = [A∈p	]:

(2) The proof is similar to (1).

6. pre-Continuous functions and cpre-continuous functions

De�nition 6.1. Let (X; 	); (Y; U ) be two fuzzifying topological spaces.
(1) A unary fuzzy predicate pC ∈F(Y X ) called fuzzy pre-continuity, is given as

pC(f) :=∀u(u∈U →f−1(u)∈p	):

(2) A unary fuzzy predicate cpC ∈F(Y X ) called fuzzy cpre-continuity, is given as

cpC(f) :=∀u(u∈U →f−1(u)∈ cp	):
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De�nition 6.2. Let (X; 	); (Y; U ) be two fuzzifying topological spaces. For any f∈Y X , we de?ne the unary
fuzzy predicates pHj; cpHj ∈F(Y X ) where j = 1; 2; : : : ; 5 as follows:
(1) (a) pH1(f) :=∀B(B∈FY →f−1(B)∈pFx);

(b) cpH1(f) :=∀B(B∈FY →f−1(B)∈ cpFx);
where FY is the family of closed subsets of Y ; and pFX and cpFX are the families of pre-closed and
cpre-closed subsets of X; respectively.
(2) (a) pH2(f) :=∀x∀u(u∈NY

f(x) →f−1(u)∈pNX
x );

(b) cpH2(f) :=∀x∀u(u∈NY
f(x) →f−1(u)∈ cpNX

x );
where NY is the neighborhood system of Y ; and pNX and cpNX are the pre-neighborhood and cpre-
neighborhood systems of X respectively.
(3) (a) pH3(f) :=∀x∀u(u∈NY

f(x) →∃v(f(v)⊆ u→ v∈pNX
x ));

(b) cpH3(f) :=∀x∀u(u∈NY
f(x) →∃v(f(v)⊆ u→ v∈ cpNX

x )):
(4) (a) pH4(f) :=∀A(f(p-clX (A))⊆ clY (f(A)));

(b) cpH4(f) :=∀A(f(cp-clX (A))⊆ clY (f(A))):
(5) (a) pH5(f) :=∀B(p-clX (f−1(B))⊆f−1(clY (B)));

(b) cpH5(f) :=∀B(cp-clX (f−1(B))⊆f−1(clY (B))):

Theorem 6.1. (1) |= f∈pC ↔ f∈pHj; j = 1; 2; 3; 4; 5;
(2) |= f∈ cpC ↔ f∈ cpH1.

Proof. We will prove (1) only since the proof of (2) is similar to the corresponding result in (1).
(a) We prove that |= f∈pC ↔ f∈pH1.

[f∈pH1] = inf
B∈P(Y )

min(1; 1 − FY (B) + pFX (f−1(B)))

= inf
B∈P(Y )

min(1; 1 − U (Y ∼B) + p	(X ∼f−1(B)))

= inf
B∈P(U )

min(1; 1 − U (Y ∼B) + p	(f−1(Y ∼B)))

= inf
u∈P(Y )

min(1; 1 − U (u) + p	(f−1(u)))

= [f∈pC]:

(b) We want to prove that |= f∈pC ↔ f∈pH2.
First, we prove that pH2(f)¿pC(f). If NY

f(x)(u)6pNX
x (f−1(u)) the result holds. Suppose NY

f(x)(u)¿
pNX

x (f−1(u)). It is clear that, if f(x)∈A⊆ u, then x∈f−1(A)⊆f−1(u). Then,

NY
f(x)(u) − pNX

x (f−1(u)) = sup
f(x)∈A⊆u

U (A) − sup
x∈B⊆f−1(u)

p	(B)

6 sup
f(x)∈A⊆u

U (A) − sup
f(x)∈A⊆u

p	(f−1(A))

6 sup
f(x)∈A⊆u

(U (A) − p	(f−1(A))):

So,

1 − NY
f(x)(u) + pNX

x (f−1(u))¿ inf
f(x)∈A⊆u

(1 − U (A) + p	(f−1(A)))
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and thus,

min(1; 1 − NY
f(x)(u) + pNX

x (f−1(u)))¿ inf
f(x)∈A⊆u

min(1; 1 − U (A) + p	(f−1(A)))

¿ inf
v∈P(Y )

min(1; 1 − U (v) + p	(f−1(v))) = pC(f):

Hence,

inf
x∈X

inf
u∈P(Y )

min(1; 1 − NY
f(x)(u) + pNX

x (f−1(u)))¿[f∈pC]:

Secondly, we prove that pC(f)¿pH2(f). From Corollary 4.1, we have

pC(f) = inf
u∈P(Y )

min(1; 1 − U (u) + p	(f−1(u)))

¿ inf
u∈P(Y )

min
(

1; 1 − inf
f(x)∈u

NY
f(x)(u) + inf

x∈f−1(u)
pNX

x (f−1(u))
)

= inf
u∈P(Y )

min
(

1; 1 − inf
x∈f−1(u)

NY
f(x)(u) + inf

x∈f−1(u)
pNX

x (f−1(u))
)

¿ inf
x∈X

inf
u∈P(Y )

min(1; 1 − NY
f(x)(u) + pNX

x (f−1(u))) = pH2(f):

(c) We prove that |= f∈pH2 ↔ f∈pH3. From Theorem 4.2(2) we have

pH3(f) = inf
x∈X

inf
u∈P(Y )

min

(
1; 1 − NY

f(x)(u) + sup
v∈P(X );f(v)⊆u

pNX
x (v)

)

= inf
x∈X

inf
u∈P(Y )

min(1; 1 − NY
f(x)(u) + pNX

x (f−1(u))) = pH2(f):

(d) We prove that |= f∈pH4 ↔ f∈pH5.
First, for any B∈P(Y ) one can deduce that

[f−1(f(p-clX (f−1(B))))⊇p-clX (f−1(B))] = 1; [clY (f(f−1(B)))⊆ clY (B)] = 1

and

[f−1(clY (f(f−1(B))))⊆f−1(clY (B))] = 1:

Then from Lemma 1.2(2) [9] we have

[p-clX (f−1(B)) ⊆ f−1(clY (B))]¿[f−1(f(p-clX (f−1(B))))⊆f−1(clY (B))]

¿ [f−1(f(p-clX (f−1(B))))⊆f−1(clY (f(f−1(B))))]

¿ [f(p-clX (f−1(B)))⊆ clY (f(f−1(B)))]:

Therefore,

pH5(f) = inf
B∈P(Y )

[p-clX (f−1(B))⊆f−1(clY (B))]

¿ inf
B∈P(Y )

[f−1(f(p-clX (f−1(B))))⊆f−1(clY (B))]

¿ inf
B∈P(Y )

[f−1(f(p-clX (f−1(B))))⊆f−1(clY (f(f−1(B))))]
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¿ inf
B∈P(Y )

[f(p-clX (f−1(B)))⊆ clY (f(f−1(B)))]

¿ inf
A∈P(X )

[f(p-clX (A))⊆ clY (f(A))] = pH4(f):

Secondly, for each A∈P(X ), there exists B∈P(Y ) such that f(A) = B and f−1(B)⊇A. Hence,

[p-clX (f−1(B))⊆f−1(clY (B))]6 [p-clX (A)⊆f−1(clY (f(A)))]

6 [f(p-clX (A))⊆f(f−1(clY (f(A))))]

6 [f(p-clX (A))⊆ clY (f(A))]:

Thus,

pH4(f) = inf
A∈P(X )

[p-clX (A)⊆f−1(clY (f(A))]¿ inf
B∈P(Y ); B=f(A)

[p-clX (f−1(B))⊆f−1(clY (B))]

¿ inf
B∈P(Y )

[p-clX (f−1(B))⊆f−1(clY (B))] = pH5(f):

(e) We want to prove that |= f∈ pH5 ↔ f∈pH2,

pH5(f) = [∀B(p-clX (f−1(B))⊆f−1(clY (B)))]

= inf
B∈P(Y )

inf
x∈X

min(1; 1 − (1 − pNx(X ∼f−1(B))) + 1 − Nf(x)(Y ∼B))

= inf
B∈P(Y )

inf
x∈X

min(1; 1 − Nf(x)(Y ∼ B)) + pNx(f−1(Y ∼B))

= inf
u∈P(Y )

inf
x∈X

min(1; 1 − Nf(x)(u)) + pNx(f−1(u)) = pH2(f):

Theorem 6.2. (1) |= f∈ cpH2 ↔ f∈ cpHj; j = 3; 4; 5;
(2) |= f∈ cpC → f∈ cpH2.

Proof. (1) It is similar to the proof of (c)–(e) in the proof of Theorem 6.1.
(2) It is similar to the proof of the ?rst part in (b) in Theorem 6.1.

Remark 6.1. In the following theorem, we indicate the fuzzifying topologies with respect to which we evalu-
ate the degree to which f is continuous or cpC-continuous. Thus, the symbols (	; U )-C(f), (	cpN ; U )-C(f),
(	; UcpN )-cpC(f), etc. will be understood.

Applying Theorems 3.4(1) and 4.4 one can deduce the following theorem.

Theorem 6.3. (1) |= f ∈ (	; UcpN )-C → f ∈ (	; U )-C;
(2) |= f ∈ (	; U )-cpC → f ∈ (	cpN ; U )-C;
(3) |= f ∈ (	; U )-C → f∈ (	; U )-cpC.

7. Decompositions of fuzzy continuity in fuzzifying topology

Theorem 7.1. Let (X; 	); (Y; U ) be two fuzzifying topological spaces. Then for each f∈Y X .

|= C(f) → (pC(f) ∧ cpC(f)):
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Proof. The proof is obtained from Theorem 3.3(1).

Remark 7.1. In crisp setting, i.e., if the underlying fuzzifying topology is the ordinary topology, one can
have

|= pC(f) ∧ cpC(f) → C(f):

But this statement may not be true in general in fuzzifying topology as illustrated by the following counter-
example.

Counterexample 7.1. Let (X; 	) be the fuzzifying topological space de?ned in Counterexample 3.1. Consider
the identity function f from (X; 	) onto (X; )) where ) is a fuzzifying topology on X de?ned as follows:

)(A) =
{

1; A∈{X; ∅; {a; b}};
0 otherwise:

Then 5
6 ∧ 1

6 = pC(f) ∧ cpC(f)�C(f) = 0.

Theorem 7.2. Let (X; 	); (Y; U ) be two fuzzifying topological spaces and let f∈Y X . Then

|= C(f) → (pC(f) ↔ cpC(f)):

Proof. [pC(f) → cpC(f)] = min(1; 1 − pC(f) + cpC(f))¿pC(f) ∧ cpC(f).
Also, [cpC(f) → pC(f)] = min(1; 1 − cpC(f) + pC(f))¿cpC(f) ∧ pC(f). Then from Theorem 7.1

we have cpC(f) ∧ pC(f)¿C(f) and so the result holds.

Theorem 7.3. Let (X; 	); (Y; U ) be two fuzzifying topological spaces and let f∈Y X . If [p	(f−1(u))] = 1 or
[cp	(f−1(u))] = 1 for each u∈P(Y ); Then

|= C(f) ↔ (pC(f) ∧ cpC(f)):

Proof. Now, we need to prove that C(f) = pC(f) ∧ cpC(f). Applying Theorem 3.4(2) we have

pC(f) ∧ cpC(f) = inf
u∈P(Y )

min(1; 1 − U (u) + p	(f−1(u))) ∧ inf
u∈P(Y )

min(1; 1 − U (u) + cp	(f−1(u)))

= inf
u∈P(Y )

min(1; (1 − U (u) + p	(f−1(u))) ∧ (1 − U (u) + cp	(f−1(u))))

= inf
u∈P(Y )

min(1; 1 − U (u) + (p	(f−1(u))) ∧ cp	(f−1(u)))

= inf
u∈P(Y )

min(1; 1 − U (u) + 	(f−1(u)) = C(f):

Theorem 7.4. Let (X; 	); (Y; U ) be two fuzzifying topological spaces and let f∈Y X . Then;
(1) if [p	(f−1(u))] = 1 for each u∈P(Y ); then

|= pC(f) → (cpC(f) ↔ C(f)):

(2) if [cp	(f−1(u))] = 1 for each u∈P(Y ); then

|= cpC(f) → (pC(f) ↔ C(f)):
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Proof. (1) Since [p	(f−1(u))] = 1 and so [f−1(u)⊆ (f−1(u))−◦] = 1, then [f−1(u)∩ (f−1(u))−◦ ⊆
(f−1(u))◦] = [f−1(u)⊆ (f−1(u))◦]. Thus,

cpC(f) = inf
u∈P(Y )

min(1; 1 − U (u) + cp	(f−1(u)))

= inf
u∈P(Y )

min(1; 1 − U (u) + [f−1(u)∩ (f−1(u))−◦ ⊆ (f−1(u))◦])

= inf
u∈P(Y )

min(1; 1 − U (u) + [f−1(u)⊆ (f−1(u))◦])

= inf
u∈P(Y )

min(1; 1 − U (u) + 	(f−1(u))) = C(f):

(2) Since [cp	(f−1(u))] = 1 one can deduce that (f−1(u))−◦ = (f−1(u))◦. So,

pC(f) = inf
u∈P(Y )

min(1; 1 − U (u) + p	(f−1(u))):

= inf
u∈P(Y )

min(1; 1 − U (u) + [f−1(u)⊆ (f−1(u))−◦])

= inf
u∈P(Y )

min(1; 1 − U (u) + [f−1(u)⊆ (f−1(u))◦])

= inf
u∈P(Y )

min(1; 1 − U (u) + 	(f−1(u))) = C(f):

Theorem 7.5. Let (X; 	); (Y; U ); (Z; V ) be three fuzzifying topological spaces. For any f∈Y X ; g∈ZY .
(1) |= pC(f) → (C(g) → pC(g ◦ f));
(2) |= C(g) → (pC(f) → pC(g ◦ f));
(3) |= cpC(f) → (C(g) → cpC(g ◦ f));
(4) |= C(g) → (cpC(f) → cpC(g ◦ f)):

Proof. (1) We need to prove that [pC(f)]6[C(g) → pC(g ◦ f)]. If [C(g)]6[pC(g ◦ f)], the result holds;
if [C(g)] ¿ [pC(g ◦ f)], then

[C(g)] − [pC(g ◦ f)] = inf
v∈P(Z)

min(1; 1 − V (v) + U (g−1(v)))

− inf
v∈P(Z)

min(1; 1 − V (v) + p	((g ◦ f)−1(v)))

6 sup
v∈P(Z)

(U (g−1(v)) − p	(g ◦ f)−1(v))

6 sup
u∈P(Y )

(U (u) − p	(f−1(u))):

Therefore,

[C(g) → pC(g ◦ f)] = min(1; 1 − [C(g)] + [pC(g ◦ f)])

¿ inf
u∈P(Y )

min(1; 1 − U (u) + p	(f−1(u))) = pC(f):

(2)

[C(g) → (pC(f) → pC(g ◦ f))]

= [@(C(g)∧· @(pC(f) → pC(g ◦ f)))]
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= [@(C(g)∧· @@(pC(f)∧· @(pC(g ◦ f))))] = [@(C(g)∧· pC(f)∧· @(pC(g ◦ f)))]

= [@(pC(f)∧· C(g)∧· @pC(g ◦ f))] = [@(pC(f)∧· @@(C(g)∧· @(pC(g ◦ f))))]

= [@(pC(f)∧· @(C(g) → pC(g ◦ f)))] = [pC(f) → (C(g) → pC(g ◦ f))] = 1:

The proofs of (3) and (4) are similar to (1) and (2), respectively.
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