In order to assess efficiency of drought tolerance indices, 50 bread wheat genotypes were evaluated under three environments: normal (clay fertile soil, E1), 100% (E2), and 50% (E3) field water capacity in sandy calcareous soil. A total of 14 drought tolerance indices including grain yield/plant, grain yield/spike, 1000-kernel weight, spike length, no. of tillers, plant height, flowering time, stomata frequency, stomata width, stomata length, drought susceptibility index (DSI), stress tolerance index (STI), yield stability index (YSI), and harmonic mean (HM) were estimated. A moderate to high broad-sense heritability was obtained for 1000-kernel weight (0.47), spike length (0.38), plant height (0.54), flowering time (0.73), stomata frequency (0.59), and stomata length (0.54). Grain yield/plant was strongly positively correlated with grain yield/spike, no. of tillers, plant height, flowering time, stomata length, STI, YSI, and HM, while negatively correlated with stomata frequency and DSI in E2 and E3, respectively. Thus, highly heritable traits strongly correlated with grain yield under stress conditions especially stomata frequency and length could be used as reliable indices for selecting high-yielding genotypes tolerant to drought stress. Cluster analysis based on morpho-physiological traits suggested the group 3 genotypes in E2 as the most tolerant genotypes to be used for developing improved varieties.
Research Abstract	
              Research Department	
              
          Research Journal	
              Journal of Crop Science and Biotechnology  
          Research Member	
          
      Research Publisher	
              Korean Society of Crop Science and Springer
          Research Rank	
              1
          Research Vol	
               Volume 17, Issue 4
          Research Website	
              http://link.springer.com/article/10.1007/s12892-014-0080-7
          Research Year	
              2014
          Research Pages	
              pp 255-266
          
Do you have any questions?