Effect of dexamethasone on atrial fibrillation after cardiac surgery: Prospective, randomized, double-blind, placebo-controlled trial

ARTICLE in JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA · MARCH 2007
Impact Factor: 1.48 · DOI: 10.1053/j.jvca.2005.10.014 · Source: PubMed

8 AUTHORS, INCLUDING:

Mohamed Bakri
Assiut University
14 PUBLICATIONS 125 CITATIONS

Daniel Laskowski
Cleveland Clinic
41 PUBLICATIONS 1,722 CITATIONS

David R. Van Wagoner
Cleveland Clinic
127 PUBLICATIONS 5,931 CITATIONS

Ed Mascha
Cleveland Clinic
199 PUBLICATIONS 6,274 CITATIONS
Effect of Dexamethasone on Atrial Fibrillation After Cardiac Surgery: Prospective, Randomized, Double-Blind, Placebo-Controlled Trial

Jean-Pierre Yared, MD,* Mohamed H. Bakri, MD, PhD,* Serpil C. Erzurum, MD,†‡ Christine S. Moravec, PhD,§ Daniel M. Laskowski, BS, RPFT,†‡ David R. Van Wagoner, PhD,§ Edward Mascha, PhD,|| and Julie Thornton, MS||

OBJECTIVE: The purpose of this study was to assess the effect of preoperative dexamethasone (DEX) on the occurrence of postoperative atrial fibrillation (AF).

DESIGN: Prospective, randomized, double-blind, placebo-controlled clinical trial.

SETTING: Tertiary referral center.

PARTICIPANTS: Seventy-eight adult patients undergoing combined valve and coronary artery bypass graft (CABG) surgery were randomized to receive either DEX or placebo.

INTERVENTIONS: The DEX group received dexamethasone, 0.6 mg/kg, after induction of anesthesia, and the placebo group received an equal volume of normal saline. Interleukin (IL)-6, -8, and -10; tumor necrosis factor α; and endothelin (ET)-1 were measured preoperatively and on postoperative days (POD) 1, 2, and 3. Complement (C-4) and C-reactive protein (CRP) were measured preoperatively and on POD 2. Exhaled nitric oxide (NO) was measured preoperatively, 15 minutes after aortic unclamping, and 1 hour after intensive care unit admission.

MEASUREMENTS AND MAIN RESULTS: No significant difference in the incidence of AF was found between the placebo (41%) and DEX groups (30%) (95% confidence interval [−11%, 34%]; p = 0.31). DEX significantly reduced at least 1 postoperative level of IL-6, IL-8, IL-10, CRP, and exhaled NO. DEX did not affect ET-1 or C-4 levels. IL-10 on POD 3 was positively correlated with postoperative hospital length of stay (r = 0.30, p = 0.01). Increased levels of IL-8 and IL-10 on POD 1 were positively correlated with the intubation time (r = 0.31, p = 0.01; r = 0.30, p = 0.01, respectively). Conversely, C-4 on POD 2 was negatively correlated with the intubation time and intensive care unit length of stay (r = −0.32, p = 0.006; r = −0.30, p = 0.01, respectively).

CONCLUSIONS: DEX did not affect the incidence of AF in patients undergoing combined CABG and valve surgery. However, it did modulate the release of several inflammatory and acute-phase response mediators that are associated with adverse outcomes.

KEY WORDS: dexamethasone, atrial fibrillation, cardiopulmonary bypass, cytokines

© 2007 Elsevier Inc. All rights reserved.

From the Departments of *Cardiothoracic Anesthesiology, †Pulmonary, Allergy and Critical Care Medicine, §Cardiovascular Medicine, and ||Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH.

Supported in part by core services provided by the Public Health Service Research Grant M01 RR018390. S.C.E. and D.M.L. were funded by HL 60917 and HL 04265. D.R.V. was supported by RO1 HL-65412 (Oxidative Stress and Atrial Fibrillation). Address reprint requests to Jean-Pierre Yared, MD, Cleveland Clinic Foundation, Department of Cardiothoracic Anesthesiology, 9500 Euclid Avenue, G5, Cleveland, OH 44195. E-mail: yaredj@ccf.org

© 2007 Elsevier Inc. All rights reserved.
1053-0770/07/$20.00 © 2007 Elsevier Inc. All rights reserved.
doi:10.1053/j.jvca.2005.10.014

A N ESTIMATED 400,000 adults in the United States undergo coronary artery bypass graft (CABG) surgery annually.1 Atrial fibrillation (AF) develops in up to 41.6% of patients after CABG surgery2 and in over 60% of patients after combined CABG and valve surgery.3 AF after CABG remains a major problem that is likely to increase in frequency because the typical patient undergoing CABG surgery today is older and has more left ventricular dysfunction than the typical patient decades ago.4

With physicians and hospitals facing increasing pressure to control costs, the future of therapy for this condition lies in prophylaxis. The cumulative cost of AF care will exceed that of any other complication. Any reduction in its occurrence may result in enormous savings. Hravnak and colleagues5 found that the economic impact of AF after CABG surgery was underestimated in most previous reports. However, a recent report by Connolly et al6 found that AF did not increase total costs. Further understanding of the pathophysiology of AF at the cellular and the molecular levels may provide more specific targets for prevention and treatment.7

Cardiopulmonary bypass (CPB) triggers an inflammatory response and release of several mediators that may affect outcome after cardiac surgery.8 Inflammatory markers including C-reactive protein (CRP), endothelin-1 (ET-1), complement, and interleukin (IL)-6 have been associated with an increased incidence of AF.9-12 The effect of CPB on the inflammatory system may stem from circulatory and metabolic derangement and myocardial injury.13-15 And this derangement may play a role in the pathogenesis of postoperative AF.11 IL-6 and tumor necrosis factor α (TNF-α) may contribute to myocardial dysfunction and hemodynamic instability after CPB.16,17 Indeed, the myocardium is the major source of IL-8 during reperfusion after an extended period of ischemia or after acute myocardial infarction.18 Anti-inflammatory cytokines such as IL-10 are released during CPB and may play a protective role by suppressing the production of proinflammatory cytokines.18,19 Cytokines and chemokines as well as exhaled nitric oxide (NO) have been used as markers of inflammation and may indicate the effectiveness of anti-inflammatory therapy.20-22

The authors previously reported as an incidental finding that dexamethasone (DEX) reduced the incidence of new-onset AF from 52.6% to 18.2% after combined CABG and valve surgery.23 This finding served as a hypothesis generator, and the present study was designed so that the dose and timing of DEX would be similar to the ones used in the original study. The previous study was designed to assess the effect of DEX on postoperative shivering, but AF was not looked at prospectively (post hoc analysis). The present study was designed to verify whether this incidental finding could be confirmed prospectively. The objective of this study was to evaluate the ability of
preoperative administration of DEX to modulate perioperative cytokines (IL-6, 8, and 10, TNF-α) and acute-phase markers (CRP, C-4) in such a way that the occurrence of postoperative AF is reduced.

MATERIALS AND METHODS

The institutional review board of the Cleveland Clinic Foundation approved the study. Informed consent was obtained from all participants. Between October 2000 and July 2001, 78 patients age 20 years or older scheduled for elective, combined coronary and valvular heart surgery were randomized to receive either DEX or placebo. A computer-generated random table was used. Patients were excluded if they had a history of AF or if they were receiving amiodarone or corticosteroid therapy. Seven patients who were initially enrolled in the study were excluded from analysis because there was a change in the surgical plan (5 patients) or they received aprotinin (1 patient) or additional corticosteroids (1 patient). Of the remaining 71 patients, 37 were randomly assigned to receive DEX, 0.6 mg/kg (group DEX), and 34 to receive an equal volume of placebo (group PL). Both DEX and the placebo were administered immediately after induction of anesthesia. All patients received routine premedication, monitoring, and anesthetic management. Blood cardioplegia was used, and CPB was performed under normothermia or mild hypothermia followed by rewarming to bladder temperature of 37°C before separation from CPB.

The Cardiothoracic Anesthesia Registry provided demographic and clinical information, including the department’s Preoperative Severity Score of Illness for extended CABG patients and the incidence of hospital mortality and major morbidities. Major morbidities include pulmonary morbidity (intubation time >72 hours), renal morbidity (need for hemodialysis), cardiac morbidity (postoperative myocardial infarction, cardiac index ≤2.0 L/min/m², need for mechanical assist device), neurologic morbidity (focal or global neurologic deficit), and infection morbidity (sepsis, pneumonia, wound infection, or mediastinitis). AF was defined as AF requiring treatment. Brief isolated non-sustained episodes of AF were excluded. In the cardiovascular ICU (CVICU), automated detection of AF was obtained from the bedside arrhythmia monitor Solar 9500 (GE Medical Systems, Milwaukee, WI). The diagnosis was confirmed by the CVICU physician who also initiated treatment as appropriate. In the stepdown units, detection of AF was obtained by continuous electrocardiogram telemetry monitoring (Eagle 4000; GE/Marquette Medical Systems, Milwaukee, WI). The diagnosis was confirmed by a cardiologist and/or a house staff before initiation of therapy.

Because the majority of postoperative AF occurs in the first 3 days after cardiac surgery,7 cytokines and acute-phase markers were measured during that time. Four blood samples were collected for every patient as follows: the first sample (7 mL) (baseline) before induction of anesthesia, the second sample (3 mL) on postoperative day 1 (POD 1), the third sample (7 mL) on POD 2, and the fourth sample (3 mL) on POD 3. The first blood sample was taken from the arterial catheter just before induction of anesthesia. The second, third, and fourth samples were drawn from an upper extremity by direct venipuncture with the morning laboratory work at 9 AM. For the first and third samples (7 mL each), 4 mL was placed into 2 SST yellow-top siliconized vacuum tubes (2 mL in each) (Becton Dickinson, Franklin Lakes, NJ) and were sent directly for immediate analysis of CRP and complement (C4). The remaining 3 mL of blood (of the first and third samples) and the second and fourth samples (3 mL each) were put in a heparin-coated green-top tube and were immediately taken and put in a Beckman CPR Centrifuge (Beckman Coulter Inc, Fullerton, CA) at 4°C and spun at 2000 rpm for 15 minutes. The clear supernatant was transferred to a 1.5-mL Eppendorf tube and stored at −80°C until the end of the study when IL-6, IL-8, IL-10, TNF-α, and ET-1 were assayed for all samples in 1 setting.

Frozen plasma samples were thawed and analyzed. Plasma concentrations of IL-6, IL-8, IL-10, and TNF-α were measured using cytokine-specific enzyme-linked immunosorbent assays (Endogen Inc, Woburn, MN). Plasma concentrations of ET-1 were measured by using a commercial enzyme linked immunosorbent assay kit (Biomedica, BI-20052, Vienna, Austria) per the manufacturer’s instructions. Concentrations exceeding 10 fmol/mL were diluted with assay buffer and reassayed with a compatible standard curve. Intra-assay coefficient of variation was ~5%, and the interassay variability was 12%. All samples were measured in parallel and in duplicate to avoid interassay variance. The CRP assay was performed by using a Roche/Hitachi Modular System (Hitachi Ltd, Mito, Japan). The lower detection limit is 0.3 mg/dL. The serum concentration of C-4 was measured by the nephelometry/Beckman IMMAGE Immunochemistry System (Beckman Coulter Inc). After calibration, the peak rate signal for a particular assay is automatically converted to concentration units by the analyzer (Brea, CA). The lower limit of detection is 2 mg/dL with a range between 1.67 and 4,680 mg/dL.

NO was collected at 3 different times, and, for each time, 2 duplicate samples were obtained. The first sample was taken as a baseline from the patient before they entered the operating room. The exhaled gases were collected in Mylar bags (Physiologic Measurement Systems, Bay Village, OH) using an inspiratory breath-hold maneuver. The patients were seated and instructed to inhale to total lung capacity and then exhale against 10 cmH₂O pressure into a Mylar collection bag. The second sample was obtained 15 minutes after the aorta was unclamped while the patient was on CPB. One liter of air was introduced into each patient’s lungs via a syringe directly attached to the endotracheal tube. The passively exhaled gas was collected in a Mylar bag. The third sample was taken 1 hour after intensive care unit (ICU) admission. Two tidal breaths of exhaled gas were collected from the expiratory port of the ventilator, either a Servo 300 ventilator (Siemens Elena, Sweden) or a Puritan Bennett 7200 ventilator (Puritan-Bennett Co, Carlsbad, CA). Exhaled NO gas levels were measured immediately in the pulmonary department using a chemiluminescence analyzer (Sievers Instruments, Boulder, CO) sensitive to 1 ppb of NO. Because of technical difficulties, the authors were only able to collect at least 1 measure of exhaled NO for 41 patients.

A sample size of 78 was chosen to give 90% power at the 0.05 significance level to detect a difference of 35% or more between groups in the incidence of AF, assuming that the true percent in the lower group was 18% for patients undergoing combined CABG and valve surgery. Logistic regression, adjusting for preoperative severity score, was used to assess the relationship between AF and the baseline value concentration of inflammatory mediators as well as the change from baseline. Wilcoxon rank-sum tests or Student t tests were used to compare groups on continuous variables and Pearson chi-square or exact unconditional tests for categorical variables, as appropriate. Median (quartiles) or mean (standard deviation [SD]) were used to describe continuous variables. A 95% confidence interval (CI) using the exact binomial method was used for categorical variables. Spearman correlation coefficients (r) and corresponding a 95% CI were used to assess the relationship between the following continuous variables: (1) baseline inflammatory mediators and the preoperative severity score of illness for extended CABG surgery patients and (2) baseline and change from baseline inflammatory mediators with ICU intubation time, total ICU, and postoperative hospital length of stay (LOS), adjusting for the preoperative severity score. Treatment groups were also compared on time to AF using Kaplan-Meier analysis.

Multivariable models were fit to assess the association between baseline inflammatory mediators and their interaction with treatment on the outcomes of AF, initial ICU intubation time, postoperative hospital LOS, and total ICU LOS. Variables with a univariable significance of p < 0.15 were considered. A logistic regression was used for AF, and some variables.
linear regression was used for the other 3 outcomes, adjusting for treatment in each model and other variables when \(p < 0.05 \). The continuous outcomes were log transformed to better meet model assumptions. The overall significance level was 0.05 for all hypotheses, and Bonferroni correction was used for multiple comparisons. Analysis was performed with SAS 8.2 (SAS Institute Inc, Cary, NC), and graphics were produced with S-PLUS 6.0 (Insightful Corp, Seattle, WA).

RESULTS

The 2 study groups were predominantly male (74% in PL group and 84% in DEX group) and were comparable on demographic and surgical characteristics (Table 1) and in the uses of preoperative statins, nonsteroidal antiinflammatory drugs, or digoxin. Similarly, no significant differences were found in the perioperative hemodynamics or fluid balance on POD 1 (Table 2). No differences were found between the groups in regards to intubation time, ICU and postoperative hospital LOS, major morbidity, and mortality (Tables 2 and 3). One DEX patient with a history of chemotherapy and radiotherapy for Hodgkin’s lymphoma developed acute respiratory distress syndrome on POD 2 and died 5 days later.

No significant difference was detected in the incidence of postoperative AF between the PL and DEX groups (41% vs 30%, respectively; difference [95% CI] = 11.5% [-11%, 34%], \(p = 0.31 \)). Comparing groups on the time to AF using Kaplan-Meier analysis was also nonsignificant (log-rank \(p \) value = 0.36). Similarly, intention-to-treat analysis showed no significant difference between the 2 groups in the incidence of postoperative AF (39% vs 31%, \(p = 0.42 \)) in placebo and DEX groups, respectively. Patients with or without AF did not differ significantly in preoperative (60% vs 45.7%, \(p = 0.25 \), respectively) or postoperative (69.6% vs 62.2%, \(p = 0.56 \), respec-

Table 1. Demographics, Preoperative Severity Score of Illness, and Surgical Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Placebo (n = 34)</th>
<th>Dexamethasone (n = 37)</th>
<th>(p) Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>74.2 (64, 79)</td>
<td>69.2 (62, 78)</td>
<td>NA</td>
</tr>
<tr>
<td>Sex</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Males/Females (n [%])</td>
<td>(25/9) (73.5/26.5)</td>
<td>(31/6) (83.8/16.2)</td>
<td></td>
</tr>
<tr>
<td>Preoperative Weight (kg)</td>
<td>79.0 (70, 89)</td>
<td>78.0 (69, 86)</td>
<td>NA</td>
</tr>
<tr>
<td>Department Specific Preoperative Severity Score of Illness*</td>
<td>4.0 (3, 6)</td>
<td>3.0 (3, 5)</td>
<td>NA</td>
</tr>
<tr>
<td>Type of surgery</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>CABG and AV (n [%])</td>
<td>24 (70.6)</td>
<td>23 (62.2)</td>
<td></td>
</tr>
<tr>
<td>CABG and MV (n [%])</td>
<td>5 (14.7)</td>
<td>12 (32.4)</td>
<td></td>
</tr>
<tr>
<td>CABG, AV, and MV (n [%])</td>
<td>5 (14.7)</td>
<td>2 (5.4)</td>
<td></td>
</tr>
<tr>
<td>Cardiopulmonary bypass time (min)</td>
<td>111 (94, 136)</td>
<td>116 (96, 132)</td>
<td>0.77</td>
</tr>
<tr>
<td>Cross-clamp time (min)</td>
<td>86 (66, 97)</td>
<td>98 (81, 108)</td>
<td>0.08</td>
</tr>
<tr>
<td>Lowest cardiopulmonary bypass Temperature (°C)</td>
<td>35 (34, 36)</td>
<td>35 (34, 36)</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Abbreviations: NA, statistical comparisons not meaningful on baseline variables in randomized study; AV, aortic valve; MV, mitral valve.

*Assigned to predict patient outcome after CABG surgery (highest possible score is 33).

†Wilcoxon rank-sum test, unless noted.

Table 2. Perioperative Hemodynamics and Postoperative Outcomes

<table>
<thead>
<tr>
<th>Variable</th>
<th>Placebo (n = 34)</th>
<th>Dexamethasone (n = 37)</th>
<th>(p) Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate on postoperative day 1 (beats/min)</td>
<td>90 (78, 96)</td>
<td>87 (76, 90)</td>
<td>0.51</td>
</tr>
<tr>
<td>Cardiac index (L/min/m²)</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>2.4 (2.2, 2.6)</td>
<td>2.4 (2.1, 2.7)</td>
<td>NA</td>
</tr>
<tr>
<td>After cardiopulmonary bypass</td>
<td>2.8 (2.3, 3.3)</td>
<td>2.8 (2.4, 3.1)</td>
<td>0.69</td>
</tr>
<tr>
<td>4 h after ICU admission</td>
<td>2.8 ± 0.5</td>
<td>2.9 ± 0.6</td>
<td>0.54†</td>
</tr>
<tr>
<td>Net fluid gain (mL)</td>
<td>1277 ± 2558</td>
<td>1356 ± 1739</td>
<td>0.88†</td>
</tr>
<tr>
<td>Intubation time (h)</td>
<td>8.3 (4.8, 13)</td>
<td>6.4 (4.3, 13)</td>
<td>0.21</td>
</tr>
<tr>
<td>ICU LOS (h)</td>
<td>29 (24, 52)</td>
<td>34 (25, 77)</td>
<td>0.33</td>
</tr>
<tr>
<td>Postoperative Hospital LOS (d)</td>
<td>8 (6, 10)</td>
<td>6 (5, 10)</td>
<td>0.09</td>
</tr>
<tr>
<td>Highest body temperature</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Day of surgery</td>
<td>37.7 ± 0.4</td>
<td>37.3 ± 0.5</td>
<td><0.001†</td>
</tr>
<tr>
<td>Postoperative day 1</td>
<td>37.7 (37, 38)</td>
<td>37.5 (37, 38)</td>
<td>0.27</td>
</tr>
<tr>
<td>Postoperative day 2</td>
<td>37.3 (37, 38)</td>
<td>37.4 (37, 38)</td>
<td>0.99</td>
</tr>
<tr>
<td>Postoperative day 3</td>
<td>37.2 ± 0.5</td>
<td>37.2 ± 0.5</td>
<td>0.89†</td>
</tr>
</tbody>
</table>

Abbreviation: NA; statistical comparisons not meaningful on baseline variables in randomized study.

*Wilcoxon rank-sum test, unless noted.
†Student t test.
‡Significant (\(p < 0.05 \)).
ICU admission as well as TNF-α within both PL and DEX groups. Exhaled NO level 1 hour after well as CRP and C-4 increased significantly from baseline POD 2, postoperative levels of IL-6, IL-8, IL-10, and ET-1 as ures 1 and 2. With the exception of ET-1 in the DEX group on from baseline in cytokines and chemokines are shown in Fig-

Insulin titration protocol. (75-150 mg/dL) was the same for all patients as per standard respectivelly correlated with IL-10 levels on POD 3 compared with baseline (r [95% CI] = 0.30 [0.07, 0.53]) (Fig 3).

Increased levels of IL-8 and IL-10 on POD 1 were positively correlated with the intubation time (r [95% CI] = 0.31 [0.08, 0.54]) and (r [95% CI] = 0.30 [0.07, 0.53]), respectively. Conversely, the intubation time was inversely correlated with the POD 2 change from baseline of C-4 (r = -0.32 [-0.55, -0.09]). Postoperative hospital LOS was significantly corre-
vated with IL-10 levels on POD 3 compared with baseline (r = 0.30 [0.07, 0.53]). Total ICU LOS was inversely corre-
ated with the POD 2 change from baseline of C-4 (r = -0.30 [-0.53, -0.07]). After adjusting for treatment intervention, the preoperative departmental Severity Score (p = 0.02) was positively correlated with postoperative hospital LOS.

DISCUSSION

Valvular heart disease increases the risk of postoperative AF.26 The authors previously reported in a post hoc study that in patients undergoing combined CABG and valvular surgery, DEX was associated with a statistically significant reduction of new-onset postoperative AF from 52.6% to 18.2%.23 Because reporting of AF in the previous study was based on chart review, the authors expected the incidence of AF in the present prospective study to be the same or higher. However, the present report shows that the incidence of AF as well as the difference between groups is much less than in the previous study. As a result, the difference in the incidence of AF between groups is not statistically significant in the present study, although the results favored the DEX group. The sample size that was based on the authors’ earlier findings of a large observed treatment effect was not large enough to detect a smaller but potentially useful clinical effect noted in this study. Although the reasons for this difference cannot be identified, with certainty, the authors believe that changes in the manage-

Table 3. Major Morbidities and Mortalities*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Placebo (n = 34)</th>
<th>Dexamethasone (n = 37)</th>
<th>p Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial fibrillation (during first 3 postoperative days)</td>
<td>41 (25, 59)</td>
<td>30 (16, 47)</td>
<td>0.314</td>
</tr>
<tr>
<td>Hospital mortality</td>
<td>0 (0, 10)</td>
<td>2.7 (0.1, 14)</td>
<td>>0.99</td>
</tr>
<tr>
<td>Pulmonary morbidity</td>
<td>5.8 (0.7, 20)</td>
<td>2.7 (0.1, 14)</td>
<td>0.55</td>
</tr>
<tr>
<td>Renal morbidity</td>
<td>0 (0, 10)</td>
<td>0 (0, 9.5)</td>
<td>>0.99</td>
</tr>
<tr>
<td>Cardiac morbidity</td>
<td>0 (0, 10)</td>
<td>2.7 (0.1, 14)</td>
<td>>0.99</td>
</tr>
<tr>
<td>Neurologic morbidity</td>
<td>5.9 (0.7, 20)</td>
<td>0 (0, 9.5)</td>
<td>0.16</td>
</tr>
<tr>
<td>Infection morbidity</td>
<td>0 (0, 10)</td>
<td>0 (0, 9.5)</td>
<td>>0.99</td>
</tr>
</tbody>
</table>

*See text for explanation.
†Exact unconditional test, unless noted.
‡Pearson chi-square test.

Table 4. Cytokines and Chemokines at Baseline

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dexamethasone</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 (pg/dL)</td>
<td>37</td>
<td>0.0 (0.0, 0.4)</td>
</tr>
<tr>
<td>IL-8 (pg/dL)</td>
<td>37</td>
<td>5.9 (3.3, 9.2)</td>
</tr>
<tr>
<td>IL-10 (pg/dL)</td>
<td>37</td>
<td>0.0 (0.0, 0.8)</td>
</tr>
<tr>
<td>TNF-α (pg/dL)</td>
<td>37</td>
<td>0.9 (0.0, 2.0)</td>
</tr>
<tr>
<td>Endothelin-1 (fM/mL)</td>
<td>37</td>
<td>0.7 (0.3, 3.5)</td>
</tr>
<tr>
<td>CRP (mg/dL)</td>
<td>37</td>
<td>0.3 (0.3, 0.8)</td>
</tr>
<tr>
<td>C4 (mg/dL)</td>
<td>37</td>
<td>23.0 (20.0, 28.0)</td>
</tr>
<tr>
<td>NO (ppb)</td>
<td>17</td>
<td>15.6 (12.9, 22.1)</td>
</tr>
</tbody>
</table>
ment of temperature during CPB may have altered the inflammatory response; the mean of the lowest temperature reached on CPB was 35°C versus 33.4°C in the present and previous studies, respectively. Moreover, the cross-clamp time for each group was identical in the previous study (83 ± 32 minutes for both groups), whereas it was much longer in the DEX group in the present study, although the difference was not statistically significant. Longer cross-clamp time has been identified as a risk factor for the occurrence of postoperative AF.

An increased risk of postoperative AF has been associated with elevated preoperative CRP and a postoperative increase in complement C-4 and CRP. Recently, combined use of methylprednisolone and DEX has been shown to decrease the incidence of AF in CABG surgery patients. Similar to methylprednisolone, DEX attenuated the increase in inflammatory mediators, but the authors could not show its effectiveness in reducing the incidence of AF. A significant difference in postoperative C-4 between groups was not detected, a finding that is consistent with some but not all studies. The association between ET-1 levels and AF noted in nonsurgical patients with congestive heart failure was not observed after cardiac surgery in patients. The lack of effect of DEX on the release of ET-1 suggests that inflammation may not be the primary determinant of its release.

The correlation observed between elevated preoperative CRP and the department’s preoperative Severity Score of Illness was statistically significant but weak. Although CRP may reflect the severity of atherosclerotic heart disease, the present study patients had concomitant severe valvular disease, which is known to impact their outcome. To the authors’ knowledge, the influence of CRP values on the outcome of patients with combined coronary and valvular disease has not been studied.

The importance of the proinflammatory mediators as markers of the severity of illness and predictors of outcome is shown by the positive correlation observed between postoperative change from baseline of IL-8 and duration of postoperative intubation on POD 1. This finding is consistent with reports that IL-8 correlates with ICU LOS after lung transplant and predicts mortality in patients with signs of systemic inflammatory response syndrome admitted to the emergency department.

It was also found that intubation time and postoperative hospital LOS were correlated with lower values of C-4 on POD 2 and higher values of IL-10 on POD 3, respectively. This may suggest that patients with delayed immunosuppression have worse outcome. This is consistent with reports of delayed immunosuppression associated with poor outcome after cardiac surgery and by studies that show that high IL-10 levels correlate with the severity

Fig 1. Cytokine and chemokine changes from baseline.

of sepsis, organ failure, and death. These findings may indicate that modulation of the inflammatory response may have different results depending on the time that modulation occurs. Therefore, these observations suggest that an elevated proinflammatory response in the early post-CPB period as well as subsequent immunosuppressed state can both be associated with adverse outcomes. Expression of inducible NO synthase is increased by proinflammatory cytokines and can be inhibited by corticosteroids. The observed postoperative changes in exhaled NO are consistent with some but not all studies. In view of the differences in NO sampling techniques known to affect the accuracy and reproducibility of the measurements, such differences in results are not surprising. However, it must be noted that because of the large number of secondary analyses that were performed, it is possible that some of the significant results are because of chance alone.

Corticosteroids have antipyretic and hyperglycemic effects. On the day of surgery, the antipyretic effect was statistically and clinically significant. This corticosteroid-mediated effect that prevents postoperative fever is advantageous in cardiac surgery patients because oxygen consumption is directly related to body temperature. The increased insulin requirements in the DEX group emphasize the importance of insulin titration protocols to maintain euglycemia because postoperative hyperglycemia has been linked to adverse outcome.

The major limitation of this study was inadequate sample size. Moreover, because a single dose of dexamethasone was used, the authors were unable to confirm recently published data that show that sustained suppression of the inflammatory response with repeated doses of DEX can impact the incidence of AF. Moreover, the study was not powered to detect the possible impact of DEX on major morbidities and mortality.

In conclusion, this clinical trial does not provide evidence that a single preoperative dose of DEX markedly reduces the incidence of postoperative AF in patients undergoing combined CABG and valve surgery. The present study, given the sample size, does not assess whether DEX has a potentially modest or small effect on postoperative AF. Dexamethasone decreased the release of inflammatory mediators and caused a minor postoperative reduction of temperature on the day of surgery. The association of slower postoperative recovery with increased proinflammatory mediator concentrations in the early postoperative period, as well as decreased proinflammatory mediators at a later stage of postoperative recovery after cardiac surgery, may be clinically important.

ACKNOWLEDGMENT
The authors would like to thank Profs Mahmoud A. Aly and Nawal A. Gadelrab for their editorial support.
REFERENCES