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Abstract

In this paper, we establish a common fixed point theorem
for two pairs of mappings satisfying an almost generalized
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we obtain the results in [8, 9], and many others.
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1 Introduction

In the literature there is a large number of generalizations of metric space. one
of these generalization is the partially ordered metric space, i.e., metric space
defined on it a partial order.

Definition 1.1 Any relation between two elements of a set X is called a binary
relation over X. A binary relation is called a partial order if it satisfies the
following conditions:

1) x � x (reflexivity);

2) if x � y and y � x then x = y (antisymmetry);

3) if x � y and y � z then x � z (transitivity);
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for all x, y, z ∈ X.

A set with a partial order � is called a partially ordered set

Definition 1.2 Let (X,�) be a partially ordered set and x, y ∈ X. x and y
are said to be comparable elements of X if either x � y or y � x.

Definition 1.3 Let (X,�) be a partially ordered set. A subset A of X is said
to be well ordered if a � b for all a, b ∈ A.

In recent years, many results appeared related to fixed point theorems for single
and multivalued mappings on a complete ordered metric space. The first result
in this direction was given by Ran and Reurings [18], where they extended the
Banach contraction principle in partially ordered sets with some applications
to linear and nonlinear matrix equations. Subsequently, Nieto and Lpez [17]
extended the result of Ran and Reurings and applied their main theorems to
obtain a unique solution for a first order ordinary differential equation with
periodic boundary conditions. Therefore, results in this direction were proved
, see for example [16, 1, 4].
Let (X, d,�) be an ordered metric space and B(X) be the class of all nonempty
and bounded subsets of X. For A,B ∈ B(X), functions D(A,B) and δ(A,B)
are defined as follows:

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.
If A consists of a single point a, we write

D(A,B) = D(a,B) and δ(A,B) = δ(a,B).

Also in addition, If B consists of a single point b, we write

D(A,B) = d(a, b) and δ(A,B) = d(a, b).

Obviously, D(A,B) ≤ δ(A,B) for all A,B ∈ B(X), D(A, a∗) = 0 ⇒ a∗ ∈ A
and δ(A, a∗) = 0 ⇒ A = {a∗}, for δ(A, a∗) = sup{d(a, a∗) : a ∈ A} = 0 ⇒
d(a, a∗) = 0 for all a ∈ A, i.e., A = {a∗}. The definition of δ(A,B)
yields the following properties:

δ(A,B) = δ(B,A)

δ(A,B) ≤ δ(A,C) + δ(C,B)

δ(A,B) = 0 iff A = B = a

δ(A,A) = diam(A).

Fixed point theory of multivalued functions is a vast chapter of functional
analysis. In particular, the function δ(A,B) has been used in many works in
this area. Some of these works are noted in [8, 19, 3].
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Definition 1.4 Let F : X → 2X , (where, 2X is the power set of X or the set
of all subsets of X) be a set valued mapping, i.e., X 3 x 7→ F (x) is a subset
of X. A point x ∈ X is said to be a fixed point of the set valued mapping F if
x ∈ F (x).

Definition 1.5 Let I : X → X and F : X → B(X) be single and set valued
mappings on X. A point x ∈ X is said to be a common fixed point I and F if
{x} = {Ix} = F (x).

We will use the following relations between two nonempty subsets of a partially
ordered set.

Definition 1.6 [3] Let A and B be two nonempty subsets of a partially ordered
set (X,�). The relation between A and B is denoted and defined as follows:

(i) A ≺1 B, if for every a ∈ A there exists b ∈ B such that a � b,

(ii) A ≺2 B, if for every b ∈ B there exists a ∈ A such that a � b,

(iii) A ≺3 B, if fA ≺1 B and A ≺2 B.

Definition 1.7 A sequence {An} of subsets of X is said to be convergent to
a subset A of X if

1) Given a ∈ A, there is a sequence {an} in X such that an ∈ An, for n =
1, 2, ..., and {an} converges to a.

2) Given ε > 0, there exists a positive integer N such that An ⊆ Aε for n > N
where, Aε is the union of all open spheres with centers in A and radius
ε.

Lemma 1.8 [11] If {An} and {Bn} are sequences in B(X) converging to
A and B in B(X), respectively, then the sequence {δ(An, Bn)} converges to
δ(A,B).

Lemma 1.9 [11] Let {An} be a sequence in B(X) and y a point in X such
that δ(An, y)→ 0. Then the sequence {An} converges to the set {y} in B(X).

The study of common fixed points of mappings satisfying certain contractive
conditions has been at the center of vigorous research activity. The area of
common fixed point theory, involving four single valued maps, began with the
assumption that all of the maps commuted. Afterward Sessa [20] introduced
the notion of weakly commuting mappings, which generalized the concept of
commuting mappings. Then Jungck [15] generalized this idea, first to com-
patible mappings and then to weakly compatible mappings [14]. There are
examples that show that each of these generalizations of commutativity is a
proper extension of the previous definition. In [13, 12] Jungck and Rhoades
extended definition of compatibility and weak compatibility to set valued map-
pings setting as follows:
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Definition 1.10 The mapping I : X → X and F : X → B(X) are δ-
compatible if

lim
n→∞

δ(FIxn, IFxn) = 0,

whenever {xn} is a sequence in X such the IFxn ∈ B, Fxn → {t} and
Ixn → t, for some t ∈ X.

Definition 1.11 The mapping I : X → X and F : X → B(X) are weakly
compatible if for each point u in X such that Fu = {Iu}, we have FIu = IFu.

Definition 1.12 [1] Let (X,�) be a partially ordered set and f, g : X → X
be two single valued functions. A mapping f is called weak annihilator of g if
fgx � x for all x ∈ X.

Definition 1.13 [1] A mapping f defined above is called dominating if x � fx
for all x ∈ X.

The concept of almost contractions were introduced by Berinde[5, 6]. After-
wards, almost contractions and its generalizations were further considered in
several works like the paper of Ćirić et al. [9] who proved some fixed point
results in ordered metric spaces using almost generalized contractive condition,
which is given in the following definition.

Definition 1.14 Let f and g be two self mappings on a metric space (X, d).
f and g are said to satisfy almost generalized contractive condition if there
exists δ ∈ [0, 1[ and L ≥ 0 such that for all x, y ∈ X:

d(fx, gy) ≤δmax {d(x, y), d(x, fx), d(y, gy),
d(x, gy) + d(y, fx)

2
}

+ Lmin {d(x, fx), d(y, gy), d(x, gy), d(y, fx)}.
(1)

Therefore, Aghajani et al. [2] generalized the above definition to four self
mappings and proved the following theorem in ordered metric spaces.

Theorem 1.15 Let (X,�, d) be an ordered complete metric space. Let f, g, S
and T be self mappings on X, with f(X) ⊆ T (X) and g(X) ⊆ S(X) and
dominating mappings f and g are weak annihilators of T and S, respectively.
Suppose that f and g satisfy:

d(fx, gy) ≤ δM(x, y) + LN(x, y), (2)

where

M(x, y) = max {d(Sx, Ty), d(fx, Sx), d(gy, Ty),
d(Sx, gy) + d(fx, Ty)

2
}
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N(x, y) = min {d(fx, Sx), d(gy, Ty), d(Sx, gy), d(fx, Ty)},

for every two comparable elements x, y ∈ X and δ ∈ [0, 1[ and L ≥ 0. If for
a nondecreasing sequence xn with xn � yn for all n and yn → u implies that
xn � u and furthermore (a) {f, S} and {g, T} are weakly compatible; (b) one
of f(X), g(X), S(X) and T (X) is a closed subspace of X, then f, g, S and T
have a common fixed point.

Finally, Choudhury and Metiya [7] improved the same almost contraction of
Ćirić et al. [9] and established the existence of fixed points of multivalued and
single valued mappings in Partially ordered metric space.

Theorem 1.16 Let (X,�) be a partially ordered set and suppose that there
exists a metric d on X such that (X, d) is a complete metric space. Let T :
X → B(X) be a multivalued mapping such that the following conditions are
satisfied:

(i) there exists x0 ∈ X such that {x0} ≺1 Tx0,

(ii) for x, y ∈ X, x � y implies Tx ≺1 Ty,

(iii) if xn → x is any sequence inXwhose consecutive terms are comparable,
then xn � x, for all n,

(iii)

δ(Tx, Ty) ≤ψ(max{d(x, y), D(x, Tx), D(y, Ty),
D(x, Ty) +D(y, Tx)

2
}

+Lmin{D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)}),
(3)

for all comparable x, y ∈ X, where L ≥ 0 and ψ : [0,∞) → [0,∞) is
a nondecreasing and upper semi-continuous function with ψ(t) ≤ t for
each t > 0.

Then T has a fixed point.

The main aim of this paper is to define dominating and weak annihilator set
valued mappings defined on an ordered set and introduce the corresponding
existence theorem of common fixed point for these mappings in partially or-
dered metric space which generalize the above result of Aghajani et al. [2] and
others.
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2 Main results

Before we state and prove our main result we need to give the following defi-
nitions:

Definition 2.1 Let (X, d,�) be a partially ordered metric space and F : X →
B(X) be multivalued mapping. F is called dominating if {x} ≺2 Fx for all
x ∈ X.

Definition 2.2 Let (X, d,�) be a partially ordered metric space and F : X →
B(X), I : X → X be multivalued and single valued mappings. F is called weak
annihilator of I if FIx ≺2 {x} for all x ∈ X.

Example 2.3 Let X = [0,∞[ be the set of all nonnegative real numbers. Sup-
pose that ”≤” be the usual ordering in R, we define a new ordering ”�” on X
as follows:

x � y ⇔ y ≤ x ∀x, y ∈ X.

Define the mappings I : X → X and F : x→ B(X) as,

Ix = 2x and Fx = [0,
x

2
] for all x ∈ X.

Clearly, for any number p ∈ Fx = [0, x
2
] there exists an element x ∈ X such

that p ≤ x or x � p, then {x} ≺2 Fx for any x ∈ X.
Also, Ix = 2x for any x ∈ X and FIx = [0, x], i.e., for any element of the
singleton {x} one can find the same x in the set FIx such that x � x ⇒
FIx ≺2 {x} for all x ∈ X.
Thus, the dominating mapping F is weak annihilator of I.

Example 2.4 Let X = [0, 1] with the usual order, �=≤, be a partially ordered
set. Define the mappings I : X → X and F : x→ B(X) as,

Ix =

{
0, x ∈ [0, 1

2
]

2x− 1, x ∈ (1
2
, 1],

and Tx =

{
0, x ∈ [0, 1

2
],

{x, 1}, x ∈ (1
2
, 1].

Obviously, F and I commute at their coincidence points, {0, 1}, then the pair
{F, I} is weakly compatible. Also we have {x} ≺2 Fx for all x ∈ X, i.e., F is
dominating.
Since, FIx = 0 if x ∈ [0, 3

4
] and FIx = {x, 1} if x ∈ (3

4
, 1] then for any x ∈ X

we can find y ∈ FIx with y � x. Thus, FIx ≺2 {x} for all x ∈ X. This means
that F is also weak annihilator of I.

Remark 2.5 Definition 1.11 is a special case of Definition 2.1 as F is a single
valued function.
Indeed, if F is a single valued then {x} ≺2 Fx⇒ {x} ≺2 {Fx} ⇒ x � Fx for
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all x ∈ X.
Also, Definition 1.10 is a special case of Definition 2.2. Apply the same argu-
ment, if F is a single valued then FIx ≺2 {x} ⇒ {FIx} ≺2 {x} ⇒ FIx � x
for all x ∈ X.

Theorem 2.6 Let (X,�, d) be an ordered complete metric space. Let I, J :
X → X be single valued and F,G : X → B(X) be multivalued mappings, with
∪F (X) ⊆ J(X) and ∪G(X) ⊆ I(X) and the dominating set valued mappings
F and G are weak annihilators of J and I, respectively. Suppose that there
exists a non decreasing and upper semi-continuous function ψ : [0,∞) →
[0,∞) with ψ(t) ≤ t for each t > 0 and L ≥ 0 such that for every two
comparable elements x, y ∈ X,

δ(Fx,Gy) ≤ ψ(M(x, y)) + LN(x, y), (4)

where

M(x, y) = max{d(Ix, Jy), D(Fx, Ix), D(Gy, Jy),
D(Ix,Gy) +D(Fx, Jy)

2
}

N(x, y) = min{D(Fx, Ix), D(Gy, Jy), D(Ix,Gy), D(Fx, Jy)}.

If the pairs {F, I} and {G, J} are weakly compatible and one of I(X) and J(X)
is a closed subspace of X. Furthermore, if {xn} ≺2 An for all n and An → A
then {xn} ≺2 A, where {xn} is a singleton subset of X and An, A ∈ B(X).
Then, the set of common fixed points of F,G, I and J is well ordered if and
only if F,G, I and J have one and only one common fixed point.

proof Let x0 be an arbitrary point in X. Since ∪F (X) ⊆ J(X), then Fx0 ⊆
J(X) that means, there exists at least one point x1 ∈ X such that y0 = Jx1 ∈
Fx0. similarly, by ∪G(X) ⊆ I(X), we can find another point x2 ∈ X with
y1 = Ix2 ∈ Gx1. Continuing this process we construct two sequences {xn} and
{yn} in X such that:

y2n = Jx2n+1 ∈ Fx2n
y2n+1 = Ix2n+2 ∈ Gx2n+1. (5)

Since F is dominating and weak annihilators of J then {x2n} ≺2 Fx2n ≺2

{Jx2n+1} ≺2 FJx2n+1 ≺2 {x2n+1}, note that, since y2n ∈ Fx2n and y2n =
Jx2n+1 � Jx2n+1, then for each element in the set {Jx2n+1} there exists an
element y2n in Fx2n with y2n � Jx2n+1, i.e., Fx2n ≺2 {Jx2n+1}.

Similarly, SinceG is dominating and weak annihilators of I then {x2n+1} ≺2

Gx2n+1 ≺2 {Ix2n+2} ≺2 GIx2n+2 ≺2 {x2n+2}. Thus we have x2n � x2n+1 and
x2n+1 � x2n+2 implies that xn � xn+1 for all n ≥ 0. Now, we show that the
sequence {yn} defined in (2.2) is a Cauchy sequence, for this two cases arise,
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either yn = yn+1 for some n or yn 6= yn+1 for all n.
Case I. If yn = yn+1 for some n. Without any loss of generality, setting n = 2m
and using (2.1) to claim that y2m = y2m+1 ⇒ y2m+1 = y2m+2 and so on. For
this aim we assume that d(y2m+1, y2m+2) > 0 and then obtain a contradiction
as follows:

d(y2m+1, y2m+2) ≤ δ(Gx2m+1, Fx2m+2) = δ(Fx2m+2, Gx2m+1)

≤ ψ(M(x2m+2, x2m+1)) + LN(x2m+2, x2m+1),
(6)

where

M(x2m+2, x2m+1) = max{d(Ix2m+2, Jx2m+1), D(Fx2m+2, Ix2m+2), D(Gx2m+1, Jx2m+1),

D(Ix2m+2, Gx2m+1) +D(Fx2m+2, Jx2m+1)

2
}

≤max{d(y2m+1, y2m), d(y2m+2, y2m+1), d(y2m+1, y2m),

d(y2m+1, y2m+1) + d(y2m+2, y2m)

2
}

= max{0, d(y2m+2, y2m+1), 0,
d(y2m+2, y2m)

2
}

=d(y2m+2, y2m+1),

and

N(x2m+2, x2m+1) = min{D(Fx2m+2, Ix2m+2), D(Gx2m+1, Jx2m+1), D(Ix2m+2, Gx2m+1),

D(Fx2m+2, Jx2m+1)}
= min{d(y2m+2, y2m+1), d(y2m+1, y2m), d(y2m+1, y2m+1), d(y2m+2, y2m)}
≤min{d(y2m+2, y2m+1), 0, 0, d(y2m+1, y2m)}
=0.

Therefore, d(y2m+1, y2m+2) ≤ ψ(d(y2m+2, y2m+1)) that contradicts with the
properties of ψ. Thus, d(y2m+1, y2m+2) = 0 ⇒ y2m+1 = y2m+2. By a similar
way one can prove that y2m+2 = y2m+3 proceeding in this manner, it follows
that y2m = y2m+k or yn = yn+k for each k ≥ 1. Thus, in this cases {yn} is
Cauchy sequence since, we can find an integer N = n with d(ym, ym+p) = 0 for
all m > N .
Case II. If yn 6= yn+1 for all n. we shall prove that d(yn, yn+1) < d(yn−1, yn),
for this purpose we replace x by x2n and y by x2n+1 in condition (2.1),

d(y2n, y2n+1) ≤ δ(Fx2n, Gx2n+1) ≤ ψ(M(x2n, x2n+1)) + LN(x2n, x2n+1), (7)
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where

M(x2n, x2n+1) = max{d(Ix2n, Jx2n+1), D(Fx2n, Ix2n), D(Gx2n+1, Jx2n+1),

D(Ix2n, Gx2n+1) +D(Fx2n, Jx2n+1)

2
}

≤max{d(y2n−1, y2n), d(y2n, y2n−1), d(y2n+1, y2n),
d(y2n−1, y2n+1) + d(y2n, y2n)

2
}

= max{d(y2n−1, y2n), d(y2n, y2n+1),
d(y2n−1, y2n+1)

2
},

and

N(x2n, x2n+1) = min{D(Fx2n, Ix2n), D(Gx2n+1, Jx2n+1), D(Ix2n, Gx2n+1), D(Fx2n, Jx2n+1)}
≤min{d(y2n, y2n−1), d(y2n+1, y2n), d(y2n−1, y2n+1), d(y2n, y2n)}
=0.

Since, d(y2n−1,y2n+1)
2

≤ max{d(y2n−1, y2n), d(y2n, y2n+1)}, it follows that

d(y2n, y2n+1) ≤ ψ(max{d(y2n−1, y2n), d(y2n, y2n+1)}). (8)

If d(y2n−1, y2n) ≤ d(y2n, y2n+1), then it follows from inequality (2.5) that:

d(y2n, y2n+1) ≤ ψ(d(y2n, y2n+1))

which implies that d(y2n, y2n+1) = 0, contradicting our assumption that yn 6=
yn+1 for all n. Thus

d(y2n, y2n+1) < d(y2n−1, y2n). (9)

Again applying the considered contractive condition with x = x2n and y =
x2n−1, we have

d(y2n−1, y2n) ≤ δ(Gx2n−1, Fx2n) = δ(Fx2n, Gx2n−1) ≤ ψ(M(x2n, x2n−1))+LN(x2n, x2n−1),
(10)

where

M(x2n, x2n−1) = max{d(Ix2n, Jx2n−1), D(Fx2n, Ix2n), D(Gx2n−1, Jx2n−1),

D(Ix2n, Gx2n−1) +D(Fx2n, Jx2n−1)

2
}

≤max{d(y2n−1, y2n−2), d(y2n, y2n−1), d(y2n−1, y2n−2),
d(y2n−1, y2n−1) + d(y2n, y2n−2)

2
}

= max{d(y2n−1, y2n−2), d(y2n, y2n−1),
d(y2n, y2n−2)

2
}

= max{d(y2n−1, y2n−2), d(y2n, y2n−1)},
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and

N(x2n, x2n−1) = min{D(Fx2n, Ix2n), D(Gx2n−1, Jx2n−1), D(Ix2n, Gx2n−1), D(Fx2n, Jx2n−1)}
≤min{d(y2n, y2n−1), d(y2n−1, y2n−2), d(y2n−1, y2n−1), d(y2n, y2n−2)}
=0.

If d(y2n−1, y2n−2) ≤ d(y2n, y2n−1), we obtain a contradiction, then

d(y2n−1, y2n) < d(y2n−2, y2n−1). (11)

Therefore, d(yn, yn+1) < d(yn−1, yn) for all n and {d(yn, yn+1)} is a monotone
decreasing and bounded sequence of nonnegative real numbers. Then there
exists a r > 0 such that, d(yn, yn+1)→ r as n→∞.
From (2.4), d(y2n, y2n+1) ≤ ψ(d(y2n−1, y2n)). Then passing to the upper limit
and using the upper semi-continuity of ψ yields r ≤ lim supn→∞ψ(d(y2n−1,y2n))≤ψ(r),
a contradiction unless r = 0. Thus

lim
n→∞

d(yn, yn+1) = 0. (12)

Next, we claim that {yn} is a Cauchy sequence. Suppose the contrary, then
there exists an ε > 0 for which we can find two sequences of positive integers
{2nk} and {2mk} such that for all k,

nk > mk > k,

d(y2mk
, y2nk

) ≥ ε and

d(y2mk
, y2nk−1) < ε.

By the triangle inequality, ε ≤ d(y2mk
, y2nk

) ≤ d(y2mk
, y2nk−1)+d(y2nk−1, y2nk

) <
ε+ d(y2nk−1, y2nk

). Taking the limit as k →∞ and using (2.9) tends to

lim
k→∞

d(y2mk
, y2nk

) = 0. (13)

Also we have
d(y2mk−1, y2nk

) ≤ d(y2mk−1, y2mk
) + d(y2mk

, y2nk
) and

d(y2mk
, y2nk

) ≤ d(y2mk
, y2mk−1) + d(y2mk−1, y2nk

).
Taking the limit at k →∞ in the above inequalities and using (2.9) and (2.10),
we get

lim
k→∞

d(y2mk−1, y2nk
) = ε. (14)

By a similar way we can prove that

lim
k→∞

d(y2mk−1, y2nk+1) = ε. (15)

Also we have
d(y2mk

, y2nk+1) ≤ d(y2mk
, y2nk

) + d(y2nk
, y2nk+1) and
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d(y2mk−1, y2nk+1) ≤ d(y2mk−1, y2mk
) + d(y2mk

, y2nk+1).
Taking the limit at k → ∞ in the above inequalities and using (2.9), (2.10)
and (2.12), we get

lim
k→∞

d(y2mk
, y2nk+1) = ε. (16)

Now in a position to apply the contractive condition and use the previous
limits, to obtain

d(y2mk
, y2nk+1) ≤ δ(Fx2mk

, Gx2nk+1) ≤ ψ(M(x2mk
, x2nk+1))+LN(x2mk

, x2nk+1),
(17)

where

M(x2mk
, x2nk+1) = max{d(Ix2mk

, Jx2nk+1), D(Fx2mk
, Ix2mk

), D(Gx2nk+1, Jx2nk+1),

D(Ix2mk
, Gx2nk+1) +D(Fx2mk

, Jx2nk+1)

2
}

≤ max{d(y2mk−1, y2nk
), d(y2mk

, y2mk−1), d(y2nk+1, y2nk
),

d(y2mk−1, y2nk+1) + d(y2mk
, y2nk

)

2
}

→ max{ε, 0, 0, ε+ ε

2
} = ε,

and

N(x2mk
, x2nk+1)→ 0 as k →∞.

Passing to the upper limit in Eq. (2.14), ε ≤ lim supk→∞ψ(M(x2mk
,x2nk+1))≤ψ(ε),

which contradicting with the fact that ε > 0. Then we deduce that {yn} is
Cauchy sequence in X.
Since X is complete then there exists a point p in X such that {yn} converges
to this point. Therefore, y2n = Jx2n+1 → p and y2n+1 = Ix2n+2 → p. Since
Jx2n+1 ∈ Fx2n for all n and Jx2n+1 → p then by Def. (1.5) Fx2n → {p}. Also.
Gx2n+1 → {p}. Assume that I(X) is closed then there is an element u in X
with p = Iu.
Also, {x2n+1} ≺2 Gx2n+1 → {p} ⇒ {x2n+1} ≺2 {p} ⇒ x2n+1 � p for all n,
and {x2n+1} ≺2 {p} = {Iu} ≺2 GIu ≺2 {u} ⇒ x2n+1 � u for all n. Using
inequality (2.1) with x = u and y = x2n+1 implies Fu = p as follows:

δ(Fu,Gx2n+1) ≤ ψ(M(u, x2n+1)) + LN(u, x2n+1), (18)

where

M(u, x2n+1) = max{d(Iu, Jx2n+1), D(Fu, Iu), D(Gx2n+1, Jx2n+1),
D(Iu,Gx2n+1) +D(Fu, Jx2n+1)

2
}

→ D(Fu, p) as n→∞,
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and

N(u, x2n+1) = min{D(Fu, Iu), D(Gx2n+1, Jx2n+1), D(Iu,Gx2n+1), D(Fu, Jx2n+1)} → 0 as n→∞.

Taking the limit when n → ∞ in (2.5), we get δ(Fu, p) ≤ ψ(D(Fu, p)) ≤
ψ(δ(Fu, p)) ⇒ δ(Fu, p) = 0. Then, Fu = {p}. (Note that , D(Fu, p) ≤
δ(Fu, p) ⇒ D(Fu, p) ≤ δ(Fu, p) ≤ αD(Fu, p) ⇒ D(Fu, p) = 0 ⇒ p ∈ Fu,
and δ(Fu, p) ≤ αD(Fu, p) ≤ αδ(Fu, p) ⇒ δ(Fu, p) = 0 ⇒ Fu = {p}). Thus,
we have Fu = {Iu} = {p}. By Using the weak compatibility of the pair {F, I}
we get Fp = FIu = IFu = {Iu}. We in the position to show that Fp = {p},
for this we set x = p and y = x2n+1 in (2.1) and then take the limit at n tends
to infinity as follows:

δ(Fp,Gx2n+1) ≤ ψ(M(p, x2n+1)) + LN(p, x2n+1), (19)

where

M(p, x2n+1) = max{d(Ip, Jx2n+1), D(Fp, Ip), D(Gx2n+1, Jx2n+1),
D(Ip,Gx2n+1) +D(Fp, Jx2n+1)

2
}

→ D(Fp, p) as n→∞

and

N(p, x2n+1) = min{D(Fp, Ip), D(Gx2n+1, Jx2n+1), D(Ip,Gx2n+1), D(Fp, Jx2n+1)}
=0

This implies
Fp = {Tp} = {p}. (20)

Since ∪F (X) ⊆ J(X), then Fu ⊆ J(X), i.e., there exists ν ∈ X with Jν ∈
Fu = {Iu} = {p}. Thus, we have Jν = Iu = p. Now we show that Gν =
{Jν} = {p}. Using inequality (2.1) with x = u and y = ν gets:

δ(Jν,Gν) ≤ δ(Fu,Gν) ≤ ψ(M(u, ν)) + LN(u, ν), (21)

where

M(u, ν) = max{d(Iu, Jν), D(Fu, Iu), D(Gν, Jν),
D(Iu,Gν) +D(Fu, Jν)

2
}

= max{0, 0, D(Gν, Jν),
D(Jν,Gν)

2
}

=D(Gν, Jν),

and

N(u, ν) = min{D(Fu, Iu), D(Gν, Jν), D(Iu,Gν), D(Fu, Jν)}
= min{0, D(Gν, Jν), D(Iu,Gν), 0}
=0.
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So δ(Jν,Gν) ≤ ψ(D(Gν, Jν)). Thus, Gν = {Jν} = {p}.
By Using the weak compatibility of the pair {G, J} we get Gp = GJν =
JGν = {Jp}. Putting x = p and y = p in (2.1) and then take the limit at n
tends to infinity yields:

δ(p,Gp) ≤ ψ(M(p, p)) + LN(p, p), (22)

where

M(p, p) = max{d(Ip, Jp), D(Fp, Ip), D(Gp, Jp),
D(Ip,Gp) +D(Fp, Jp)

2
}

= max{D(p,Gp), 0, 0,
D(p,Gp) +D(p,Gp)

2
}

=D(Gp, p),

and

N(p, p) = min{D(Fp, Ip), D(Gp, Jp), D(Ip,Gp), D(Fp, Jp)}
=0

This implies
Gp = {Jp} = {p}. (23)

From Eqs. (2.7) and (2.10) we say that p is a common fixed point of F,G, I
and J .
Now suppose that the set of common fixed points of the four mappings is well
comparable and there is another common fixed point q ∈ X with p 6= q.Then
we have:

d(p, q) ≤ δ(Fp,Gq) ≤ ψ(M(p, q)) + LN(p, q), (24)

where

M(p, q) = max{d(Ip, Jq), D(Fp, Ip), D(Gq, Jq),
D(Ip,Gq) +D(Fp, Jq)

2
}

≤max{d(p, q), 0, 0,
d(p, q) + d(p, q)

2
}

=d(p, q),

and

N(p, p) = min{D(Fp, Ip), D(Gq, Jq), D(Ip,Gq), D(Fp, Jq)}
=0.

Then, d(p, q) ≤ ψ(d(p, q)). i.e., p = q. Conversely, if F,G, I and J have only
one common fixed point then the set of the common fixed point of these four
mappings being singleton which is well ordered.
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Remark 2.7 Let F : X → B(X) be multi valued mapping defined on the set
X and IX be the identity mapping on the same set X. If F is dominating
and weak annihilator of IX , then we have {x} ≺2 Fx and Fx ≺2 {x} for all
x ∈ X, this means, x � y for all y ∈ Fx and there exist z ∈ Fx with z � x.
Thus we have x � z and z � x for some z. Then x = z ∈ Fx. If we consider
An and A to be singleton subsets of X, i.e. An = {yn} and A = {y}, then the
relation {xn} ≺2 An is equivalent to this one xn � yn, An → A⇔ yn → y and
{xn} ≺2 A⇒ {xn} ≺2 {y} ⇒ x � y.

Takin ψ(t) = αt, α ∈ [0, 1[ and considering F and G be single valued map-
pings in Theorem 2.1, we have the following result

Corollary 2.8 Let (X,�, d) be an ordered complete metric space. Let F,G, I, J :
X → X be single valued mappings, with F (X) ⊆ J(X) and G(X) ⊆ I(X) and
the dominating mappings F and G are weak annihilators of J and I, respec-
tively. Suppose that there exists an α ∈ [0, 1[ and L ≥ 0 such that for every
two comparable elements x, y ∈ X,

d(Fx,Gy) ≤ αM(x, y) + LN(x, y), (25)

where

M(x, y) = max{d(Ix, Jy), d(Fx, Ix), d(Gy, Jy),
d(Ix,Gy) + d(Fx, Jy)

2
}

N(x, y) = min{d(Fx, Ix), d(Gy, Jy), d(Ix,Gy), d(Fx, Jy)}.
If the pairs {F, I} and {G, J} are weakly compatible and one of I(X) and J(X)
is a closed subspace of X. Furthermore, if xn � yn for all n and yn → y then
xn � y. Then, the set of common fixed points of F,G, I and J is well ordered
if and only if F,G, I and J have one and only one common fixed point.

The following result is a natural consequence of Theorem 2.1 when F = G and
I = J = IX .

Corollary 2.9 Let (X,�, d) be an ordered complete metric space. Let F :
X → B(X) be multivalued mappings with x ∈ Fx for all x ∈ X. Suppose
that there exists a non decreasing and upper semi-continuous function ψ :
[0,∞) → [0,∞) with ψ(t) ≤ t for each t > 0 and L ≥ 0 such that for every
two comparable elements x, y ∈ X,

δ(Fx, Fy) ≤ ψ(M(x, y)) + LN(x, y), (26)

where

M(x, y) = max{d(x, y), D(Fx, x), D(Fy, y),
D(x, Fy) +D(Fx, y)

2
}

N(x, y) = min{D(Fx, x), D(Fy, y), D(x, Fy), D(Fx, y)}.
If xn � yn for all n and yn → y then xn � y. Then, the set of fixed points of
F is well ordered if and only if F has one and only one fixed point.
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3 Open Problem

In this section we should present open problems

1 Is Theorem 2.1 true in ordered cone metric space.

2 Is Theorem 2.1 true for hybrid pairs of occasionally weakly compatible map-
pings.
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