

Dept. of Electrical Engineering
Faculty of Engineering
Assiut University

1st Semester - Final Exam 2014/2015 - January 2015 Course: Numerical Analysis

Code: E226 2nd year Time: 3 Hours Marks: 100

• This exam measures ILOs no.: a.1.1, a.1.2, a.5.1, a.5.2, a.18.1, b.1.1, b.2.1, b.3.1, b.11.1, c.5.1, c.7.1

Important remarks

- No. of questions: 4
- No. of pages: 2
 - Round your answers to four digits after the decimal point

Answer the Following Questions

Question no. 1 (27 points)

A. Let $f(x) = 3sin^2(\pi x/6)$. Construct the divided-difference table based on the nodes $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, and $x_4 = 4$.

Find the Newton polynomial $P_3(x)$, and evaluate this polynomial at x = 1.5. (14 points)

- B. Write a Matlab function to solve the lower-triangular system AX = B by the method of forward substitution. Name the function forsub. (7 points)
- C. Derive the general formula of the secant method.

(6 points)

Question no. 2 (29 points)

A. Given a set of data,

x_k	-1	0	1	2	3
<i>y</i> 'k	3.08	4.44	6.19	8.25	10.48

(i) Find the least-squares curve $f(x) = L/(1 + Ce^{Ax})$, with L = 20

(15 points)

(ii) Apply the $O(h^2)$ centered-difference formula of the derivative to find f''(0).

(3 points)

B. Write a Matlab function to approximate a root of f(x) = 0 using the accelerated Newton-Raphson method. (11 points)

Question no. 3 (25 points)

- A. Use the *recursive Simpson rule* to compute the approximation S(2) for the integral $\int_{1}^{5} dx/x$. Compute the relative error in this case. (12 points)
- Write a Matlab function to approximate the integral $\int_a^b f(x)$ using the recursive Trapezoidal rule. Name the function retrap. (13 points)

1 µF and

ximum and

he following: ltages (2

urrents (2

tive) values of

Question no. 4 (19 points)

A. Find the triangular factorization A = LU for the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 & 4 \\ 2 & 0 & 4 & 3 \\ 4 & 2 & 2 & 1 \\ -3 & 1 & 3 & 2 \end{bmatrix}$$
 (9 points)

- **B.** Let f(x) be a polynomial of degree $\leq N$. Let $P_N(x)$ be the Lagrange polynomial of degree $\leq N$ based on the N+1 nodes $x_0, x_1, ..., x_N$. Show that $f(x) = P_N(x)$ for all x.

 (4 points)
- C. Use the Lagrange polynomial to derive the $O(h^2)$ forward-difference formula for f'(x).

 (6 points)

Best Wishes
Dr. Noha Medhat