May - 2015 Final Exam Time: 1 Hour, Mar Quality matter: This exam. measures ILOs a1 & a4, a5, a8, b2 & b3, ,b4 & b5.

2nd Year Architect. Eng. Course: Air Conditioning Part Time: 1 Hour, Marks: 30

conditioned space

cond.

space

conditioned space

15m

Try the following questions.

Psychrometric chart with student is allowed

Question no. 1 (5 points).

Define the following:

Coefficient of performance, Relative humidity – Latent heat – Sensible heat factor – Dew point temperature

Question no. 2 (4 points).

A 8 kg/s of an air stream at 10° C and 50% RH is mixed with 2 kg/s of an air stream at 35°C DBT and 0.014 kg w.v/kg d.a humidity ratio. find the DPT of the mixture.

Duestion no. 3 (6 points).

A 2 kg/s of air stream at 8 °C DBT and 5 °C WBT is heated sensibly up to 24 °C DBT, then a 20 g w.v./s of moisture is added in a humidifying process. Calculate the sensible load and ensible heat factor.

Question no 4 (6 points).

- A 60 cmm of moist air at a 32 °C DBT and 22 °C WBT enters a cooling and a dehumidifying coil. If it is desired that the air leaves the coil at 18 °C DBT and 16 °C WBT, determine the following:
 - a) the effective surface temperature of the coil
 - b) coil bypass factor
 - c) the coil cooling capacity

Question no. 5 (10 points).

The space shown is to be conditioned has the following:

One storey space of height 4 m, west glass area 12 m²

door 2.0mx 1.5 m

At the hour of calculation you have:

heat transmission through glass =45 W/m²

solar heat gain through glass = 460 W/m^2

CLF for solar heat gain 0.7

U for west wall 3.5 W/m². °C and for roof

of 2.5 W/m². °C.

CLTD_{corr} for west wall 13° C, and for roof 17° C.

Outside design conditions: 40 C DBT and 27° C WBT, Inside design conditions 25 °C and 50 % R.H., lighting 25 W/m², CLF = 0.7, Occupancy 25 persons, sensible heat gain per person 75 W and latent heat gain per person 65 W, CLF = 0.6

12m

Ventilation air 12 m³/hr per person and infiltration air 6 m³/min.

Assume any missing data, calculate space cooling load.

Best wishes, Examiners: Prof. Ibrahim .M. Ismail + "The committee"

Noise Oriterion, NO