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Abstract
An approximation space plays a vital role in the accuracy of approximations of a subset of the universal set. The main
goal of this paper is to develop new kinds of soft rough sets models by using the concept of near open sets, where the
accuracy of approximations is enhanced significantly. Firstly, the concepts of near soft rough approximations, denoted by
“JSR-approximations” for each J ∈ {P, S, γ, α, β} are proposed as a generalization some previously introduced notions.
Then, their properties and relationships are disclosed. Comparisons among the proposed methods and the previous one are
obtained. An algorithm has been given for decision-making problems. The proposed algorithm is tested on hypothetical data
for the purpose of comparison with already existing methods.

Keywords Soft sets · Soft rough sets · Topological soft rough sets · Near soft rough sets · Accuracy measure

1 Introduction

Soft sets theory is a modern, non-statistical approach to
deal with uncertainty and vagueness, proposed byMolodtsov
(1999). This theory presents a logical and comprehensible
view, to deal with vagueness and uncertainty in the data col-
lected from real-life situations. There are many applications
of soft sets ranging from algebra to decision-making prob-
lems (Ali 2011). There aremany different types of operations
available in soft sets, which make it possible to manipulate
data without any loss of useful information (Ali et al. 2013).
It is not a rival to its contemporary theories, such as fuzzy
sets, rough sets, and intuitionistic fuzzy sets, rather it sup-
plements them. Therefore, there exist many hybrid models
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such as “soft rough sets, fuzzy soft sets and soft topolog-
ical space.” For more details, please see Alcantud (2020),
Ali (2011), Ali et al. (2009, 2013, 2017, 2019), Ayub et al.
(2020), Babitha and Sunil (2016), Bakeir et al. (2018), El-
Bably and El Atik (2021), El-Sayed et al. (2020), El-Sayed
and El-Bably (2017), Feng et al. (2011), Li and Xie (2014),
Ma et al. (2018) and Maji et al. (2002, 2003).

Rough set theory is another non-statistical model pre-
sented by Pawlak (1982) which handles uncertainty by at
least two different types of approximations. In literature,
many extensions of this theory have been discussed (Abo
Khadra et al. 2007; Abo-Tabl 2011, 2013; Ali et al. 2013;
Al-shami et al. 2021; Amer et al. 2017; El-Bably and Abo-
Tabl 2021; El Sayed et al. 2021; El-Bably 2015; Nawar et al.
2020). The concept of soft rough sets is a hybridization of the
soft sets with the rough sets, proposed by Feng et al. (2011).
Thismodel hasmany applications inmany real-life problems
and it represents a different approach than classical rough sets
provided by Pawlak. In fact, they introduce a new notion for
approximating the sets using the soft sets. But they have to
put some conditions in their approach to satisfy some prop-
erties similar to rough approximations. During recent years,
many different types of soft rough set models have been pro-
posed for details see Ali (2011), Ali et al. (2009), Ayub et al.
(2020), El-Bably and El Atik (2021), El-Sayed et al. (2020)
and Shabir et al. (2013).

Rough sets theory and its extensions have very strong
relationship with topology. Notions of interior and closure
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in topology are counterparts of lower and upper approxima-
tions in rough sets (Pawlak 1982). In rough sets, definable
sets give rise to certain type of topologies where every open
set is closed as well (Ali et al. 2013).

Recently, the relationship between soft sets and topology
has been discussed in Alcantud (2020) and El-Bably et al.
(2021). The notion of soft subbasis has been introduced by
El-Bably et al. (2021) to propose the notion of “Topologi-
cal soft rough sets” using a general topology generated from
the soft set. By this approach, new types of lower and upper
approximations of a subset are obtained, which are gener-
ally different from those introduced in Feng et al. (2011). In
fact, the introduced approximations satisfy many properties
similar to classical Pawlak’s (1982) rough set theory without
adding any restrictions or conditions. Accordingly, proposed
methods open ways for more topological applications in the
soft rough sets theory. The basic technique introduced in the
current paper provides generalized approximations of sub-
sets based on a new class of nearly open sets studied in Abd
El-Monsef et al. (1983), Andrijevi (1986, 1996), El-Bably
(2015), Levine (1963), Mashhour et al. (1982), and Njestad
(1965). Using the concepts of nearly or near open sets, near
soft rough sets, denoted by “JSR-near sets,” are introduced
and thus new generalized approximations called near soft
rough approximations, denoted by “JSR-approximations” for
each J ∈ {P, S, γ, α, β} are obtained. These approximations
are more accurate, because here the region of soft bound-
ary is somewhat reduced as compared with already existing
approaches. The results and the properties which do not hold
in the model given by Feng et al. (2011) have no difficulty in
the proposed technique. There is no need to impose any extra
conditions here. A Comparison of the suggested model with
already existing techniques has been made (Feng et al. 2011;
El-Bably et al. 2021). By employing the degree of accuracy
of the approximations, we generate six different equivalence
relations among the subsets of any finite set. Thus, this equiv-
alence relation classifies the above-mentioned subsets into
different classes. These equivalence classes maintain a strict
order among them.

Multi-attribute decision making (MADM) is a crucial
topic in decision-making theory.MADM’smain purpose is to
assess the performance of different options in multi-attribute
environments. To create an evaluation matrix, a decision
maker estimates the performance of each alternative based
on a set of attributes. Many decision-making models have
been proposed to help decision makers, to reach a reason-
able decision. These models are typically built on traditional
two-way decision-making (2-WDM) platforms. Yao (2010)
recently proposed a new theory called three-way decision
making (3-WDM), by introducing a third delayed decision
option, (3-WDM) can effectively reduce decision risks. The
emergence of 3-WDM opens up a new path and provides
new opportunities forMADMstudy. Zhan et al. (2021a) have

introducing a novel three-way decision model based on util-
ity theory in incomplete fuzzy decision systems. Zhan et al.
(2021b), 3-WDM model has been employed with the help
of outranking relation. Zhan et al. also proposed strategies
to design a new 3-WDM model for MADM in Zhan et al.
(2020). The literature on multi-criteria decision making and
its applications is very rich, for further studies following can
be seen Deng et al. (2021), El-Bably and Abo-Tabl (2021),
El-Sayed et al. (2020);El Sayed et al. (2021),Maet al. (2018),
Maji et al. (2002), Wang et al. (2021), Zhan and Sun (2019),
Zhan and Alcantud (2018), Zhan and Davvaz (2016), Zhang
and Zhan (2019) and Zhang et al. (2019, 2020). In present
paper, a simplemedical application of decisionmaking about
the diagnosis of diabetes mellitus is discussed (Bakeir et al.
2018). Here, JSR-near rough approximations are employed
to reach a decision. Then, an algorithm is given, which may
be very useful for decision-making problems for an informa-
tion system, in terms of JSR-near rough approximations.

2 Preliminaries

In this section, some basic definitions, results and notations
(about Pawlak rough sets, soft sets, soft rough sets and topol-
ogy) are given, which will be used throughout this paper.

2.1 Pawlak rough set theory

In this subsection, some notions related to rough sets theory
presented by Pawlak are given Pawlak (1982).

Definition 2.1.1 (Pawlak 1982) Let U be a finite set called
universe, and R be an equivalence relation onU , we useU/R
to denote the family of all equivalence classes of R and [x]R
to denote an equivalence class in R containing an element x ∈
U . Then, the pair AR = (U , R) is called an approximation
space and for any X ⊆ U , we can define the lower and upper
approximation of X by R(X) = {x ∈ U : [x]R ⊆ X} and
R(X) = {x ∈ U : [x]R∩X �= φ}, respectively. According to
Pawlak’s definition, X is called a rough set if R(X) �= R(X).

Definition 2.1.2 (Pawlak 1982) Let AR = (U , R) be an
approximation space and X ⊆ U . Then, the “boundary,”
“positive” and “negative” regions and the “accuracy” of
the approximations of X ⊆ U are defined, respectively,
by: BNDR(X) = R(X) − R(X), POSR(X) = R(X),
NEGR(X) = U − R(X) and

μR(X) = | R(X) |
| R(X) | where R(X) �= φ

Remark 2.1.1 (Pawlak 1982)
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(i) If the boundary region of X is empty (BNDR(X) = φ),
then X is a definable (or exact) set with respect to R.
Otherwise, if BNDR(X) �= φ then X is said to be a
rough set with respect to R.

(ii) Sometimes the pair (R(X), R(X)) is referred to the
rough set of X with respect to R.

Proposition 2.1.1 (Pawlak 1982) Let φ be the empty set and
Xc be the complement of X ⊆ U. Pawlak’s rough sets have
the following properties:

L1. R(X) = [R(Xc)]c.
L2. R(U ) = U.
L3. R(X ∩ Y ) = R(X) ∩ R(Y ).
L4. R(X ∪ Y ) ⊇ R(X) ∪ R(Y ).
L5. X ⊆ Y ⇒ R(X) ⊆ R(Y ).
L6. R(φ) = φ.
L7. R(X) ⊆ X.
L8. X ⊆ R(R(X)).
L9. R(X) = R(R(X)).
L10. R(X) ⊆ R(R(X)).
U1. R(X) = [R(Xc)]c.
U2. R(φ) = φ.
U3. R(X ∪ Y ) = R(X) ∪ R(Y ).
U4. R(X ∩ Y ) ⊆ R(X) ∩ R(Y ).
U5. X ⊆ Y ⇒ R(X) ⊆ R(Y ).
U6. R(U ) = U.
U7. X ⊆ R(X).
U8. R(R(X)) ⊆ X.
U9. R(R(X)) = R(X).
U10. R(R(X)) ⊆ R(X).

2.2 Soft set theory and soft rough sets

In this subsection, some notions pertaining to soft sets and
rough soft sets are given.

Definition 2.2.1 (Molodtsov 1999) Let U be an initial uni-
verse of objects and EU (simply denoted by E) the set of
certain parameters in relation to the objects in U . Parame-
ters are often attributes, characteristics or properties of the
objects inU . A pair (F, A) is called a “soft set” overU , where
A ⊆ E , P(U ) denote the power set ofU and F is a mapping
given by F : A → P(A). In other words, a soft set over U
is a parameterized family of subsets of the universe U . For
e ∈ A, F(e) may be considered as the set of e-approximate
elements of the soft set (F, A). Note that, sometimes a soft
set is denoted by FA and expressed as a set of ordered pairs
FA = {(e, F(e)) : e ∈ A}.
Definition 2.2.2 (Feng et al. 2011) Let FA be a soft set over
U . Then, the pair ASR = (U , FA) is called a soft approxi-
mation space. Based on the soft approximation space ASR ,

we define the “soft ASR-lower and soft ASR-upper” approxi-
mations of any subset X ⊆ U , respectively, by the following
two operations:

Apr
SR

(X) = {u ∈ U : ∃e ∈ A, [u ∈ F(e) ⊆ X ]},
Apr SR(X) = {u ∈ U : ∃e ∈ A, [u ∈ F(e), F(e) ∩ X �= φ]}.

In general, we refer to Apr
SR

(X) and Apr SR(X) as soft
rough approximations of X ⊆ U with respect to ASR . More-
over, the sets

POSASR (X) = Apr
SR

(X),

NEGASR (X) = U − Apr SR(X), and

BNDASR (X) = Apr SR(X) − Apr
SR

(X)

are called the soft “ASR-positive region, ASR-negative region
and ASR-boundary” regions of X ⊆ U , respectively. Clearly,
if Apr SR(X) = Apr

SR
(X), i.e., BNDASR (X) = φ. Then,

X ⊆ U is said to be “soft ASR-definable” or “soft ASR-exact”
set; otherwise, X is called a “soft ASR-rough” set. Moreover,
we can define the accuracy of the approximations as follows:

μASR (X) = | RSR(X) |
| RSR(X) | where RSR(X) �= φ

μASR (X) is called the “soft ASR-accuracy” of X ⊆ U .

Proposition 2.2.1 (Feng et al. 2011) Let FA be a soft set over
U and ASR = (U , FA) a soft approximation space. Then, for
each X ⊆ U:

Apr
SR

(X) =
⋃

e∈A

{F(e) : F(e) ⊆ X}and

Apr SR(X) =
⋃

e∈A

{F(e) : F(e) ∩ X �= φ}.

Remark 2.2.1 According to the results in Feng et al. (2011),
the soft rough approximations “Apr

SR
(X) and Apr SR(X)”

satisfy some properties similar to that of Pawlak’s rough
approximations (L1, L2, L5, L6, L8, L9, U2, U4 − U6 and
U9) without adding any restrictions.

2.3 Topological soft rough sets “TSR-sets”

Topological soft rough sets were introduced in El-Bably et al.
(2021) as a new way to study approximations in soft sets. In
the present subsection, we give some fundamental concepts
and results discussed in El-Bably et al. (2021).

Definition 2.3.1 (El-Bably et al. 2021) Let FA be a soft set
over U and ASR = (U , FA) a soft approximation space.
Then, we define the following:
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(i) Soft sub-basis SFA : SFA = {F(e) : ∀e ∈ A}.
(ii) Soft basis BFA : BFA = {X ∩ Y : (X ,Y ) ∈ SFA × SFA }.

Definition 2.3.2 (El-Bably et al. 2021) Let FA be a soft set
over U and let K = ⋃

F(e)∈SFA F(e). Then, the collection
TSR defined as TSR = ∪{B : B ∈ BFA } is a topology defined
on K generated by the soft basis BFA . This topology may be
called topology generated by F(e) and we call it “soft rough
topology” (in briefly, SR-topology).

Definition 2.3.3 (El-Bably et al. 2021) Let ASR = (U , FA)

be a soft approximation space and TSR be the SR-topology
on U . Then, the triple ATSR = (U , FA, TSR) is called a
“Topological soft rough approximation space” (briefly, TSR-
approximation space).

Definition 2.3.4 (El-Bably et al. 2021) Let ATSR = (U , FA,

TSR) be a TSR-approximation space. Then, for each X ⊆ U ,
we define the topological soft rough approximations “TSR-
lower,” and “TSR-upper,” respectively, by:

TSR(X) = ∪{G ∈ TSR : G ⊆ X} and

TSR(X) = ∩{H ∈ TSR
c : X ⊆ H}.

In general, we refer to TSR(X) and TSR(X) as “topological
soft rough approximations” of X ⊆ U with respect to ATSR .
Clearly, TSR(X) and TSR(X) represent the interior and clo-
sure of the topology TSR , respectively.

Definition 2.3.5 (El-Bably et al. 2021) Let ATSR = (U , FA,

TSR) be a TSR-approximation space. Then, for each X ⊆ U
we define the “TSR-positive, TSR-negative, TSR-boundary”
regions and the “TSR-accuracy” of the TSR-approximations,
respectively, by:

POSTSR (X) = TSR(X),

NEGTSR (X) = U − TSR(X),

BNDTSR (X) = TSR(X) − TSR(X) and

μTSR (X) =
{ |TSR(X)|

|TSR(X)| if X �= φ,

1 otherwise.

Remark 2.3.1 (i) It is clear that 0 ≤ μTSR (X) ≤ 1, for any
X ⊆ U .

(ii) If TSR(X) = TSR(X), then BNDTSR (X) = φ and
μTSR (X) = 1. Thus, X ⊆ U is said to be “TSR-
definable” or “TSR-exact” set; otherwise X is called a
“TSR-rough” set.

Remark 2.3.2 (i) According to the results in El-Bably et al.
(2021), the TSR-rough approximations “TSR and TSR”
satisfy many properties similar to that of Pawlak’s rough
approximations (L1 − U9) without adding any restric-
tions.

(ii) The following results give a relationship in approxima-
tions of a subset X , when it is approximated in ASR and
ATSR .

Theorem 2.3.1 (El-Bably et al. 2021) Let ATSR = (U , FA,

TSR) be a TSR-approximation space and X ⊆ U. Then:

(i) Apr
SR

(X) ⊆ TSR(X).

(ii) TSR(X) ⊆ Apr SR(X).

Corollary 2.3.1 (El-Bably et al. 2021) Let ATSR = (U , FA,

TSR) be a TSR-approximation space and X ⊆ U. Then:

(i) BNDTSR (X) ⊆ BNDASR (X).
(ii) μASR (X) ≤ μTSR (X).

Corollary 2.3.2 (El-Bably et al. 2021) Let ATSR = (U , FA,

TSR) be a TSR-approximation space and X ⊆ U. If X is a
soft exact set, then it is a TSR-exact set.

3 Near concepts in the topological soft
rough approximation space

Topology Kelly (1955) and its concepts provide many use-
ful mathematical tools to deal with many real-life problems.
Topological structures (such as “Near concepts”) have played
an important role in expansion of some theories, devoted for
discussing uncertainty, such as rough sets theory, fuzzy sets
theory and probability theory. In this section notion of near
open sets is being introduced in case of soft rough sets. Their
properties are illustrated and the relationships among them
and TSR-approximations (El-Bably et al. 2021) are superim-
posed. Relationships among these different approximations
are elaborated with the help of some examples. Notion of
accuracy measures helps us to have a comparison among
different types of approximations available in literature. In
the present study, a such comparison is given for the pro-
posed method and already studied in Feng et al. (2011) and
El-Bably et al. (2021).

Definition 3.1 Let ATSR = (U , FA, TSR) be a TSR-approxi-
mation space and X ⊆ U . Then, by using the concept of near
open sets we can define the following sets:

(i) TSR-Preopen (briefly PSR-open) set, if X ⊆ TSR
(T SR(X)).

(ii) TSR-Semi open (briefly SSR-open) set, if X ⊆ T SR

(TSR(X)).
(iii) γSR-open set, if X ⊆ [TSR(T SR(X)) ∪ T SR(TSR

(X))].
(iv) αSR-open set, if X ⊆ TSR(T SR(TSR(X))).
(v) βSR-open set, if X ⊆ T SR(TSR(T SR(X))).
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Remark 3.1 (i) The above sets are called “JSR-near open”
sets and the families of JSR-near open sets ofU denoted
by JSRO(U ), for each J ∈ {P, S, γ, α, β}.

(ii) The complement of JSR-near open set is called “JSR-
near closed” set and the families of JSR-near closed sets
ofU denotedby JSRC(U ), for each J ∈ {P, S, γ, α, β}.

(iii) According to the results of near open sets (Abd El-
Monsef et al. 1983; Andrijevi 1996, 1986; El-Bably
2015; Levine 1963; Mashhour et al. 1982; Njestad
1965), the implications between TSR-sets and TSR-near
sets are given in Fig. 1.

Remark 3.2 The above relationships can be showing in
Examples 3.1 and 3.2. In addition, these examples confirm
that the reverse implications, of the above relationships, are
not true in general. Moreover, it illustrates that the different
types of two classes JSRO(U ) and JSRC(U ) are not com-
parable.

Example 3.1 Let FA be a soft set overU and ASR = (U , FA)

a soft approximation space, whereU = {u1, u2, u3, u4}, and
A = {e1, e2, e3, e4} such that FA = {(e1, {u4}), (e2, {u1, u2,
u4}), (e3, {u1, u2}), (e4,U )}. Then, we get:

The soft subbasis of TSR is: SFA = {{u4}, {u1, u2}, {u1,
u2, u4},U }.
The soft basis of TSR is: BFA = {φ, {u4}, {u1, u2}, {u1,
u2, u4},U }.
Soft rough topology is:TSR = {U , φ, {u4}, {u1, u2}, {u1,
u2, u4}}.
The complement of TSR is: TSRc = {U , φ, {u3}, {u3,
u4}, {u1, u2, u3}}.

Accordingly, the classes of JSR-near open sets of U are:

PSRO(U ) = {U , φ, {u1}, {u2}, {u4}, {u1, u2}, {u1, u4},
{u2, u4}, {u1, u2, u4}, {u1, u3, u4}, {u2, u3, u4}}.
SSRO(U ) = {U , φ, {u4}, {u1, u2}, {u3, u4}, {u1, u2,
u3}, {u1, u2, u4}}.
γSRO(U ) = {U , φ, {u1}, {u2}, {u4}, {u1, u2}, {u1, u4},
{u2, u4}, {u3, u4}, {u1, u2, u3}, {u1, u2, u4}, {u1,
u3, u4}, {u2, u3, u4}}.
αSRO(U ) = {U , φ, {u4}, {u1, u2}, {u1, u2, u4}}.
βSRO(U ) = {U , φ, {u1}, {u2}, {u4}, {u1, u2}, {u1, u3},
{u1, u4}, {u2, u3}, {u2, u4}, {u3, u4}, {u1, u2, u3}, {u1,
u2, u4}, {u1, u3, u4}, {u2, u3, u4}}.

By taking the complements of the above classes, we get the
classes of all JSR-closed sets JSRC(U ).

Remark 3.3 In the above example, the topology TSR (resp.
TSRc) and the class of αSR-open sets αSRO(U ) (resp. αSR-
closed sets αSRC(U )) are equal. The following example
illustrates the relationship between the topology TSR (resp.

TSRc) and the class of αSR-open sets αSRO(U ) (resp. αSR-
closed sets αSRC(U )).

Example 3.2 Let FA be a soft set overU and ASR = (U , FA)

a soft approximation space, where U = {a, b, c}, and A =
{e1, e2, e3, e4} such that FA = {(e1, {a}), (e2, {b}), (e3, {a,

b}), (e4,U )}. Then, we get:

Soft rough topology is: TSR = {U , φ, {a}, {b}, {a, b}}.
The complement of TSR is: TSRc = {U , φ, {c}, {a, c},
{b, c}}.
Accordingly, the class of αSR-open sets of U is: αSR

O(U ) = {U , φ, {a}, {b}, {a, b}, {a, c}}.
The class of αSR-closed sets of U is: αSRC(U ) =
{U , φ, {b}, {c}, {a, c}, {b, c}}.
Obviously, αSRO(U ) �= TSR and αSRC(U ) �= TSRc.

By using the above classes “JSR-near open” sets, we intro-
duce new methods for approximating soft rough sets as the
following definitions illustrate.

Definition 3.2 Let ATSR = (U , FA, TSR) be a TSR-approxi-
mation space and X ⊆ U . Then, for each J ∈ {P, S, γ, α, β}
we define the JSR-near soft rough approximations (“JSR-
lower,” and JSR-upper), respectively, by:

JSR(X) = ∪{G ∈ JSRO(U ) : G ⊆ X},
JSR(X) = ∩{H ∈ JSRC(U ) : X ⊆ H}.

Definition 3.3 Let ATSR = (U , FA, TSR) be a TSR-approxi-
mation space and X ⊆ U . Then, for each J ∈ {P, S, γ, α, β}
we define the “JSR-positive, JSR-negative, JSR-boundary”
regions and the “JSR-accuracy” of the JSR- near approxima-
tions, respectively, by:

POSJSR (X) = JSR(X),

NEGJSR (X) = U − JSR(X),

BNDJSR (X) = JSR(X) − JSR(X) and

μJSR (X) =
{ |JSR(X)|

|JSR(X)| if X �= φ,

1 otherwise.

Remark 3.4 (i) It is clear that 0 ≤ μJSR (X) ≤ 1, for any
X ⊆ U .

(ii) If JSR(X) = JSR(X), then BNDJSR (X) = φ and
μJSR (X) = 1. Thus, X ⊆ U is said to be “JSR-
definable” or “JSR-exact” set; otherwise, X is called a
“JSR-rough” set.

Remark 3.5 In any a TSR-approximation space, we can com-
pute the JSR-near approximations of any subset directly,
without computing the classes of JSR-near sets, by using the
TSR-lower and TSR-upper approximations as the following
theorem illustrates.
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Fig. 1 Relationships

Theorem 3.1 Let ATSR = (U , FA, TSR) be a TSR-approxi-
mation space and X ⊆ U:

(i) PSR(X) = X ∩ TSR(TSR(X)).

(ii) SSR(X) = X ∩ TSR(TSR(X)).
(iii) γSR(X) = PSR(X) ∪ SSR(X).

(iv) αSR(X) = X ∩ TSR(TSR(TSR(X))).

(v) βSR(X) = X ∩ TSR(TSR(TSR(X))).

(vi) PSR(X) = X ∪ TSR(TSR(X)).

(vii) SSR(X) = X ∪ TSR(TSR(X)).

(viii) γSR(X) = PSR(X) ∩ SSR(X).
(ix) αSR(X) = X ∪ TSR(TSR(TSR(X))).

(x) βSR(X) = X ∪ TSR(TSR(TSR(X))).

Proof Here, proof of only first statement is given; remaining
can be shown similarly.

(i) Firstly, PSR(X) ⊆ X . since PSR(X) is PSR-open
set, then PSR(X) ⊆ TSR(TSR(PSR(X))) ⊆ TSR(TSR(X)).
Thus, PSR(X) ⊆ X ∩ TSR(TSR(X)). Conversely, since
X ∩ TSR(TSR(X)) ⊆ TSR(TSR(X)) and TSR(TSR(X)) =
TSR(TSR(X)) ∩ TSR(TSR(TSR(TSR(X)))). Then, X ∩ TSR
(TSR(X)) ⊆ TSR(TSR(X)) ∩ TSR(TSR(TSR(TSR(X)))).
Accordingly, X ∩ TSR(TSR(X)) ⊆ TSR(TSR(X ∩ TSR(TSR
(X)))), which means that X ∩ TSR(TSR(X)) is PSR-open set
contained in X . Hence, X ∩ TSR(TSR(X)) ⊆ PSR(X). �

The following proposition gives the fundamental proper-
ties of JSR-near approximations.

Proposition 3.1 Let ATSR = (U , FA, TSR) be a TSR-
approximation space and X ,Y ⊆ U. Then, for each J ∈
{P, S, γ, α, β}:

(i) JSR(X) ⊆ X ⊆ JSR(X).

(ii) JSR(U ) = JSR(U ) = U.

(iii) JSR(φ) = JSR(φ) = φ.
(iv) If X ⊆ Y , then JSR(X) ⊆ JSR(Y ).

(v) If X ⊆ Y , then JSR(X) ⊆ JSR(Y ).
(vi) JSR(X ∩ Y ) ⊆ JSR(X) ∩ JSR(Y ).

(vii) JSR(X ∩ Y ) ⊆ JSR(X) ∩ JSR(Y ).
(viii) JSR(X ∪ Y ) ⊇ JSR(X) ∪ JSR(Y ).

(ix) JSR(X ∪ Y ) ⊇ JSR(X) ∪ JSR(Y ).
(x) JSR(X) = (JSR(Xc))c.

(xi) JSR(X) = (JSR(Xc))c.
(xii) JSR(JSR(X)) = JSR(X).

(xiii) JSR(JSR(X)) = JSR(X).

Proof The statements (i), (ii) and (iii) directly from Def-
inition 3.2. (iv) Let X ⊆ Y , then JSR(X) = X ∩
TSR(TSR(X)) ⊆ Y ∩ TSR(TSR(Y )) = JSR(Y ). (v) By
similar way as (iv). (vi) By using (iv), we get JSR(X ∩
Y ) = (X ∩ Y ) ∩ TSR(TSR(X ∩ Y )). But X ∩ Y ⊆ X

and X ∩ Y ⊆ Y , this implies TSR(X ∩ Y ) ⊆ TSR(X) and
TSR(X ∩ Y ) ⊆ TSR(Y ). Thus, (X ∩ Y ) ∩ TSR(TSR(X ∩
Y )) ⊆ (X ∩ TSR(TSR(X)) ∩ (Y ∩ TSR(TSR(Y )). Accord-
ingly, JSR(X ∩ Y ) ⊆ JSR(X) ∩ JSR(Y ). (vii), (viii),
and (ix) By same way as (vi). (x) (JSR(Xc))c = (Xc ∪
TSR(TSR(Xc)))c = X ∩ TSR(TSR(X)) = JSR(X). (xi) By
similar way as (x). (xii) Since JSR(X) is JSR-near open set,
then JSR(JSR(X)) = JSR(X). (xiii) By similar way as (xii).

�

The main goal of the following results is to show the
relationships among soft rough approximations (Feng et al.
2011), TSR-approximations (El-Bably et al. 2021) and JSR-
near approximations. Moreover, these results illustrate the
importance of using JSR-near concepts in soft rough set con-
text.

Theorem 3.2 Let ATSR = (U , FA, TSR) be a TSR-approxi-
mation spaceand X ⊆ U.Then, for each J ∈ {P, S, γ, α, β}:

(i) AprSR(X) ⊆ TSR(X) ⊆ JSR(X).

(ii) JSR(X) ⊆ TSR(X) ⊆ AprSR(X).

Proof We will prove the first statement and the second is
similar.
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Table 1 Comparison between the TSR-accuracy and JSR-near accuracy “current methods”

P(U ) μTSR (X) (El-Bably et al. 2021) μαSR (X) μPSR (X) μSSR (X) μγSR (X) μβSR (X)

{u1} 0 0 1 0 1 1

{u2} 0 0 1 0 1 1

{u3} 0 0 0 0 0 0

{u4} 1/2 1/2 1/2 1 1 1

{u1, u2} 2/3 2/3 2/3 1 1 1

{u1, u3} 0 0 1/2 0 1/2 1

{u1, u4} 1/4 1/4 2/3 1/4 2/3 1

{u2, u3} 0 0 1/2 0 1/2 1

{u2, u4} 1/4 1/4 2/3 1/4 2/3 1

{u3, u4} 1/2 1/2 1/2 1 1 1

{u1, u2, u3} 2/3 2/3 2/3 1 1 1

{u1, u2, u4} 3/4 3/4 3/4 3/4 3/4 3/4

{u1, u3, u4} 1/4 1/4 1 1/2 1 1

{u2, u3, u4} 1/4 1/4 1 1/2 1 1

U 1 1 1 1 1 1

φ 1 1 1 1 1 1

(i) Firstly, by Theorem 2.3.1 (El-Bably et al. 2021), AprSR
(X) ⊆ TSR(X). Now, since the families of JSR-near
open sets JSRO(U ) are larger than the topologies TSR .
Therefore, we get TSR(X) = ∪{G ∈ TSR : G ⊆ X} ⊆
∪{G ∈ JSRO(U ) : G ⊆ X} = JSR(X). �

Corollary 3.1 Let ATSR = (U , FA, TSR) be a TSR-approxi-
mation spaceand X ⊆ U.Then, for each J ∈ {P, S, γ, α, β}:

(i) BNDJSR (X) ⊆ BNDTSR (X) ⊆ BNDASR (X).
(ii) μJSR (X) ≥ μTSR (X) ≥ μASR (X).

Theorem 3.3 Let ATSR = (U , FA, TSR) be a TSR-approxi-
mation spaceand X ⊆ U.Then, for each J ∈ {P, S, γ, α, β}:
X is a ASR-exact set ⇒ X is a TSR-exact set ⇒ X is a JSR-
near exact set.

Proof First, Corollary 2.3.2 (El-Bably et al. 2021), X is a
ASR-exact set ⇒ X is a TSR-exact set. Now, let X is a
TSR-exact ⇒ BNDTSR (X) = φ. By using Corollary 3.1,
⇒ BNDJSR (X) = φ, and hence, X is a JSR-near exact set.

�
Remark 3.6 The converse of the above results is not true in
general as illustrated in Example 3.3.

Example 3.3 Consider Example 3.1, we compute TSR-app-
roximations and JSR-near approximations of all subsets in
U , and then, we get comparisons among TSR-accuracy and
JSR-near accuracy of the approximations as illustrated in
Table 1.

Remark 3.7 From Table 1, we notice that:

(i) There are different methods to approximate the sub-
sets of a set. The best approximations are obtained by
employing βSR , because here the boundary regions are
reduced or vanished. When βSR is considered as an
approximation space, here size of lower approximations
is larger and size of upper approximations is smaller
as compared to other proposed approximation spaces.
Therefore, suggested techniques of this paper play an
important role in removing the vagueness (uncertainty)
of rough sets. For example, some of the subsets in the
above table are exact in βSR , but rough in the other
approximation spaces.

(ii) In addition, the values of accuracy measures in βSR-
approximation space are higher than other approxima-
tion spaces, since for any subset X ⊆ U we have
μβSR (X) ≥ μγSR (X) ≥ μPSR (X) ≥ μαSR (X) ≥
μTSR (X) and μβSR (X) ≥ μγSR (X) ≥ μSSR (X) ≥
μαSR (X) ≥ μTSR (X). Thus, it can be said that JSR-near
soft rough approximation spaces help us to extract and
discover the hidden knowledge in datawhich is collected
in real-life situations.

(iii) The accuracy measure of TSR-approximation space is
equal to the accuracy measure of αSR-approximation
space, since the topology TSR and αSRO(U ) are the
same in the present example (Example 3.1). But if we
consider Example 3.2, we get μαSR (X) ≥ μTSR (X),
for each X ⊆ U . For example, the subsets X = {b}
and Y = {a, c} are exact in αSRO(U ) approximation
space (since αSR(X) = αSR(X) = X and αSR(Y ) =
αSR(Y ) = Y ). But in TSR-approximation space these
are rough. Because TSR(X) = {b}, TSR(X) = {b, c}
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Table 2 Tabular representation for soft set FA in diabetes mellitus

Patients p1 p2 p3 p4 p5 p6

e1 1 0 0 1 1 1

e2 1 1 1 0 0 0

e3 0 1 0 1 1 1

Diabetes 0 1 1 1 1 1

and TSR(Y ) = {a}, TSR(Y ) = {a, c}). Moreover,
μαSR (X) = 1 and μαSR (Y ) = 1. But μTSR (X) = 1/2
and μTSR (Y ) = 1/2.

The relationships among different types of the JSR-near
approximations, JSR-near boundary and JSR-near accuracy
are given by the following results.

Proposition 3.2 Let ATSR = (U , FA, TSR) be a TSR-
approximation space and X ⊆ U. Then, the following
statements are true in general.

(i) αSR(X) ⊆ PSR(X) ⊆ γSR(X) ⊆ βSR(X).
(ii) αSR(X) ⊆ SSR(X) ⊆ γSR(X) ⊆ βSR(X).

(iii) βSR(X) ⊆ γ SR(X) ⊆ PSR(X) ⊆ αSR(X).
(iv) βSR(X) ⊆ γSR(X) ⊆ SSR(X) ⊆ αSR(X).

Proof By using the implications between the different fami-
lies of JSR-near open sets, the proof is obvious. �
Corollary 3.2 Let ATSR = (U , FA, TSR) be a TSR-approxi-
mation space and X ⊆ U. Then, the following statements
are true in general.

(i) BNDβSR (X) ⊆ BNDγSR (X) ⊆ BNDPSR (X) ⊆
BNDαSR (X).

(ii) BNDβSR (X) ⊆ BNDγSR (X) ⊆ BNDSSR (X) ⊆
BNDαSR (X).

(iii) μβSR (X) ≥ μγSR (X) ≥ μPSR (X) ≥ μαSR (X).
(iv) μβSR (X) ≥ μγSR (X) ≥ μSSR (X) ≥ μαSR (X).

Corollary 3.3 Let ATSR = (U , FA, TSR) be a TSR-approxi-
mation space and X ⊆ U. Then, the following statements
are true in general.

(i) X is a αSR-exact ⇒ X is a PSR-exact X is a γSR-exact
⇒ X is a βSR-exact.

(ii) X is a αSR-exact ⇒ X is a SSR-exact X is a γSR-exact
⇒ X is a βSR-exact.

Remark 3.7 The converse of the above results is not true in
general as Example 3.2 illustrated.

4 Degree of accuracy for generalized soft
rough sets

In the present section, we study the degree of accuracy for
generalized soft rough sets using different types of accu-
racy measures that given in El-Bably et al. (2021) and the
current paper. Moreover, we study some of its properties
in more depth and define equivalence relations generated
from the accuracy measures. According to Definition 2.3.5
(El-Bably et al. (2021)), using the TSR-accuracy of TSR-
approximations (resp. Definition 3.3, using the JSR-accuracy
of JSR-approximations), we may define a relation on P(U )

as the following definition illustrated.

Definition 4.1 Let ATSR = (U , FA, TSR) be a TSR-approxi-
mation space and X ,Y ⊆ U . Then, for each J ∈
{P, S, γ, α, β}, it said that X ∼k Y if and only if μk(X) =
μk(Y ), such that k ∈ {TSR, JSR}.

Theorem 4.1 Let ATSR = (U , FA, TSR) be a TSR-approxi-
mation space and X ,Y ⊆ U. Then, for each J ∈
{P, S, γ, α, β} the relation ∼k is an equivalence relation on
P(U ) and the partition P(U )/ ∼k maintains a strict order
among its elements, such that k ∈ {TSR, JSR}.

Proof It is easy to see that the relation∼k defined on P(U ) is
an equivalence relation. Therefore, P(U )/ ∼k is a partition
on P(U ). If a class in P(U )/ ∼k containing an element
X ∈ P(U ) is denoted by [X ]∼k , then by Definition 4.1, for
each Y ∈ [X ]∼k we have μk(X) = μk(Y ). This means that
each element of P(U )/ ∼k can be characterized by a unique
real number from [0, 1]. For the class [X ]∼k , let this number
be represented by a and we call it characteristic of [X ]∼k .
Since each class in P(U )/ ∼k has a unique characteristic
belonging to [0, 1], there is a strict order among the classes.
Hence, we define this order as:

[X ]∼k ≺ [Y ]∼k if and only if a < b,

where b is characteristic of the class[Y ]∼k ∈ P(U )/ ∼k . �

Remark 4.1 According to Theorem4.1, there are six different
equivalence relations can be defined on P(U ). Therefore,
these relations classify P(U ) into distinct classes which have
a strict order among them. Example 4.1 illustrates this fact.

Example 4.1 According to Example 3.2, and by using Defi-
nition 4.1, we can get the following equivalence classes:

– The equivalence classes of ∼TSR are: P(U )/ ∼TSR=
{{{u1}, {u2}, {u3}, {u2, u3}}, {{u4}, {u3, u4}}, {{u1, u2},
{u1, u2, u3}}, {{u1, u4}, {u2, u4}, {u1, u3,
u4}, {u2, u3, u4}}, {{u1, u2, u4}}, {U , φ}}.
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Table 3 Comparisons among
the soft rough approximations
Feng et al. (2011),
TSR-approximations El-Bably
et al. (2021) and
βSR-approximations (given in
current paper in Definition 3.2)

X {p1, p2} {p1, p3} {p2, p5, p6} {p2, p3, p4, p5, p6}
AprSR(X) φ φ φ {p2, p4, p5, p6}
AprSR(X) U U {p1, p2, p4, p5, p6} U

BNDSR(X) U U {p1, p2, p4, p5, p6} {p3}
μSR(X) 0 0 0 2/3

TSR(X) {p1} {p1} {p4, p5, p6} {p2, p4, p5, p6}
TSR(X) {p1, p2, p3} {p1, p3} {p4, p5, p6} {p2, p3, p4, p5, p6}
BNDTSR (X) {p2, p3} {p3} φ {p3}
μTSR (X) 1/3 1/2 1 2/3

βSR(X) {p1, p2} {p1, p3} {p4, p5, p6} {p2, p3, p4, p5, p6}
βSR(X) {p1, p2} {p1, p3} {p4, p5, p6} {p2, p3, p4, p5, p6}
BNDβSR (X) φ φ φ φ

μβSR (X) 1 1 1 1

Table 4 An algorithm to
decision making using
βSR-approximations

Algorithm 4.1 A decision making via βSR-approximations

Step 1: Input the soft set (F, A)

Step 2: Take the class SFA = {F(e) : ∀e ∈ A} as a subbasis for
a basis BFA

Step 3: Compute the basis
BFA = {X ∩ Y : (X , Y ) ∈ SFA × SFA } by
Definition 2.3.1

Step 4: Generate the topology TSR = ∪{B : B ∈ BFA } by
Definition 2.3.2

Step 5: Using Definition 3.2 to compute the class of βSR-near
sets to investigate the βSR(X) and βSR(X) , for every
X ⊆ U

Step 6: Determine the boundary region BNDβSR (X) from Step
5. According to Definition 3.3

Step 7: Calculate the accuracy of the approximation μβSR (X)

from Step 5. According to Definition 3.3

Step 8: Decide, exactly, rough sets and exact sets. Using
Definition 3.3

Order among the above classes is given by: {U , φ} >

{{u1, u2, u4}} > {{u1, u2}, {u1, u2, u3}} > {{u4}, {u3, u4}} >

{{u1, u4}, {u2, u4}, {u1, u3, u4},
{u2, u3, u4}} > {{u1}, {u2}, {u3}, {u2, u3}}.

Further, the equivalence classes obtained by the relation
∼PSR are: P(U )/ ∼PSR= {{U , φ, {u1}, {u2}, {u1, u3, u4},
{u2, u3, u4}}, {{u4}, {u1, u3}, {u2, u3}, {u3, u4}}, {{u3}},
{{u1, u2}, {u1, u4}, {u2, u4}, {u1, u2, u3}}, {{u1, u2, u4}}}.

Order among the above classes is given by: {U , φ, {u1},
{u2}, {u1, u3, u4}, {u2, u3, u4}}>{{u1, u2, u4}}>{{u1, u2},
{u1, u4}, {u2, u4}, {u1, u2, u3}} > {{u4}, {u1, u3}, {u2, u3},
{u3, u4}} > {{u3}}.

Similarly for the remaining equivalence relations their
classes, and their orders can be determined easily.

5 Application of TSR Approximation Space in
decision-making problems

In this section, we will apply the concept of soft rough topol-
ogy TSR in diabetes mellitus (DM) (Bakeir et al. 2018),
commonly referred to as diabetes, and is a group ofmetabolic
diseases in which there are high blood sugar levels over a
prolonged period. Symptoms of high blood sugar include
frequent urination, increased thirst and increased hunger. If
left untreated, diabetes can causemany complications. Acute
complications can include diabetic ketoacidosis, non-ketotic
hyperosmolar coma or death. Serious long-term complica-
tions include heart disease, stroke, chronic kidney failure,
foot ulcers and damage to the eyes. Consider the following
information table giving data about 6 patients as a random
representative. The rows of the table represent the attributes
(the symptoms for Diabetes), and the columns represent
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the objects (the patients). Let U = {p1, p2, p3, p4, p5, p6}
and A = {e1, e2, e3}, where e1 = IncreasedHunger, e2 =
FrequentUrination and e3 = IncreasedThirst. Let AS =
(U , FA), where FA is a soft set over U given in Table 2.

Then, we get: TSR = {U , φ, {p1}, {p1, p2, p3}, {p4, p5,
p6}, {p1, p4, p5, p6}, {p2, p4, p5, p6}, {p1, p2, p4, p5, p6}}
and TSRc = {U , φ, {p3}, {p1, p3}, {p2, p3}, {p1, p2, p3},
{p4, p5, p6}, {p2, p3, p4, p5, p6}}.Now,wefind the approx-
imations of some subsets using ASR-approximation space
proposed in Feng et al. (2011), TSR-approximation space
(El-Bably et al. 2021) and βSR-approximation space as in
Table 3.

Remark 5.1 From Table 3, we can notice the following:

(1) The set of patients having diabetes is X = {p2, p3, p4,
p5, p6}. Thus, from Table 3, we have X is a βSR-
definable set. But in ASR-approximation space (Feng
et al. 2011) and TSR-approximation space (El-Bably
et al. 2021), X is a rough set. This implies that no patient
is suffering from diabetes which contradicts Table 4.
This means that in ASR-approximation space and TSR-
approximation space, we are unable to decide for any
element of U whether it belongs to X or Xc.

(2) It can be seen that βSR-approximation space provides
more accurate approximations for certain subsets as
compared with already existing approximation spaces.

6 Conclusion

In this article, some new approximation spaces called
topological soft rough approximation spaces have been
introduced. In proposed approximation spaces, topology
generated from a soft set plays a vital role. Properties of
approximations, of any subset of a set, in these approxi-
mation spaces have been studied here. Their relationships
with soft rough approximations have been examined. In fact,
we have investigated that in proposed approximation spaces
all properties similar to that of Pawlak’s rough sets may be
satisfied without imposing any extra condition. Comparison
among proposed and previous works in Feng et al. (2011)
and El-Bably et al. (2021) has been provided. Thus, it can
be said that proposed method is more suitable than as given
in Feng et al. (2011) for decision-making problems. Thus,
these methods are very useful in real-life applications.

Finally, we have introduced an application of proposed
methods in decisionmaking for diagnosis, namely in diabetes
mellitus (Bakeir et al. 2018), to illustrate the importance of
current methods. It provides a comparison between proposed
methods with already existing in the literature. An algorithm
is given for the application of given method. More impor-
tantly, the present paper not only provides a complete new

range of approximation spaces but also increases the accu-
racy of approximations of the subsets of a set.
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