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ABSTRACT ARTICLE HISTORY

This study investigates the IEEE 69-bus distribution network with three Received 18 March 2023
wind turbines (WTs) connected at the same buses of three battery energy Accepted 29 August 2023
storage systems (BESSs), with three 20- or 30-outlet electric vehicle charg- KEYWORDS

ing stations (EVCSs) for charging electric vehicles (EVs). The honey badger EVCS; BESS; energy losses;
algorithm (HBA) is adopted to minimize daily energy loss. The HBA deter- distribution networks; wind
mines the best size and position for three WT-BESS buses and three EVCS  turbine generation
buses. The HBA calculates BESS size and operation mode to minimize daily

energy loss. The demand of EVCSs varies throughout the day depending

on the random choice of the number and state of charge of EVs entering

the station. This results in the active and reactive energy losses and utility

input energy decreasing by 63.5%, 60.6% and 59.6%, respectively, and the

minimum voltage increasing from 0.9256 to 0.9839 pu. The network voltage

profile and stability are also improved.

1. Introduction

Both fossil fuels and nuclear reactors, which have adverse environmental effects, are currently used to
generate electric power. The production of greenhouse gases from fossil fuel-based generation is one
of the significant environmental issues currently faced by the world. Although environmentally ben-
eficial, the limited reliability of generation by renewable energy sources (RESs) hinders their broad
usage (Jadhav, More, and Salkuti 2023; Salkuti 2022). Deploying storage devices is one option to com-
pensate for a temporary loss of generation, but the initial cost and lack of longevity are problems. The
use of electric vehicles (EVs) has expanded significantly, and scientists and academics are paying a lot
of attention to this, although most of the global transportation sector relies on conventional energy
sources (Urbina Coronado, Castafidn, and Ahuett-Garza 2018; Moazami Goodarzi and Kazemi 2018;
Eltamaly et al. 2017). In the transportation industry, EVs play a significant part in lowering carbon
dioxide emissions (Salkuti 2021, 2023). EVs are three times more energy efficient and accessible to
drive than internal combustion engine vehicles. They can also minimize exhaust emissions and pol-
lutants. To serve the growing number of EVs more effectively, the infrastructure for charging EV's
must be optimally planned. An efficient planning strategy will lower costs for network operators, and
provide decision makers with information to make the right decisions on increasing the number of
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charging stations available to EV drivers (Zhang et al. 2021). However, the anticipated electric vehi-
cle charging stations (EVCSs) will unavoidably put more strain on the current distribution network
(DN).

To accommodate the growing number of EVs, the infrastructure for charging EVs must be planned
with the utmost care. An efficient planning strategy would save costs for network operators, enable
policymakers to make wise choices and increase the number of charging stations available to EV
drivers. The existing DN would unavoidably experience more strain as a result of the anticipated
EVCSs. Several publications have considered the simultaneous growth of both the DN and EVCSs
(Jafarpour et al. 2022; Fathy and Abdelaziz 2020; Selvan and Swarup 2006). In a study by Hou et al.
(2021), a capacity and location model for charging stations was suggested to consider both user and
grid benefits. The model was solved using a Voronoi diagram and the particle swarm optimization
(PSO) algorithm. The allocation of charging lots was proposed by Fathy and Abdelaziz (2020), using
the competition over resource (COR) algorithm to improve system reliability and minimize the oper-
ation costs. Jafarpour et al. (2022) used Monte Carlo simulation for EV modelling to study the impact
of vehicle-to-grid (V2G) strategies on the operation of the microgrid.

The optimal planning of EVCSs is receiving more attention. A multi-objective planning model
was developed by Zhang et al. (2021) for the optimal allocation of EVCSs in DNs with wind power
penetration. The study tried to minimize the cost of investment and energy losses while maximiz-
ing the total captured traffic flow. A new multi-stage expansion model was proposed, in which EVs
were powered with renewable energy and storage systems. The EV model was based on travel pat-
terns using a stochastic program. Shaaban et al. (2019) proposed a planning algorithm using the
non-dominated sorting genetic algorithm-II (NSGA-II) for placing EVCSs in remote societies. The
distributed generators (DGs) and EVCSs are jointly allocated and sized in the problem to balance the
supply and the combined demand for loads and EVs. A coordinated planning model was proposed

by Shao et al. (2021) for power DNs with fast EVCSs and batteries. The Gurobi/MATLAB  solver with
a probabilistic model for EVs was adopted.

In many studies, the design of EV's discharging at EVCSs has depended on the use of probabilistic
approaches. Ahmad, Khalid, and Panigrahi (2021) implemented a modified chicken swarm optimiza-
tion (CSO) approach to locate the EVCSs in the DN in a way that provides the least amount of power
loss without compromising other constraints. An innovative approach was presented by Alhasnawi et
al. (2022) to position the solar-powered EVCS in the DNs with the lowest installation costs and small-
est losses at different charging levels. The study formulation was considered as a stochastic issue, and
PSO was used to carry it out in MATLAB. However, the power flow between the EVCS and the DN
was not examined. Eid (2022) proposed a revolutionary two-level complete model to position the
charging station with different objective functions.

The ant lion optimizer (ALO) algorithm has been used to size the EVCS and other devices to
match the network system demand (Alsharif et al. 2021). The ALO algorithm minimizes the two
different objectives of supply loss and cost of electricity while obtaining the most from renewables. An
approach was suggested to manage the energy flow in the microgrid. However, the authors considered
the EVCS with constant power demand. In addition to the battery energy storage system (BESS) and
its scheduling, a sustainable approach was suggested by Pal, Bhattacharya, and Chakraborty (2021)
to distribute public fast-charging locations and solar DGs. The EV assignment problem was solved
using integer linear programming. The V2G optimization algorithm was used by Hashim et al. (2021)
to maximize the charging and discharging power of each EV concerning the state of charge (SoC) of
its battery while minimizing fluctuations in demand. The priority-based design principle served as
the foundation for the optimization method. In a similar work (Gampa et al. 2020), fuzzy genetic
optimization algorithm (GOA)-based approaches were developed for the best placement and sizing
of DGs, supercapacitors and EVCSs to feed simultaneously the peak demand of the DN and the EV
demand. The battery models were developed based on lithium-ion battery curves.

A summary of the previous work on the integration of EVCS with DNs is presented in Table 1.
For each work, some details are reported about the solver, and the method of EV integration, with
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Table 1. Comparison of approaches for the integration of electric vehicles (EVs) with distribution systems.

Reference RES BESS EV demand modelling Solver/algorithm Benchmark
(Igbal et al. 2022) X v Markov model MCS Single-bus MG
(Zhang et al. 2021) Wind x  Probabilistic model and SG NAA 25, 54-bus RDS
(Hou et al. 2021) X x  Mathematical model Voronoi diagram, PSO  Planning area
(Fathy and Abdelaziz X x  Mathematical model COR 9,33, 69-bus RDS
2020)
(De Quevedo, Munoz-  Wind, solar v~ Historical data CPLEX 54-bus RDS
Delgado, and
Contreras 2019)
(Shaaban et al. 2019) Solar x  Historical data NSGA-II 38-bus RDS
(Shao et al. 2021) Solar v~ Probabilistic model and queuing theory Gurobi/MATLAB 4 x 14-bus RDS
(Ahmad, Khalid, and Solar X Stochastic approach (60] 33-bus RDS
Panigrahi 2021)
(Zeb et al. 2020) Solar X Stochastic approach PSO, OpenDSS 58-bus RDS
(Alsharif et al. 2021) Wind, solar v*  Constant power ALO 2-bus MG
(Pal, Bhattacharya, and Solar v Mathematical model HHO/GWO 33-bus RDS
Chakraborty 2021)
(Hashim et al. 2021) X X Priority-based scheduling Mathematical modelling Single-bus MG
(Gampa et al. 2020) DG x  Mathematical modelling GOA 51, 69-bus RDS
Proposed Wind v" Random distribution HBA 69-bus RDS

Note: RES = renewable energy source; BESS = battery energy storage system; RDS = radial distribution system;
DG = distributed generator; SG = scenario generation; MCS = Monte Carlo simulation; NAA = natural aggregation
algorithm; PSO = particle swarm optimization; COR = competition over resource; NSGA-Il = non-dominated sorting genetic
algorithm-Il; CSO = chicken swarm optimization; PSO = particle swarm optimization; DSS = distribution system simulator;
ALO = ant lion optimizer; HHO = Harris hawks optimization; GWO = grey wolf optimizer; GOA = genetic optimization
algorithm; HBA = honey badger algorithm.

either BESS and/or any RES, in the considered problem. Most EV demand modelling depends on
mathematical formulations or probabilistic models and the adoption of historical data for modelling
the demand for EVCSs. Most of these modelling methods are very exhaustive, needing various data
sources to extract the behaviour of the EV demand, or are based on very complicated mathematical
equations.

These methods share several characteristics of EV demand modelling, including the random dis-
tribution of EVs in the charging station and the randomness of their SoC at their initial connection to
the charging outlets. This article considers these two characteristics of EVCS demand modelling by
assuming a random number of EV's entering every charging station with a random SoC for every EV.
At the same time, optimal sizing and allocation of the wind turbine (WT) generation with BESS are
obtained by the new metaheuristic optimization honey badger algorithm (HBA). The HBA provides
a robust and fast solution for the optimized problem. This work considers the operation and control
of three EVCSs with the optimal operation of three WT-BESS units. The HBA minimizes the total
energy loss of the DN while considering these load demands and power generations. The number
of EVs per EVCS is assumed to lie between 50% and 100% of the maximum number of EVs to be
charged by the EVCS. The basic contributions of this research can be outlined as follows.

e A new approach is adopted for EV distributions inside the EVCS with random initial SoC for every
EV without using historical data or complicated mathematical modelling.

e Wind turbine generators (WTGs) and BESS units are effectively simulated and sized based on
battery SoC and problem limitations.

e The newly published HBA optimizes the 69-bus DN with three WT-BESS units and three EVCSs
to minimize the total daily energy loss.

e The study covers the stochastic network demand, optimal optimization of the BESS in charg-
ing/discharging modes and the EVCS variable demand during 24 h.
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2. Objectives, constraints and adopted algorithm

The governing equations for the objective function and problem constraints of the adopted algorithm
are explored in this section. The study’s main objective is to minimize the daily energy loss of the DN
being supported by WT power generation and loaded with an uncertain load of EVCSs, and variable
demand throughout the day. The DN has three fixed EVCSs with a random number of EVs, and the
EV stays connected in charging mode until its SoC reaches 100%. Every EVCS works independently
of the other stations; consequently, the total EV demand is random. The three WT power generators
are fixed in positions, and their output powers are assumed to follow a specific power profile decided
by the WT data sheet.

The three BESS units are located on the same buses where the WT units are installed. The size of
each BESS is optimized by the HBA according to the operating conditions over the 24 h of the day. A
time step of 15 min is adopted in this study, which is believed to be suitable for the nature of WT and
BESS operations. Besides the objective function, other performance parameters are recorded during
the simulation phase.

2.1. Objective function

When a DG, such as a WT power generator or a BESS, is connected to a DN, the network performance
is improved in terms of lower power losses, higher stability or an increasing voltage profile. In this
study, the objective is to reduce the daily energy losses of the IEEE 69-bus network. Decreasing the
network losses will, in turn, increase the bus voltages and stability. The power loss of any branch of
the DN is calculated from (Eid et al. 2022):

Pg, = I3, % Ry (1)
where Py, is the branch loss; Ry, is the branch resistance per phase; and I, is the magnitude of the

branch current per phase. The total of branch losses, Prss, is the summation of all individual branch
losses:

Ny
PLass = Z Pch,i (2)
i=1

where N, is the number of branches of the DN. Energy loss during successive time steps is estimated
from the trapezoidal rule, as:

Prossi + Prossi
EAt,i — Af X ( Loss,i +2 Loss,H—l) (3)
At = (tiy1 — tj) = 15min (4)

where Ppo.i, Pross,i+1 are the total losses at the time steps of t;, tiy1. The total energy loss per day
(ErLoss) is calculated as the summation of all energies of each time step:

Nis

Eross = ZEAt,i (5)
i=1

where Nj; is the total time steps (96 steps of 15 min) over the hours of the day. The objective function
for minimizing the total energy loss is expressed as:

fobj = min(Erss) (6)
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2.2. Performance parameters

Some indicative parameters are derived and recorded to thoroughly assess the performance of the DN
while optimizing the size of WT'Gs and BESSs as well as the EV demand. These indicators represent
the active/reactive power losses during the day to determine periods of small and large losses, total
voltage deviations during the day showing the deviations of the absolute per-unit voltages from unity,
and the extreme voltages during the day.

The extreme voltage values for the considered period are collected from the matching data for each
time step of the calculation:

Vi = min(Vy,;),i =1 N )
Ve = max(V},,),i = 1: N ()
where VG, and V$ . are the daily minimum and maximum voltage values calculated from V? ; and

VI"naX at the ith time step; and N is the number of simulation steps ( = 96). The same definition
applies to the worst total voltage deviation (TVD) of the day:

TVDS = max(TVD! ),i=1:Ng 9)

max max

where the TVD is calculated at any time step as:
Ng
TVD=Z||Vi|—1| (10)
i=1

where Np is the network buses; and V; is the ith bus voltage. The stability index (SI) is calculated as
(Eid et al. 2020):
SI =1— [2(PiRyi + QiXii) — ViI* — 487 Z; (11)

where P;, Q; and P; are the active, reactive and apparent power at the ith receiving end of any branch
connected between k, i buses; Ry;, Xk; and Zj; are the branch resistance, reactance and impedance;
and Vj is the voltage at sending bus k.

2.3. Problem constraints

This subsection explores the constraints imposed on the problem to reduce the objective of the DN
when integrated with WT power generation and EVCS variable demand. The number of charging
EVs in every EVCS lies between the extreme limits:

N chg
2

< Ngy =< Nchg (12)

where N, and Ngy are the number of EV charging outlets inside every EVCS and the number of
charging EVs, respectively.

Integrating RES or EVCS demand should not violate the allowable voltage limits (0.95-1.05 pu). If
the voltage at any iteration lies outside the specified limits, the HBA will bypass it. Hence, the voltage
must satisfy

Vmin = Vi = Vmax (13)

where V; is the voltage, which lies between the minimum acceptable voltage Vinin and the maximum
value of Vinax.

The BESS units work in either charging or discharging mode, depending on the network’s status
and their SoC. When the BESS works in charging mode, it is considered a load demand imposed on
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the DN, while in discharging mode, it will deliver power to the DN. In both cases, the BESS power
should be within preset levels:

— PRI < Pppos(t) < PR (14)
where P?ggngggsP?ggngggs and Ppgss are the BESS minimum, maximum, and power at any time (¢)
during the simulation. In charging/discharging mode, the SoC should be within limits:

SoCis < SoCppss(t) < SoCERxs (15)

where Socg‘};lgs and SoCgjigs are the allowable extremes of SoC of the BESS units.

The size of the WT power generation is taken from the optimal allocation of WT units, with the
base case of the DN without EVCS demand. At any time, the power injected into the DN does not
exceed the demand of the network.

3 3
> Pwri+ Y Psssi < Pp (16)
i=1 i=1

where Py, is the WT power generation of the ith unit; Pggss,; is the BESS power of the ith unit; and
Py is the base network demand. At any iterative step, the load flow equations are satisfied at any bus
of the DN:

Ng

P; :Zvi\/jyijcos(eij—5,-—5]-),1':2;1\73 (17)
j=1
Ng

Q; :Zvivjy,jsm(eij—5,-—3]-),1':2:1\73 (18)
j=1

where P; and Q; are the injected real and reactive powers at bus i; Vj, V; are the voltage magnitudes
at buses i, j; §;, §; are their respective angles; and Yj; is the branch admittance and its angle 6;;.

2.4. Honey badger algorithm

The HBA is a new metaheuristic optimization algorithm (Hashim et al. 2022). The deriving equations,
limitations and uses of the algorithm are explored in Hashim ef al. (2022). The HBA is adopted in
this study to optimize a DN supported with WT-BESS and loaded with EVCS units.

3. Method of analysis

This section presents the mathematical modelling of the main components used in the study,
including the EVCS, WT and BESS.

3.1. EVCS modelling

The random number of EV's entering a charging station at a time, ¢, is given as:

. Nchg .
Ngv,; = randi T,Nchg ,i=1:3 (19)

where Ny ; is the number of charging EV's at the ith EVCS; Ny, is the maximum number of EV charg-
ing outlets of each station; and randi is a pseudo-random integer from a uniform discrete distribution.
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The SoC of the kth EV is assumed to be random:
SoC = SoCin + (S0Cax — S0Cpin) X rand(Ngy,i),k =1:Ngjpi=1:3 (20)

where S0Cpin and SoCpay are the extreme SoC values of the EV’s battery; rand is a random function;
and N ; is the total number of EVs charging at the ith station. The successive SoC for every EV is
calculated based on the constant power demand of the vehicle of 25 kW. Thus, for every time step At
of 15 min, the SoC increases by:

Pry x At
ASoC = —2Y 2 =2 (21)
Neon X CEv

where Pgy is the rated power (kW) of the EV battery; Cgy is the capacity (kWh) of the EV battery;
At is the time step of 0.25h ( = 15 min); and 7.,y is the efficiency of the battery converter. The SoC
of every EV battery at any time step is calculated as:

SoC(t) = SoC(t — At) + ASoC (22)

The EV is assumed to charge under a constant power condition of 25 kW. Consequently, the change
in SoC is constant; hence, the SoC of EV batteries increases linearly with time until it reaches total
capacity, and also decreases linearly. When the EV is charging, it is considered as a load of 25 kW,
whereas when the SoC reaches 100%, it is regarded as zero power demand. In this case, the total
demand for the EVCS is calculated as the sum of power values of all charging EVs in this charging
station, as:

Nst
Peyes = ZPk (23)
k=1

The three stations are then added to the DN demand at their respective buses, and the DN is solved
by the forward-backward sweep method (FBSM).

The integration of the EVCS into DNs depends on the availability of space and cable routes around
a certain bus bar. Other technical points include the effect of the EVCS demand on the operation of
the DN. It is known that the EVCS is a load added to the total demand of the DN that may increase the
losses if it is not correctly connected at an optimal place. In this study, the HBA finds the best sites for
the three EVCSs at buses 28, 36 and 47, such that the lowest possible loss is achieved after integrating
them into the 69-bus DN. The worst case of connecting EVs to all station outlets is assumed while
determining the optimal locations of the EVCSs.

3.2. WT modelling

The power of a WT is primarily affected by three factors: the wind speed distribution of the site, the
hub height of the wind tower and the power output characteristic curve of the WT. The cube of wind
speed, v, determines the WT generated power (Nadjemi ef al. 2017):

Pwr =0.5x% p x A x Cy(B,A) x v (24)
A =wr X R,/v (25)

The WT generated power at any time is given by:

0, V(t) (veiorv(t)) veo
Pwr(t) = { Pwr X % Vei < v(t) < vr (26)
Pwr v S V(1) < Veo

where v, v, and v, represent predefined speed values; and Py is the generated power at rated speed.
Ifv < v or v > v, the WT will turn off.
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3.3. BESS modelling

To transform the direct current (DC) electricity from a BESS into alternating current (AC), a con-
verter is required. The converter may run in all possible quadrants. As a result, the BESS can be viewed
as either a load that consumes power during charging or a source that supplies power during discharg-
ing. When coupled to WT modules, the BESS converts the previously non-dispatchable WT into a
dispatchable source. The BESS energy at bus k is stated in discharging mode (Ppgss(t) < 0) (Chen,
Gooi, and Wang 2012; Kucevic et al. 2020) as:

ERpog(t) = Efpos(t — 1) — At x PER. . x g (27)

where E’E‘;ESS is the energy at the kth bus; Pg}sts is the corresponding BESS discharging power; 14 is
the efficiency; and At is the time step. For charging mode (Ppgss(t) > 0), the energy stored is (Chen,
Gooi, and Wang 2012):

EXpog(t) = Ekpos(t — 1) — At x PESo x 1 (28)

where PE’ECSS is the corresponding BESS charging power; and 7, is charging efficiency. However, the
energy stored at the kth bus lies between certain limits:

k,mi k k,
Egpes < Eppss(t) < Egpes (29)

In this work, 20% and 85% are taken as the limits (Chen, Gooi, and Wang 2012). The SoC of the
battery at the kth bus is calculated as (Nadjemi et al. 2017; Radosavljevi¢ 2021):

SoCk(t + 1) = SoCk(t) + ASoCF (30)
—PBES&EAS; “1d | Pppss < 0
ASOCk =30, PBESS =0 (31)
P, X At
Camsswne>  Poess >0

where Ppgss is the BESS power; Atis 0.25h ( = 15 min); and Cggss is the BESS rated capacity (kWh).

4, Simulations

The 69-bus radial DN (Rastgou, Moshtagh, and Bahramara 2018), as shown in Figure 1, is used as
a test network provided with the studied renewables. The three BESSs are optimally allocated at bus
numbers 11, 18 and 61, with variable sizes determined every time step At of 15min by the HBA
according to the load profile and the EVCS load. Moreover, the HBA optimally locates the EVCSs on
buses 28, 36 and 47. The three optimal WT locations are the same as those of the BESS, to enable small
cable connections and easy maintenance. A BESS enables utility providers to gather extra electricity
generated from renewable sources and store it for periods when the utility needs it. The number of
EVs charging simultaneously is random, between half and the total number of outlets. The EV fleet is
assumed to enter the EVCS every 4 h as the average time needed to charge the vehicle. Thus, the total
load of the EV's is random. The study includes the optimal operation of the network with renewables
and BESSs during the 24 h of the day. Two case studies are considered here, according to the maximum
number of charging outlets available in the EVCS:

e case study I: 20 EV chargers/station
e case study II: 30 EV chargers/station.

The 69-bus DN is simulated in both case studies with the installed WT and BESS resources. The
WT energy is extracted from the daily wind profile shown in Figure 2. At the same time, the HBA
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Figure 1. Single-line diagram of the 69-bus system with wind turbine, battery energy storage system and electric vehicle charging
station units.

optimizes the BESS to work in charging or discharging modes depending on the operating conditions,
network constraints and daily load curve (DLC), as shown in Figure 2.

The details of the proposed method to control the EVCS with renewable energies are shown in the
flowchart of Figure 3. The locations of the EVCS and WT are found by the HBA to reduce the total
network losses. Before entering the main loop, the required data and daily profiles of the WT and
demand are collected. Moreover, each EVCS is assumed to have a random number of EV's charging
at the start of the simulation, with random SoC. In the inner loop, the HBA optimizes the BESS sizes
to minimize the network’s losses. The FBSM load flow solves the DN while satisfying the network
and problem constraints with every iteration. The process repeats 100 times, the maximum allowable
number of iterations. When vehicles reach the maximum charging time of 4 h, a new fleet of EVs is
allowed to enter the stations. The new fleet of every EVCS has a random number of EV's, with random
SoCs. The old fleet left the EVCS with an SoC of 100%. The process repeats every 4 h until the whole
day has ended. When the SoC of any EV reaches 100%, it is assumed to be disconnected from its
outlet. As seen in Figure 4, every 4 h a new group of EVs joins the EVCS.

4.1. Casestudy|

In this case study, the EVCS has 20 EV charging outlets available in the station for possible connec-
tions. Thus, the total number of available chargers for the three stations is 60. The EV works only in
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Figure 2. Profiles of wind power and system load. DLC = daily load curve.

grid-to-vehicle (G2V) mode; it is a load added to the system demand. In contrast, the three WTGs
with the BESS units are optimized to provide minimum daily energy losses. The WTGs are located
and sized by the HBA while satisfying the network constraints. At every EVCS, a random number of
EVs charges for 4 h according to their initial SoC. The random number of EV's per station lies between
10 and 20. The number of EVs in each station varies between each run of the code. The EV charges
at a constant power of 25 kW. The performance parameters of the system, including the active and
reactive power losses, TVD and SI, are recorded during the simulation period of 24 h. The number of
charging vehicles and their load are also outlined. For a selected run and given operating conditions,
the random charging EVs in every EVCS are listed in Table 2 according to the time period during the
day. The EV charges fully in 4 h; hence, every 4 h, all EVCSs are refreshed with new EV sets. Accord-
ing to its initial SoC, the EV remains in the EVCS until it reaches an SoC of 100%. When the SoC
reaches 100%, the EV leaves the station.

The total load of the three EVCSs depends on the number of EV's connected to the charging outlets
in every station. As the connected EVs are random, the total load per station varies, as shown in Figure
5. In the first period (0.0 < t < 4.0) of the day, 12 EVs will enter EVCS; and start charging with a
total power of 300 kW, considering 25 kW/EV; 11 EVs start charging with a total demand of 275 kW
in EVCS,, and 16 EVs start charging in EVCS3 with a total demand of 400 kW. According to their
random initial SoC, these EV's will share the demand until reaching their entire SoC. The EV charges
with constant power mode, and whenever the SoC of an EV reaches 100%, the EV leaves the station.
Thus, the demand for EVCSs decreases with time, and by the end of the first period, all EVs are fully
charged. In the second period (4.0 < t < 8.0) of the day, a new set of EVs enters the three EVCSs, and
starts charging. The process repeats every 4 h. The corresponding SoC statuses of all EVs in EVCS;,
EVCS, and EVCS; are shown in Figure 6. Radar charts are used to show the density distribution of
EVs during every period of the day. The randomness of the EVs per period and from station to station
can be seen upon close inspection of the figure.

The HBA optimizes the three BESS units to minimize the network energy loss by minimizing the
network loss in every simulation step. When the network demand increases as a result of EV charging
or changes in the network demand, the BESS units discharge to cover the excess demand. In this case,
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Figure 3. Flowchart of the proposed solution. EVCS = electric vehicle charging station; WT = wind turbine; HBA = honey bad-
ger algorithm; SoC = state of charge; EV = electric vehicle; BESS = battery energy storage system; FBSM = forward-backward
sweep method.

the SoC of the BESS unit decreases according to the discharged power. In contrast, the SoC of the
BESS increases when it charges with light load conditions. As the network load varies with variable
EVload, the SoC of the BESS unit is expected to vary, as shown in Figure 7. The BESS units are located
on the same buses as the WTs to take advantage of shorter connection cables and to provide an easy
charging tool when the network demand is low. The maximum WT power is almost the same at buses
11 and 18, while at bus 61, a higher WT is installed. The considerable WTG power at bus 61 charges
BESS3; most of the time. When the SoC reaches the lower or upper limit of 0.2 or 0.85, respectively,
the BESS stops the discharging/charging process.
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Figure 6. State of charge (SoC) of electric vehicles in the three electric vehicle charging stations (EVCSs) for case study I.

Table 2. Number of charging electric vehicles per station for case studies | and Il.

EVCS EVCS, EVCS3
Period Casel Case ll Casel Caselll Casell Caselll
00<t<40 12 20 1 21 16 19
40 <t <380 1 18 17 15 12 27
80 <t< 120 16 17 10 16 13 30
120 <t < 16.0 16 19 11 19 16 15
16.0 <t < 200 17 24 10 19 11 15
200 <t < 240 12 20 14 21 19 26

Note: EVCS = electric vehicle charging station.

The charging/discharging power of the three BESS units is shown in Figure 8. A positive BESS
power means charging status with increasing SoC (positive slope), while with negative power, the
BESS discharges with decreasing SoC (negative slope). When the SoC remains at the upper limit of
0.85 or the lower limit of 0.2, the BESS is in the idle state, or no power exchange takes place. The per-
formance parameters of the DN during the 24 h simulation were recorded and are shown in Figure 9.
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Figure 7. State of charge (SoC) of three battery energy storage system (BESS) units for case study |.

The parameters include the active and reactive losses, the TVD and SI, and the minimum/maximum
voltage magnitude. The performance parameters vary with the operating conditions of the DN, and
the minimum/maximum voltage values are within the voltage constraints.

4.2. Casestudyll

In this case study, the EVCS has 30 EV charging outlets available in every station for possible connec-
tions. The total number of possible chargers for the three stations is 90. As in the previous case, the
EV works only in G2V mode, being a load added to the network demand, while the HBA optimizes
the three WTGs with the BESS units to provide minimum daily energy losses. At every EVCS, a ran-
dom number of EVs charges for 4 h according to their initial SoC. The random number of EVs per
station lies between 15 and 30, and each charges at a constant power of 25 kW. The indicator param-
eters, including the active and reactive power losses, TVD and SI, are recorded during the simulation
period of 24 h.

The total demand of the EVCS depends on the number of connected EV's during any period of
operation. During the first period of the day (0.0 < ¢ < 4.0), 20, 21 and 19 EVs are connected to
EVCS;, EVCS, and EVCS;3, respectively, as listed in Table 2. In other periods, different numbers of
EVs are connected to the EVCSs. Consequently, the EVCS demand for every station randomly varies
during the day, as shown in Figure 10. The EVCSs start with 500, 525 and 475 kW demand, and with
time, these EV's stay connected until they reach an SoC of 100%. The EV charging duration depends
on its initial SoC. Every 4 h, the EVs are changed, and new sets are connected to the three stations with
different initial SoC values. This process repeats during the six periods of the day. The corresponding
SoC statuses of all EVs in EVCS;, EVCS; and EVCS3 are shown in Figure 11. Radar charts are adopted
to show the density distribution of EVs during the six periods of charging per day. The randomness
of the EVs can be seen upon careful inspection of the figure. The EV density during the six periods
varies, as not all charging outlets are connected to EVs.

Asin case study I, the HBA optimizes the three BESS units to reduce network energy loss by reduc-
ing network loss at every stage of the simulation. The BESS units discharge to meet the extra demand
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Figure 8. Power of three battery energy storage system (BESS) units for case study I.

when the demand of the network rises as a result of EV charging or a change in network demand. In
this instance, the SoC of the BESS unit drops in line with the power drained, and conversely, the SoC
rises when the BESS charges under low load conditions. The SoC of the BESS unit is anticipated to
fluctuate as the network load varies along with the variation in EV load, as shown in Figure 12. Figure
13 shows the charging/discharging power of the three BESS units. Positive BESS power indicates a
charging status with a rising SoC (positive slope), whereas negative power indicates a discharging sta-
tus with a falling SoC (negative slope). The BESS is idle when there is no power exchange, i.e. when
the SoC exceeds the upper limit of 0.85 or is less than the lower limit of 0.2.

The performance metrics of the DN throughout the 24 h simulation were noted and are displayed
in Figure 14. The parameters include both active and reactive losses, the TVD and SI, and mini-
mum/maximum voltage magnitudes. The minimum/maximum voltage values are within the voltage
limits, and the performance parameters change depending on how the DN is running.

4.3. Comparison of network performance for case studies I and Il

The calculated energy losses for the two case studies, along with the other performance parameters,
are listed in Table 3. The daily energy loss for the second case study is higher than that for the first
case, because of the excess number of EVs per EVCS. Consequently, more power is required from
the utility; thus, the utility input energy is more significant for case study II. The energy losses, utility
input energy, TVD and SI are decreased compared to the base case, as shown in Table 3. The active
energy loss decreases by 63.5% and 61.1% for case studies I and II, while the corresponding reactive
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Figure 9. Performance parameters of the distribution system for case study |. TVD = total voltage deviation; SI = stability index.

energy loss decreases by 60.6% and 60.2%, respectively, as shown in Figure 15. The input energy of
the utility decreases by 59.6% and 53.0% for case studies I and II. Moreover, both TVD and SI also
decrease, by 75.4% and 75.8% and 76.3% and 76.8%, for case studies I and II, respectively. Further-
more, the minimum voltage improves from 0.9256 pu to 0.9839 and 0.9841 pu for case studies I and
I1, respectively.

Figure 16 shows the power exchanges from BESS3;, EVCS3, Py3 and utility power (P,) for case
study I. When the BESS and EVCS are charging in the first 2 h, the utility needs to supply more
power, especially with low wind power. In the period from 02:00 to 08:00 h, the BESS is in an idle
state and the wind power has a prominent peak, so less utility power is needed. In the wind power
valley, from 08:00 to 15:00 h, the utility supplies more power to support the load and EVCS, even
with discharging of the BESS. In the last period, from 15:00 to 24:00 h, the wind power peaks, and
hence the utility power is accordingly decreased while satisfying EVCS and BESS charging powers
and network demand. Figure 17 shows the power exchanges from BESSs3, EVCS3, Py3 and P, for
case study II. Similar behaviour to that in case study I is recorded. The utility power responds to the
changes in power of BESS, EVCS and wind power.
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Figure 10. Total demand for the three electric vehicle charging stations (EVCSs) for case study Il.

Table 3. Energy losses and utility energy of the distribution system for case studies I and II.

Base case + EVCS/WT/BESS

Parameter Base case Case study | Case study Il
Active energy loss (kWh/day) 3732.278 1363.97 1451.54
Reactive energy loss (kVar/day) 1697.127 668.92 675.41
Utility input energy (kWh/day) 79,802.70 32,234.35 37,527.96
Average TVD 1.5077 0.3714 0.3648
Average S| 0.2653 0.0628 0.0616
Average of Viyin 0.9256 0.9839 0.9841
Average of Viax 1.0000 1.0032 1.0044

Note: EVCS = electric vehicle charging station; WT = wind turbine; BESS = battery
energy storage system; TVD = total voltage deviation; SI = stability index.

4.4. Performance comparison of HBA with other algorithms

Using different metaheuristic optimization algorithms, the 69-bus DN is simulated and optimized
to minimize the power loss under the same problem constraints and definitions. The optimization
problem includes the optimal siting and sizing of three WT units. The HBA is compared to other
algorithms, such as artificial ecosystem-based optimization (AEO) (Zhao, Wang, and Zhang 2020),
marine predators algorithm (MPA) (Faramarzi ef al. 2020) and PSO. All algorithms simulate the
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Figure 11. State of charge (SoC) of electric vehicles in the three electric vehicle charging stations (EVCSs) for case study |I.

network, and the objective function is stored for further analysis. For comparison purposes, in all
algorithms, the number of maximum iterations is fixed at 100, and the number of particles is also
fixed at 100. The objective functions of all algorithms are plotted in Figure 18. Figure 18 demon-
strates the superiority of the HBA compared to the other algorithms, in terms of speed and accuracy.
The HBA reaches the steady-state value in a lower number of iterations compared to the other
algorithms.

Owing to the stochastic behaviour of metaheuristic algorithms, the outputs of which can change
from one run to another, the above problem is solved 30 times using each algorithm. The statistical
results are listed in Table 4. The results show the HBA achieved the lowest minimum output and
standard deviation. The box-plot visualization of the algorithms is shown in Figure 19. The HBA has
lower outliers and better characteristics compared to the other algorithms.

A simulation case study is performed for contingency analysis, when the WT and BESS units are
unavailable. In this case, the network has three EVCSs. The utility has to support the total demand of
the network load and losses and the EV load during the 24 h of operation. The whole load of the three
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Figure 13. Power of three battery energy storage system (BESS) units for case study II.
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Figure 14. Performance parameters of the distribution system for case study Il. TVD = total voltage deviation; SI = stability index.

Table 4. Performance comparison of the honey badger algorithm (HBA) with other algorithms.

Parameter HBA AEO ASO GTO MPA MRFO PSO
Min 69.395 69.400 69.469 69.753 69.401 69.395 69.661
Max 69.595 71.025 72.712 74.023 70.136 71.395 74.440
Mean 69.413 69.665 70.342 70.940 69.562 69.633 70.266
Median 69.395 69.411 70.201 70.451 69.417 69.395 70.127
Std 0.0457 0.5010 0.7542 1.1391 0.2227 0.4890 0.9453
Var 0.0021 0.2510 0.5689 1.2975 0.0496 0.2391 0.8935

Note: AEO = artificial ecosystem-based optimization; ASO = Atom Search Optimization; GTO = Gorilla Troop Optimizer;
MPA = marine predators algorithm; MRFO = Manta ray foraging optimization; PSO = particle swarm optimization.

EVCSs, network demand and utility power variations are shown in Figure 20. The utility supports the
total demand instantaneously. The HBA applied a new constraint in this case study: the input feeder
current cannot exceed the predefined value of 400 A. It is satisfying that the recorded maximum utility
current is 292 A.
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exchanges for case study I.
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Figure 17. Battery energy storage system (BESS3), electric vehicle charging station (EVCS3), Pwsz and utility power (P,) power
exchanges for case study II.
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Figure 20. Variation of utility power (P,) with demand and total load of electric vehicle charging stations (EVCSs) when wind and
battery energy storage system powers are unavailable.
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5. Conclusions

The characteristics of the EV demand modelling used in this study include the random distribution
of EVs and the randomness of their SoC upon initial connection to the charging outlets. To take into
account these two features of EV, a random number of EVs is assumed to visit each charging station,
with a random SoC for each EV. The 69-bus DN, combined with WTGs and BESS units, is optimized
by the cutting-edge metaheuristic HBA. The HBA provides an efficient and dependable solution to
the issue being optimized. The best performance of the three WT-BESS units is taken into account
when operating and controlling the three EVCSs. The proposed approach helps in achieving optimal
operation of the DN with the three EVCSs during the hours of the day, while the WT and BESS
units are effectively optimized. The active and reactive energy losses are decreased to 1364 kWh and
669 kVarh compared to the base case of 3732 kWh and 1697 kVarh, respectively, for case study I, and
with slightly higher values for case study II. Moreover, the parameters of utility input energy, SI and
TVD are also reduced, and the voltage profile is improved.
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