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In this work, we introduce a time-like ruled surface in one-parameter hyperbolic dual spherical motions. This provides the ability
to derive some formulae of surface theory into line spaces. Then, a time-like Plücker conoid associated with the motion has been
obtained, and its kinematic geometry is researched in detail. Consequently, a characterization for a time-like ruled surface to be a
constant Disteli-axis is derived and investigated in detail. At last, we have discussed some special cases which lead to some special
time-like ruled surfaces such as the time-like helicoids, Lorentzian sphere, and time-like cone.

1. Introduction

In spatial kinematics, the movement of an oriented line over
a curve performs ruled surface. These oriented lines are said
to be generators (rulings), and each curve that intersects all
the generators is called a directrix (base curve) [1–3]. One
of the most suitable methods to study the movement of ori-
ented line space seems to create a relationship between this
space, dual numbers, and dual vector calculus. Dual num-
bers were first introduced by W. Clifford; after him, E. Study
used it as an instrument for his research on line geometry
and kinematics. He devoted special care to the impersona-
tion of oriented lines by dual unit vectors and defined the
mapping that is known by his name. The E. Study map states
that “The set of all oriented lines in Euclidean 3-space E3 is
directly linked to the set of points on the dual unit sphere in
the dual 3-space D3.” Thus, the differential geometry of
ruled surfaces based on the E. Study map has rederived the
curvature theory of a line trajectory and exposed the funda-
mental curvature functions that describe the shape of ruled
surface (see, for example, [4–11]).

In the Minkowski 3-space E3
1, the investigation of ruled

surfaces is more motivating than the Euclidean case, since

the Euclidean metric can only be positive whereas the Lor-
entzian metric can be negative, positive, or zero. Therefore,
the kinematics and geometric explanations can be widely
different. Hence, if we replace the Minkowski 3-space E3

1 as
an alternative of the Euclidean 3-space E3, the E. Study
map can be given as follows: “the time-like (resp., space-like)
oriented lines are represented with the time-like (resp.,
space-like) dual points on the hyperbolic (resp., Lorentzian)
dual unit sphere in the Lorentzian dual 3-space D3

1 [10, 11].”
It means that a regular curve on ℍ2

+ represents a time-like
ruled surface at E3

1. Similarly, the space-like (resp., time-like)
curve on S2

1 represents a time-like (resp., space-like) ruled
surface at E3

1. In view of its relationships with engineering
and physical sciences in Minkowski space, many geometers
and engineers have studied and gained many ownerships
of the ruled surfaces (see [8–13]).

However, to the best of the authors’ knowledge, no liter-
ature exists regarding the time-like ruled surface with con-
stant Disteli-axis from one-parameter hyperbolic dual
spherical motions. Thus, the present study hopes to serve
such a need. This work offers an approach for constructing
time-like ruled surfaces with constant Disteli-axis by using
E. Study map. Hence, the well-known formulae of Hamilton,
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Mannheim, and Dupin’s indicatrix of surfaces theory are
proved for the line space. Moreover, a time-like Plücker
conoid associated with the motion has been derived and it
is shown that the principal axes of it are located at its center.
Then, some characterization equations for special time-like
ruled surfaces such as the time-like helicoid, the Lorentzian
sphere, and the time-like cone are obtained and investigated.

2. Basic Concepts

We start with basic concepts on the Minkowski 3-space E3
1,

the theory of dual numbers, dual Lorentzian vectors, and
E. Study map, for example, [1–3, 14–17]. A dual number A
is a number a + εa∗, where a,a∗ in ℝ and ε is a dual unit with
the property that ε2 = 0. Then, the set

D3 = A≔ a + εa∗ = A1, A2, A3ð Þf g, ð1Þ

together with the Lorentzian scalar product

<A,A > = −A2
1 + A2

2 + A2
3, ð2Þ

forms the so-called dual Lorentzian 3-space D3
1. Thus, a

point A = ðA1, A2, A3Þt has dual coordinates Ai = ðai + εa∗i Þ
∈D. If A is space-like or time-like dual vector the norm
kAk of A is defined by

Ak k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<A,A >j j

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<a, a >j j

p
+ ε

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<a, a >j jp <a, a >

<a, a >j j
· 2 < a, a∗ > = ak k + ε

1
ak k

<a, a >
<a, a >j j < a, a∗ > :

ð3Þ

If a is space-like, we have

Ak k = ak k + ε
1
ak k < a, a∗ > = ak k 1 + ε

1
ak k2 < a, a∗ >

� �
:

ð4Þ

If a is time-like, we have

Ak k = ak k − ε
1
ak k < a, a∗ > = ak k 1 − ε

1
ak k2 < a, a∗ >

� �
:

ð5Þ

Therefore, A is called a space-like (resp., time-like) dual
unit vector if <A,A > = 1 (resp. <A,A > = − 1). The hyper-
bolic and Lorentzian dual unit spheres, respectively, are

ℍ2
+ = A ∈D3

1∣−A
2
1 + A2

2 + A2
3 = −1

� �
,

S2
1 = A ∈D3

1∣−A
2
1 + A2

2 + A2
3 = 1

� �
:

ð6Þ

Theorem 1. There is a one-to-one correspondence between
space-like (resp., time-like) oriented lines in the Minkowski
3-space E3

1 and ordered pairs of vectors ða, a∗Þ such that

Ak k2 = ±1⇔ ak k2 = ±1,  < a, a∗ > = 0, ð7Þ

where ai,a∗i ði = 1, 2, 3Þ of a and a∗ are called the normed
Plücker coordinates of the line.

According to Theorem 1, four independent parameters
locate a line complex, so it is reasonable to intersect any
two of line complexes and gain a definite number of lines
(line congruence) with common properties. The intersection
of two independent linear congruences carries out a differen-
tiable family of straight lines (a ruled surface). Ruled surfaces
(such as cylinders and cones) include rulings where the tan-
gent plane relates the surface over the entire line (torsal
lines) [1–3]. Also, we have the E. Study’s map: the dual unit
spheres are shaped as a pair of conjugate hyperboloids. The
ring-shaped hyperboloid correlates with the set of space-like
lines, the common asymptotic cone correlates the set of null
(light-like) lines, and the oval-shaped hyperboloid forms the
set of time-like lines, and opposite points of each hyperbo-
loid perform the pair of obverse vectors on a line (see
Figure 1). Therefore, a regular curve on ℍ2

+ represents a
time-like ruled surface in E3

1. Similarly, a regular curve on
S2
1 represents a space-like or time-like ruled surface in E3

1.

2.1. One-Parameter Hyperbolic Dual Spherical Motions.
Consider two hyperbolic dual unit spheres ℍ2

+m and ℍ2
+f .

Suppose that O is the common center, and two orthonormal
dual frames fO ; R1ðtime� likeÞ, R2, R3g, and fO ; F1ð
time� likeÞ, F2, F3g be rigidly linked to ℍ2

+m and ℍ2
+f ,

respectively. If we suppose that fO ; F1, F2, F3g is fixed,
whereas the elements of the set fO ; R1, R2, R3g are func-
tions of a real parameter t ∈ℝ (say the time), then we say
that ℍ2

+m moves with respect to ℍ2
+f : This motion is called

a one-parameter hyperbolic dual spherical motions and will
denoted byℍ2

+m/ℍ2
+f . If the dual unit spheres ℍ

2
+m andℍ2

+f
correspond to the line spaces Lm and Lf , respectively, then
ℍ2

+m/ℍ2
+f represents the one-parameter Lorentzian spatial

motion Lm/Lf : Therefore, Lm is the moving Lorentzian

space with respect to the fixed Lorentzian space Lf in E3
1.

By putting <Fi, Rj > = Lij and introducing the dual matrix
L = ðLijÞ, we can write the E. Study map in the matrix form
as follows:

ℍ2
+m/ℍ2

+f :

F1
F2
F3

0
BB@

1
CCA =

L11 L12 L13

L21 L22 L23

L31 L32 L33

0
BB@

1
CCA

R1

R2

R3

0
BB@

1
CCA: ð8Þ

It then follows that the signature matrix ϵ, describing the
scalar product in D3

1, is given by [15]

ϵ =
−1 0 0
0 1 0
0 0 1

0
BB@

1
CCA: ð9Þ
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The dual matrix L≔ ðLijÞ = ðlijÞ + εðl∗ijÞ has the property
that LT = ϵL−1ϵ,L−1 = LTϵL. Hence, we have

LL−1 = LϵLTϵ = L−1L = ϵLTϵL = I, ð10Þ

where I is the 3 × 3 unit matrix. This result indicates that
when a one-parameter Lorentzian spatial motion is given
in E3

1, we can find a corresponding dual Lorentzian orthog-
onal 3 × 3 matrix LðtÞ = ðLijÞ, where ðLijÞ are dual functions
of one variable t ∈ℝ. As the set of real Lorentzian orthogo-
nal matrices, the set of Lorentzian dual orthogonal 3 × 3
matrices, denoted by OðD3×3

1 Þ, forms a group with matrix
multiplication as the group operation (real Lorentzian
orthogonal matrices are a subgroup of Lorentzian dual
orthogonal matrices). The identity element of OðD3×3

1 Þ is
the 3 × 3 unit matrix. Since the center of the hyperbolic dual
unit sphere in D3

1 must remain fixed, the transformation
group in D3

1 (the image of Lorentzian motions in the Min-
kowski 3-space E3

1) does not contain any translations.
The Lie algebra LðOD3×3

1
Þ of the group GL of 3 × 3 posi-

tive orthogonal dual matrices L is the algebra of skew-
adjoint 3 × 3 dual matrices

Ω tð Þ≔ L′ϵLTϵ =
0 Ω3 −Ω2

Ω3 0 Ω1

Ω2 −Ω1 0

0
BB@

1
CCA =

−Ω1

Ω2

Ω3

0
BB@

1
CCA,

ð11Þ

where dash indicates the differential with respect to the real
parameter t ∈ℝ. Then, the derivative equation of ℍ2

+m/ℍ2
+f

is

R1′

R2′

R3′

0
BB@

1
CCA =

0 Ω3 −Ω2

Ω3 0 Ω1

Ω2 −Ω1 0

0
BB@

1
CCA

R1

R2

R3

0
BB@

1
CCA =Ω ×

R1

R2

R3

0
BB@

1
CCA:

ð12Þ

ΩðtÞ = ω + εω∗ = ðΩ1,Ω2,Ω3Þ is called the instanta-
neous dual rotation vector of ℍ2

+m/ℍ2
+f . The real part ω

and dual part ω∗, respectively, correspond to the instanta-
neous rotational differential velocity vector and the instanta-
neous translational differential velocity vector of the motion
Lm/Lf .

3. Main Results

During the motion Lm/Lf , any fixed time-like line X ∈ Lm

traces a time-like ruled surface in Lf which will be denoted
by ðXÞ. In spatial kinematics, such time-like ruled surface
is called time-like line trajectory. In order study the geomet-
rical properties of ðXÞ, we choose a moving frame, called the
Blaschke frame, associated with point on ℍ2

+m as

X =X tð Þ, T tð Þ≔ t tð Þ + εt∗ tð Þ = X′
X′�� �� ,G tð Þ≔ g tð Þ + εg∗ tð Þ =X × T:

ð13Þ

Then, we find

−<X,X> = <T, T> = <G,G> = 1,
<X, T> = <X,G> = <G, T> = 0,
G ×X = T, T ×G = −X:

9>>=
>>; ð14Þ

X, T, and G are three dual unit vectors corresponding to
three concurrent mutually perpendicular lines E3

1, and they
intersect at a point C on X called the central point. G is
the limit position of the common perpendicular to XðtÞ
and Xðt + dtÞ and is called the central tangent of ðXÞ at
the central point. The line T is called the central normal of
ðXÞ at the central point. Thus, the motionℍ2

+m/ℍ2
+f is given

by [9–11]

ℍ2
+m/ℍ2

+f :

X′

T′

G′

0
BB@

1
CCA =

0 P 0
P 0 Q

0 −Q 0

0
BB@

1
CCA

X

T

G

0
BB@

1
CCA =Ω ×

X

T

G

0
BB@

1
CCA,

ð15Þ

where

P tð Þ = p tð Þ + εp∗ tð Þ = X′�� ��,Q tð Þ≔ q tð Þ + εq∗ tð Þ
= det X,X′,X′′

� 	
X′�� �� −2,

ð16Þ

are called Blaschke invariants of ðXÞ. The tangent of the
striction curve may be written as

C′ = −q∗x + p∗g: ð17Þ

The invariants pðtÞ, p∗ðtÞ, qðtÞ, and q∗ðtÞ are called the
structure functions of the ruled surface ðXÞ. The distribution
parameters of the ruled surfaces ðXÞ, ðTÞ, and ðGÞ, respec-
tively, are

H2
+

S21

Figure 1: The hyperbolic and Lorentzian dual unit spheres.
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μ tð Þ = p∗

p
, δ tð Þ = pp∗ + qq∗

q2 + p2
, Γ tð Þ = q∗

q
: ð18Þ

Definition 2. A nondevelopable ruled surface is defined as a
constant parameter ruled surface if the structure functions
μðtÞ, δðtÞ, and ΓðtÞ are all constant.

Now, under the hypothesis that jQj > jPj, we have the
evolute of X ∈ℍ2

+ as

B tð Þ = b tð Þ + εb∗ tð Þ = Ω
Ωk k = QX + PGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 − P2
p : ð19Þ

It is clear that B is the Disteli-axis (curvature-axis or
striction-axis) of ðXÞ. Let Ψ = ψ + εψ∗ ≥ 0 stand for the
radius of curvature between X and B. Then, we can write

B tð Þ = cosh ΨX + sinh ΨG, withcothΨ = Q
P
: ð20Þ

One of the invariants of the dual curve X ∈ℍ2
+ is

Σ tð Þ≔ γ tð Þ + ε Γ tð Þ − μ tð Þγ tð Þð Þ = Q
P
, ð21Þ

called the dual geodesic curvature. Here, γðtÞ = q/p is the
geodesic curvature of the hyperbolic spherical image curve
t ∈ I ↦ xðtÞ of ðXÞ. The trigonometric hyperbolic function
Ψ can be written as

coth Ψ = coth ψ − εψ∗ 1
sinh2ψ

: ð22Þ

Thus, from the real and dual parts of Equations (21) and
(22), respectively, we find

γ tð Þ = coth ψ = q
p
, ð23Þ

ψ∗ tð Þ = 1
2 μ − Γð Þ sinh 2ψ: ð24Þ

ψ∗ is the normal distance along Tmeasured from B to X.

3.1. Kinematic-Geometry and Time-like Plücker Conoid. We
now are interested in researching the kinematic geometry of
(X). Therefore, we are going to make a detailed study of the
Blaschke invariants PðtÞ and QðtÞ. To carry this out, from
Equation (15), we can write the following equations:

X′ tð Þ = Ωk kBð Þ ×X, T′ tð Þ = Ωk kBð Þ × T,G′ tð Þ = Ωk kBð Þ ×G:
ð25Þ

Hence, at any instant, it is seen that kΩk =Ω = ω + εω∗

is the dual angular speed of the motion ℍ2
+m/ℍ2

+f about
the Disteli-axis B. Thus,

ω tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − p2

p
, ω∗ tð Þ = qq∗ − pp∗ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 − p2
p , with qj j > pj j, ð26Þ

corresponding to the rotational angular speed and transla-
tional angular speed of themotion Lm/Lf alongB, respectively.

Hence, the next corollary can be given:

Corollary 3. During the motion Lm/Lf , at any instant t, the
pitch can be given by

h tð Þ≔ <ω, ω∗ >
ωk k2 = Γ cosh2ψ − μ sinh2ψ: ð27Þ

It is clear that if the dual vector Ω = ω + εω∗ is given,
then the following can be specified:

(i) The time-like Disteli-axis B is specified by Equation
(20)

(ii) The dual angular speed is kΩk = ωð1 + εhÞ
(iii) If y is a point on the time-like Disteli-axis B, then

y t, vð Þ = b × b∗ + vb, v ∈ℝ, ð28Þ

is a nondevelopable time-like ruled surface ðBÞ

(iv) If the motion Lm/Lf is pure rotation, that is, hðuÞ
= 0, then

B tð Þ = b tð Þ + εb∗ tð Þ = 1
ωk k ω + εω∗ð Þ: ð29Þ

It is interesting to note that if hðtÞ = 0, and kωk2 = −1,
then Ω is a time-like oriented line. However, in the case
when the motion is pure translational, i.e., Ω = 0 + εω∗, we
set ω∗ = kΩ∗k,ω∗b = ω∗ and select an arbitrary b∗under ω∗

≠ 0; otherwise, the time-like unit vector b can be chosen
arbitrarily, too.

The Equations in (24) and (27), respectively, are Min-
kowski versions of the Mannheim and Hamilton formulae
of surface theory in Euclidean 3-space. Now, we give geo-
metric interpretations of these formulae. Next, the paramet-
ric representation of ψ∗ is time-like Plücker conoid or
cylindroid as follows: consider T is coincident with the
space-like y-axis of a fixed Minkowski frame ðoxyzÞ, while
the position of the time-like dual unit vector B is given by
angle ψ and distance ψ∗ on the space-like positive y-axis.
The time-like dual unit vector X and the space-like dual unit
vector G can be selected in sense of x- and z-axes, respec-
tively. This shows that the dual unit vectors X and G
together with T form the coordinate system, as shown in
Figure 2. If y is a point on this time-like Plücker conoid, then
we have

M : y t, vð Þ = 0, ψ∗, 0ð Þ + v cosh ψ, 0, sinh ψð Þ,  v ∈ℝ: ð30Þ

Using such representation, the time-like dual unit vec-
tors B are obviously visible crossing through the y-axis. It
is easily seen from the last equation and (24) that
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ψ∗ ≔ y = 1
2 μ − Γð Þ sinh 2ψ, x = v cosh ψ, z = v sinh ψ:

ð31Þ

Here, ψ∗ gives us the intersection point of the oriented
lines X and G which locates at a half of the conoid height.
By direct calculations,

x2 − z2

 �

y − μ − Γð Þxz = 0, ð32Þ

which is the algebraic equation for time-like Plücker conoid.
The time-like Plücker conoid given by Equation (32) which
has two structure functions of the first order and it depends
only on their difference; μ − Γ = 1, −0:9 ≤ ψ ≤ 0:9, −1:5 ≤ v
≤ 1:5 (Figure 3). Furthermore, one can get a second-order
equation in x/z in which its solutions are given by

x
z
= 1
2y μ − Γ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ − Γð Þ2 − 4y2

q� 

: ð33Þ

By equating the discriminant of Equation (33) to zero,
we get the limits of the time-like Plücker conoid. Hence,
the two extreme positions are given by

y = ±μ − Γ

2 , ð34Þ

which gives the positions of the two torsal planes π1, π2, and
each one of them contains one torsal line L. Further, hðuÞ in
Equation (27) is not a periodic function and has at most two

extreme values, the structure functions Γ and μ. Therefore,
the oriented lines X and G are principal axes of the time-
like Plücker conoid. However, the geometric aspects are dis-
cussed as follows:

(1) If hðtÞ ≠ 0, then there are two real torsal lines L1 and
L2 passing through the point ð0, y, 0Þ only if y < ðμ
− ΓÞ/2; for the two limit points y = ±ðμ − ΓÞ/2, they
coincide with the principal axes X and G

(2) If hðtÞ = 0, then the two torsal lines L1 and L2 are
represented by

x
z
≔ coth ψ = ±

ffiffiffi
μ

Γ

r
, y = ±

ffiffiffiffiffiffi
Γμ

p
: ð35Þ

Equation (35) means that the two torsal lines L1 and L2
are orthogonal each other in the Lorentzian sense. Further-
more, transition from polar coordinates to Cartesian coordi-
nates could be completed by substituting

x = cosh ψffiffiffi
h

p , z = sinh ψffiffiffi
h

p , ð36Þ

into Hamilton’s formula; one obtains the equation

D : Γj jx2 − μj jz2 = 1, ð37Þ

of a conic section. This conic section is a Minkowski version
of the Dupin indicatrix of surfaces theory in Euclidean 3-
space.

3.1.1. Serret–Frenet Motion. If ðXÞ is a time-like developable
ruled surface, that is, μ = 0, in this case, Dupin’s indicatrix is
a set of parallel lines represented by x2 = j1/Γj, and the Blas-
chke frame {x, t, g} coincides with the classical Serret–Frenet
frame, and then, the striction curve C becomes the edge of
regression of ðXÞ. Hence, p and q are the curvature κ and
the torsion τ of C, respectively. Moreover, q∗ = 1 and Γτ =
1 (Γ is the radius of torsion of C). By similar argument, we
can also have the following equations:

h tð Þ = 1
τ
cosh2ψ = τ

τ2 − κ2
, ψ∗ tð Þ = −

1
2Γ sinh 2ψ = −

κ

τ2 − κ2
:

ð38Þ

The corresponding time-like Plücker conoid is

M : y t, vð Þ = 0, ψ∗, 0ð Þ + v cosh ψ, 0, sinh ψð Þ, v ∈ℝ:

ð39Þ

This yields

x2 − z2

 �

y + Γxz = 0: ð40Þ

3.2. Time-like Ruled Surfaces with Constant Disteli-Axis. A
time-like ruled surface ðXÞ is defined as a constant Disteli-
axis ruled surface if the dual angle between the ruling of

G

T

B

X

𝜓
⁎

𝜓

Figure 2: B = cosh ΨX + sinh ΨG:

Figure 3: Time-like Plücker conoid.
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ðXÞ and the Disteli-axis is always constant. Thus, when we
say ðXÞ is a time-like constant Disteli-axis, we mean that
all the rulings of ðXÞ have a constant Lorentzian dual angle
from its Disteli-axis.

The dual arc length dŝ = ds + εds∗ of XðtÞ ∈ℍ2
+ is

ŝ tð Þ =
ðt
0
Pdt =

ðt
0
p 1 + εμð Þdt: ð41Þ

After that, we will use the dual arc length parameter ŝ
instead of t. If the prime means to differentiation as ŝ, then
from Equation (15), we get

X′

T′

G′

0
BB@

1
CCA =

0 1 0
1 0 Σ

0 −Σ 0

0
BB@

1
CCA

X

T

G

0
BB@

1
CCA =Ω ×

X

T

G

0
BB@

1
CCA, ð42Þ

where Ω = ΣX +G. Thus, we may write the following rela-
tionships:

bκ ŝð Þ≔ κ + εκ∗ =
ffiffiffiffiffiffiffiffiffiffiffiffi
Σ2 − 1

p
= 1
sinh ψ

= 1
~ρ
, bτ ŝð Þ≔ τ + ετ∗

= ± Σ′
Σ2 − 1 = ±Ψ′,

ð43Þ

where bκ and bτ are the dual curvature function and the dual
torsion function of Xð̂sÞ ∈ℍ2

+, respectively. The terms found
in Equation (43) are such as to their counterparts in 3-
dimensional hyperbolic spherical geometry.

Definition 4. For a one-parameter hyperbolic dual motion, at
an instant ŝ ∈D, an oriented time-like line Z in fixed space
will be said to be time-like Bk-Disteli-axis of ðXÞ if for all i
such that 1 ≤ i ≤ k, <Z,Xið̂sÞ > = 0, but <Z,Xk+1ð̂sÞ > ≠ 0.
Here, Xi denotes the i-th derivatives of X.

Via this definition, consider the Lorentzian dual angle

~ρ = cosh−1 <Z,X >ð Þ, ð44Þ

such that X and Z have the same time orientation and Z and
~ρ stay fixed up to the second order at ŝ = ŝ0, i.e.,

~ρ′ ŝ = ŝ0 = 0,X′�� ��̂s = ŝ0 = 0,

~ρ′′ ŝ = ŝ0 = 0,X′′
�� ��̂s = ŝ0 = 0:

ð45Þ

We have for the first order

<X′, Z > = 0, ð46Þ

and for the second-order properties

<X′′, Z > ∣ = 0: ð47Þ

Then, ~ρ will be invariant in the second approximation if
and only if Z is the time-like Disteli-axis B of ðXÞ, that is,

~ρ′ = ~ρ′′ = 0⇔ Z = X′ ×X′′
X′ ×X′′

�� �� = ±B: ð48Þ

By the definition of the time-like Disteli-axis, we have
the dual frame

U1 = B ŝð Þ, U2 ŝð Þ = B′
B′

�� �� , U3 ŝð Þ = B ×U2, ð49Þ

as the Blaschke frame along B. Thus, the calculations give
that

U1

U2

U3

0
BB@

1
CCA =

cosh Ψ 0 sinh Ψ

sinh Ψ 0 cosh Ψ

0 −1 0

0
BB@

1
CCA

X

T

G

0
BB@

1
CCA: ð50Þ

The variations of this frame are analogous to Equation
(15) and are given by

U1′

U2′

U3′

0
BB@

1
CCA =

0 Ψ′ 0
Ψ′ 0 bκ
0 −bκ 0

0
BB@

1
CCA

U1

U2

U3

0
BB@

1
CCA = ~Ω ×

U1

U2

U3

0
BB@

1
CCA,

ð51Þ

where ~Ωð̂sÞ = bκU1 +Ψ′U3. Comparing Equation (42) with
Equation (51), we have that the relative dual velocity is

Ω − ~Ω =Ψ′T: ð52Þ

This shows that the Blaschke frame involves a further
rotation around the central tangent T, whose speed equals
the dual torsion bτðsÞ. Hence, we obtain that if bτ ð̂sÞ = τ + ε
τ∗ = 0(Σ′ðtÞ = γ′ðtÞ + εðΓðtÞ − μðtÞγðtÞÞ′ = 0), that is, ψ
and ψ∗ are constants, then the time-like Disteli-axis is fixed
up to the second order and the time-like line X moves on it
with constant pitch h. Thus kinematically, the time-like
ruled surface ðXÞ is traced by a hyperbolic one-parameter
screw motion of constant pitch h along the constant time-
like Disteli-axis B, by the time-like line X at a constant Lor-
entzian distance ψ∗ and constant Lorentzian angle ψ relative
to B. Hence, we have the following.

Theorem 5. (X) is a time-like ruled surface with constant
Disteli-axis if and only if (a) γ =constant and (b) Γ − μγ =
constant.

Now, we construct the time-like ruled surfaces for which
the Disteli-axis is constant. Thus, from Equation (42), we
have the following ordinary differential equation:

X′′′ + ~κ2X′ = 0: ð53Þ
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Then, without loss of generality, we may assume X′ð0Þ
= ð0, 1, 0Þ. Under such initial condition, a space-like dual
unit vector X′ is given by

X′ ŝð Þ = A1 sin ~κŝð ÞF1 + cos ~κŝð Þ + A2 sin ~κŝð Þð ÞF2 + A3 sin ~κŝð ÞF3,
ð54Þ

where A1, A2, and A3 are some dual constants satisfying A2
1

− A2
3 = 1 and A2 = 0. From this, we can obtain

X ŝð Þ = −~ρA1 cos ~κŝð Þ +D1ð ÞF1 + ~ρ sin ~κŝð ÞF2
+ −~ρA3 cos ~κŝð Þ +D3ð ÞF3,

ð55Þ

where D1, D3 are some dual constants satisfying A3D3 − A1
D1 = 0 and D2

3 −D2
1 = ~ρ2 + 1. If we adopt the dual coordinate

transformation such that

�X1

�X2

�X3

0
BB@

1
CCA =

A1 0 −A3

0 1 0
−A3 0 A1

0
BB@

1
CCA

X1

X2

X3

0
BB@

1
CCA, ð56Þ

with respect to the new coordinates �Xi, the dual unit vector
XðŝÞ becomes

X ŝð Þ = ~ρ cos ~κŝð ÞF1 + ~ρ sin ~κŝð ÞF2 +DF3, ð57Þ

for a constant dual D = A1D3 − A3D1, with D = ∓cosh Ψ. It is
noted that Xð̂sÞ does not depend on the choice of the lower
sign or upper sign of ∓. Therefore, through the paper, we
choose the upper sign, that is,

X Θð Þ = sinh Ψ cos ~κŝð ÞF1 + sinh Ψ sin ~κŝð ÞF2 − cosh ΨF3,
ð58Þ

where Θ = ϑ + εϑ∗ = ~κŝ. This means that the time-like lines B
and F3 are coincident, and

ψ = f1 real const:ð Þ, ψ∗ = f2 real const:ð Þ: ð59Þ

Since ϑ and ϑ∗ are two-independent parameters, we can
say that ðXÞ is, in general, a time-like line congruence in Lf

-space. However, by separating the real and dual parts of
Equation (58), respectively, we have

x ϑ, ϑ∗ð Þ = sinh ψ cos ϑ, sinh ψ sin ϑ,− cosh ψð Þ, ð60Þ

x∗ ϑ, ϑ∗ð Þ =
x∗1

x∗2

x∗3

0
BB@

1
CCA =

ψ∗ cos ϑ cosh ψ − ϑ∗ sin ϑ sinh ψ

ψ∗ sin ϑ cosh ψ + ϑ∗ cos ϑ sinh ψ

−ψ∗ sinh ψ

0
BB@

1
CCA:

ð61Þ
Let αðα1, α2, α3Þ denote a point on X. Since α × x = x∗,

we have the system of linear equations in α1,α2, and α3:

−α3 sin ϑ sinh ψ − α2 cosh ψ = x∗1 ,
α3 cos ϑ sinh ψ + α1 cosh ψ = x∗2 ,
−α1 sin ϑ sinh ψ + α2 cos ϑ sinh ψ = x∗3 :

9>>=
>>; ð62Þ

The matrix of coefficients of unknowns α1,α2, and α3 is

0 −cosh ψ −sin ϑ sinh ψ

cosh ψ 0 cos ϑ sinh ψ

−sin ϑ sinh ψ cos ϑ sinh ψ 0

0
BB@

1
CCA, ð63Þ

and therefore, its rank is 2 with ψ ≠ 0 and ϑ ≠ 0. In addition,
the rank of the augmented matrix

0 cosh ψ −sin ϑ sinh ψ x∗1

−cosh ψ 0 cos ϑ sinh ψ x∗2

−sin ϑ sinh ψ cos ϑ sinh ψ 0 x∗3

0
BB@

1
CCA,

ð64Þ

is 2. Hence, this system has infinitely many solutions repre-
sented with

cα1 = ψ∗ sin ϑ + ϑ∗ − α3ð Þ tanh ψ cos ϑ, ð65Þ

α2 = −ψ∗ cos ϑ + ϑ∗ − α3ð Þ tanh ψ sin ϑ, ð66Þ

−α1 sin ϑ sinh ψ + α2 cos ϑ sinh ψ = x∗3 : ð67Þ
Since α3 is taken at random, then we may take ϑ∗ − α3

= 0. In this case, Equation (65) reduces to

α1 ϑð Þ = ψ∗ sin ϑ, α2 ϑð Þ = −ψ∗ cos ϑ, α3 ϑð Þ = −ϑ∗: ð68Þ

Thus, the director surface of this time-like line congru-
ence is given by

α ϑ, ϑ∗ð Þ = ψ∗ sin ϑ,−ψ∗ cos ϑ,−ϑ∗ð Þ: ð69Þ

Let mðm1, m2, m3Þ denote a point on this time-like line
congruence. Hence, we obtain

m ϑ, ϑ∗, vð Þ = α ϑ, ϑ∗ð Þ + vx ϑ, ϑ∗ð Þ, v ∈ℝ, ð70Þ

which consists of a family of time-like ruled surfaces mðϑ,
ϑ∗0 , vÞ, mðϑ0, ϑ∗, vÞ, and mðϑðtÞ, ϑ∗ðtÞ, vÞ. Here, ϑ∗0 , ϑ0, and
t are real constants. By means of Equations (60), (68), and
(70), we simply find that

cm1 = ψ∗ sin ϑ + v sinh ψ cos ϑ,
m2 = −ψ∗ cos ϑ + v sinh ψ sin ϑ,
m3 = −ϑ∗ − v cosh ψ,

9>>=
>>; ð71Þ

or by eliminating ϑ, we have
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Xð Þ: m2
1

ψ∗2 + m2
2

ψ∗2 −
M2

3
n2

= 1, ð72Þ

where n = ψ∗ coth ψ and M3 =m3 + ϑ∗. Then, ðXÞ is two-
parameter Lorentzian spheres. The intersection of each Lor-
entzian sphere and the corresponding space-like plane M3
≔m3 + ϑ∗ = 0 is m2

1 +m2
2 = ψ∗2. Therefore the envelope of

ðXÞ is the time-like cylinder m2
1 +m2

2 = ψ∗2. Notice that if
ϑ∗ = 0, then

Xð Þ: m2
1

ψ∗2 + m2
2

ψ∗2 −
m2

3
n2

= 1: ð73Þ

3.2.1. Constant Parameter Time-like Ruled Surfaces. A rela-
tion such as Fðϑ, ϑ∗Þ = 0, between the parameters, restricts
Equation (58) (resp. (70)) to a one-parameter set of time-
like lines, that is, a time-like ruled surface in the congruence.
Therefore, if we select ϑ∗ = hϑ, h indicating the pitch of the
motion ℍ2

+m/ℍ2
+f , and ϑ as the motion parameter, then

Equation (58) (resp. (70)) performs a time-like ruled surface
in Lf -space. Thus,

X

T

G

0
BB@

1
CCA =

sinh Ψ cos Θ sinh Ψ sin Θ −cosh Ψ

−sin Θ cos Θ 0
cosh Ψ cos Θ cosh Ψ sin Θ −sinh Ψ

0
BB@

1
CCA

F1
F2
F3

0
BB@

1
CCA:

ð74Þ

In this case, we get

d
dϑ

X

T

G

0
BBB@

1
CCCA =

0 1 + εhð Þ sinh Ψ 0

1 + εhð Þ sinh Ψ 0 1 + εhð Þ cosh Ψ

0 − 1 + εhð Þ cosh Ψ 0

0
BBB@

1
CCCA

�
X

T

G

0
BBB@

1
CCCA:

ð75Þ

Thereby, the Blaschke invariants are

P = 1 + εhð Þ sinh Ψ,Q = 1 + εhð Þ cosh Ψ, coth Ψ = Q
P
:

ð76Þ

From the real and dual parts of the last equations, we
obtain

μ = h + ψ∗ coth ψ, Γ = h + ψ∗ tanh ψ, γ = coth ψ, ð77Þ

where μ, Γ, and γ are constants. Hence, (X) is a constant
parameter time-like ruled surface. We now simply find the
base curve as

α ϑð Þ = ψ∗ sin ϑ,−ψ∗ cos ϑ,−hϑð Þ: ð78Þ

It can be shown that <α′, x′ > = 0, so the base curve of
(X) is its striction curve. Also, it can be show that αðϑÞ is a
space-like (resp., a time-like) if and only if jψ∗j > jhj (resp.,
jψ∗j < jhj). For the curvature κ, and the torsion τ, we can
find the following calculations simply

κ ϑð Þ = ψ∗

ψ∗2 − h2
, τ ϑð Þ = h

ψ∗2 − h2
: ð79Þ

Hence, αðϑÞ is a space-like (resp., a time-like) helix if and
only if jψ∗j > jhj (resp. jψ∗j < jhj). Furthermore, we have

5
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2
2

2
0

Figure 4: ðXÞ with h = 1 and ψ∗ = 0:5:
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0
1
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–10

Figure 5: ðXÞ with h = 0:5 and ψ∗ = 1:
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Xð Þ: m ϑ, vð Þ = ψ∗ sin ϑ + vc1 cos ϑ,−ψ∗ cos ϑ + vc1 sin ϑ,−hϑ − c2vð Þ,
ð80Þ

where c1 = sinh ψ, c2 = cosh ψ, ψ = 0:7, ϑ ∈ ½0, 2π�, and v ∈
½−4, 4�. According to Equation (80), we have the following:

(1) Time-like general helicoids: for h = 0:5 (resp., h = 1Þ
and ψ∗ = 1 (resp., ψ∗ = 0:5), the graph of the surfaces
are shown in Figures 4 and 5, respectively

(2) Lorentzian sphere: for h = 0, ψ∗ = 1, the graph of the
surface is shown in Figure 6

(3) Time-like cone: Figure 7 shows the surface ðXÞ with
ψ∗ = h = 0

4. Conclusion

In this work, we analyze a certain class of time-like ruled
with constant Disteli-axis in Minkowski 3-space E3

1. As a
result, the time-like ruled surface generated by a time-like
line undergoing a Lorentzian screw motion is examined in
detail. We hope that the study of spatial kinematics in Min-
kowski 3-space E3 via line geometry may shed some light on
present research problems and probably propose new ones.
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