

Dept. of Electrical Eng. Faculty of Engineering Assiut University 2nd Semester - 2014/2015 Final Exam- May, 2015

All Programs

Course: Electromagnetic Fields (2B)

2nd year - bylaw: 2004

Time: 3 Hours Marks: 50

• This exam measures ILOs no.: a2.1 & b6.3 & c4.1 & c4.2

Important remarks

• No. of pages: 4, No. of questions: 4

• Solve each question in the space that is provided for it.

Smith chart is included. It should be returned with the exam.

 $=10^{-9}/36\pi$ and $\mu_0=4\pi \times 10^{-7}$, $\sigma_{copper}=5.7\times 10^{7}$

swer all the following questions:

Question # 1 (8 points, 3 points for (a), and 5 points for (b)):

(a) What is the frequency band, you think, that is suitable to practically use the regular

waveguides? Why?

Sketch the k- ω diagrams of a parallel-plate waveguide separated by a dielectric slab of bickness b and constitutive parameters μ , ε for TM₁, TM₂, and TM₃ modes. Discuss how b and constitutive parameters affect the diagrams,

whether the same curves apply to TE modes.

mestion # 2 (15 points, 5 points for (a), and 10 points for (b)):

- A standard air-filled S-band rectangular waveguide has dimensions a=7.21 cm, and b=3.4 cm.
- hat mode types can be used to transmit electromagnetic waves having the following avelengths?
- $0 \lambda = 10 \text{ cm}$
- $\lambda = 5$ cm.

- TE₁₀ wave at 10 GHz is the only mode propagating in a brass (σ_b =1.57x10⁷S/m) rectangular aveguide with length a=1.5cm. The guide is filled with nonmagnetic polyethylene of ϵ_r =2.25. Determine,
- Othe guiding phase constant,
- ii)the guide wavelength,
- ii)the guide phase velocity,
- the wave impedance of the guided mode,
- i)the group velocity of the guided mode.

mestion #3 (14 points, 6 points for (a), and 8 points for (b)):

For a dielectric-filled rectangular copper cavity resonator the ϵ_r =2.4 and its dimension is

3.6 cm. The cavity supports only the dominant mode at frequency of 5 GHz.

What is the length l of the cavity.

What is the quality factor of the cavity.

(b)A 6 GHz signal is to be transmitted inside a hollow circular waveguide. Determine the diameter of the waveguide such that its lowest cutoff frequency is 10% below this operating frequency. Is there any other mode can be transmitted in this waveguide?

Note that the roots of Bessel function are: n=0 | n=1 | 2.405 | 3.832 | 5.52 | 7.016 | and for the derivative Bessel function the roots are: n=0 | n=0

3.832 | 1.841 7.016 | 5.331 Question # 4 (13 points, 3 points for (a)m and 10 points for (b)):

- (a)It is found that the attenuation on a 150 Ω distortionless two wire transmission line is 0.01dB/m. The line has an inductance of 0.2 μ H/m.
- (i) Find the resistance, capacitance, and conductance per meter of the line.
- (ii)Determine the percentage to which the amplitude of a voltage travelling wave on this line decreases in 1 km distance from the transmitting end.

- (b)A 100 Ω lossless T.L. The reflection coefficient at the load is $0.6 \perp 60^{\circ}$ and the first voltage maximum is found at 4 m from the load. Calculate using smith chart:
- (i) The load impedance.
- (ii) The reflection coefficient at a distance 10 m from the load.
- (iii) The voltage standing wave ratio, S, on the line.
- (iv) The input impedance at a distance 0.5 km from the load.
- (v) The shortest distance from the load to put a matching short circuited stub.
- (vi)The length of the stub.