Title: Synthesis of B- and C-Ring-Modified Lithocholic Acid Analogues as Potential Sialyltransferase Inhibitors

Authors: Hajjaj H. M. Abdu-Allah1,3, Tzu Ting Chang1, Wen-Shan Li1,2

Address: 1Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, 2Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, 3Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

In order to identify structural features of lithocholic acid (LCA) critical for inhibition of the enzyme sialyltransferase (ST) novel analogues with modifications of the skeleton (7-9, 16-18 and 20) were designed and synthesized. Methyl 3\textalpha\text'-acetoxy-7-oxo-cholanate (1), methyl 3\textalpha\text'-acetoxy-12-oxo-cholanate (2) and methyl 3\textalpha\text',7\textalpha\text'-diacetoxy-12-oxo-cholanate (3) were subjected to Baeyer-Villiger oxidation to provide homolactones (7-9) or to the Beckmann rearrangement of the corresponding oximes to give homolactams (16-18). Both reactions proceed regio- and stereoselectively. Ring B homolog of lithocholic acid (20) was efficiently synthesized. Among these compounds, 7, 9 and 16 were found to have the significant activity, with \textit{IC\textsubscript{50}} values ≤ 3 \mu M against \textalpha\text'-2,6-(N)-ST selectively, which are 5-fold lower than that of Lith-O-Asp. Given the reality
that LCA and its analogue, Lith-O-Asp, have been revealed to improve inhibitory efficacy of ST and to have a wide range of antimetastatic activities in different human cancer cells, the up-to-date findings have noteworthy pharmacological significance as they open a promising path to the improvement of a prospective molecular targeted application of modified LCA analogues as agents for the treatment of cancer metastasis.