Final Exam

Answer the following questions:

- a- An electric dipole whose positive and negative charges have coordinates (0, 0, d\2) and (0, 0, -d/2), respectively. Derive expressions for the potential and field of the dipole at point p(r, θ, π/2).
 - b- Find the force on a 10⁻⁵C point-charge at (0, 0, -1) due to a point-charge 2x10⁻⁴ C located at (1, 1, 1) and a 3 × 10⁻⁴C point-charge located at (2, -1, 3). (8 points)
 - c- An electric field is given by $\overline{E} = \frac{1.5}{\epsilon_0} x^2 y^2 \overline{a}_x + \frac{1}{\epsilon_0} x^3 y \overline{a}_y (V/m)$ How much charge lies within a cube 1m on a side lying in the first octant $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$. (8 points)
- 2) a- Comment briefly on (i) first Maxwell's equation, (ii) electric displacement, (iii) streamlines, and (iv) flux lines. (8 points)
 - b- A changed circular disk with uniform charge density ρ_s is located in the plane z = 0. The disk is centered at origin with radius a. Calculate the potential at a point on the z - axis at $z = z_0$. (8 points)
 - c- A circular ring of radius a caries a uniform charge ρ_L C/m and is placed in the plane z = 0 with axis the same as the z axis.
 - (i) Derive an expression for the electric field at (0, 0, h)
 - (ii) What values of h give the max value of E? (4 points)
- 3) a- Starting from first principles, derive the divergence theorem applied to a vector field.
 - b- A charge distribution with spherical symmetry has density $\rho_v = \rho_0 r/R$ for $0 \le r \le R$ and $\rho_v = zero$. (8 points)
 - Apply Gauss's law to determine \bar{E} everywhere.

(8 points)

(4 points)

c- A point charge 5 nC is located at (-3, 4, 0) while line y = 1, z = 1 carries uniform charge 2 nC/m. If V = 0V at the origin (0, 0, 0), find V at A (5, 0, 1). (8 points)

GOOD LUCK