University

and a diac. The of Engineering

Electronics II

Final Exam

Beet Eng. Dept.

Jan. 2015

Time Allowed: 3 Hours

Answer All Questions:

mestion 1: (15 points)

Using sketches of ing it and output characteristics, explain how a BJT can be used as an amplifier'

Using sketches, indicate the relationship between input light and collector current of a phototransistor?

For the circuit shown in Fig. Q1-a, assuming \triangleq t R_L=1K Ω , R_B=70K Ω , V_{CC}=10V and 3=100. sketch the output waveform for t \leq In msec if the input voltage is as shown in Fiz. Ol-b'

Fig. Q1-a Fig. Q1-b

fine 2 (10 points)

and amental differences between JFET and BJT?

with motor with motor with motor with motor $I_{DSS} = 2 \text{ mA}$, $V_P = -2.5 \text{ V}$, and $\lambda = 0$. What is the value of V_{GS} =1.2 mA, and the transistor is biased in the saturation region?

different biasing circuits of an n-channel JFET?

pestion 3 (15 points)

*** Isc rematic diagram of an NMOSFET and indicate the parasitic capacitance between terminals?

he relationship between lp, V_{GS} and V_{DS} in a NMOSFET?

The parameters of an n-channel MOSFET are : $V_{TH}=1V$, $\mu_n C_{ox}=36~\mu A/V^2$, and $\lambda=0.015~V^{-1}$. The transition s to be bia ed in the saturation region with $I_{DO} = 2$ mA.

- (WL) ratio such that the transconductance g_m is 3.4 mA/V.
- (11) C lculate ro for this condition.

estion 1 (25 points)

LASCR being used in a flame-detector circuit. Since LASCRs are relatively low-current IA) the LASCR cannot drive the alarm directly. Here the LASCR is used to trigger the high-IAC, which switches power to the alarm.

its)

ngs of the

cuit does

se load can uments.

or can be struments.

- (a) Describe the circuit operation?
- (b) Determine an appropriate value for R1 if the LASCR has $I_H = 10$ mA, $V_{H^-} = 0$ and the TRIAC has an $I_{G(max)}$ rating of 50 mA and minimum Gate turn on = 5 mA, $V_G = 0$.
- (c) Why wo ildn't a photoconductive cell or phototransistor be used instead of the LASCR?

+24V alarm— R₁ LASCR TRIAC

Fig.Q4

1) Gi

#Fa

Co

Th

Tv

2)A:

arma

no lo

At ra

Question 5 (35 points)

(a) In the circuit of Fig. Q5-4the four-layer diode has the following parameters: $V_S = 8 \text{ V}$, $I_S = 0.5 \text{ mA}$, $I_H = 1.5 \text{ mA}$, $V_H = 1 \text{ V}$, The input voltage E_S is changing According to the

 E_S is changing According to the waveform shown. Sketch the waveform of V_D in response to this input.

(b) In Fig. Q5-b the SCR has a holding current of 1 mA and a latching current of 3 mA. How wide must the gate pulse be in order for the SCR to turn" on"? Assume VF = 1V.

(c) Consider the voltage level detector circuit in Fig. Q5-c with the following values: $V_{GG}=25~V,~R_1~k\Omega,~R_2=15~k\Omega$ and $R_{\Lambda}=1K\Omega$. The PUT has $I_S=0.1mA,~I_H=1mA$ and $V_H=4V$, . Assume Vin is values shown. Draw the waveform of voltage across the load R_L .

-----End Of Questions-----