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Abstract: The study focuses on addressing the growing concern of noise pollution resulting from
increased transportation. Effective strategies are necessary to mitigate the impact of noise pollution.
The study utilizes noise regression models to estimate road-traffic-induced noise pollution. However,
the availability and reliability of such models can be limited. To enhance the accuracy of predictions,
optimization techniques are employed. A dataset encompassing various landscape configurations
is generated, and three regression models (regression tree, support vector machines, and Gaussian
process regression) are constructed for noise-pollution prediction. Optimization is performed by fine-
tuning hyperparameters for each model. Performance measures such as mean square error (MSE),
root mean square error (RMSE), and coefficient of determination (R2) are utilized to determine the
optimal hyperparameter values. The results demonstrate that the optimization process significantly
improves the models’ performance. The optimized Gaussian process regression model exhibits the
highest prediction accuracy, with an MSE of 0.19, RMSE of 0.04, and R2 reaching 1. However, this
model is comparatively slower in terms of computation speed. The study provides valuable insights
for developing effective solutions and action plans to mitigate the adverse effects of noise pollution.

Keywords: regression models; fine trees; support vector machine; gaussian process regression; noise
pollution; optimization; prediction

1. Introduction

The increasing demand for trips and transportation has resulted in significant chal-
lenges in terms of traffic congestion and safety, which can have a negative impact on
economic growth and quality of life [1]. To address these issues and provide a better trans-
portation experience for citizens, accurate data about traffic noise is critical for the effective
management of traffic, as well as for the overall health and well-being of communities.
With accurate and up-to-date information about traffic-noise levels, cities and urban areas
can develop more efficient transportation systems and create better living environments
for their citizens [1].

Noise pollution, particularly from road traffic, is a widespread and complex issue in
urban environments. According to De Coensel, Brown, and Tomerini [2], the frequency,
duration, and intensity of noise events from road traffic can contribute to noise annoyance
levels. It is, therefore, critical to consider road traffic as a source of noise pollution and
to implement measures to reduce its impact [3,4]. The negative effects of noise pollution
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on physical health [5], well-being [6], and even mortality [7], are widely recognized. Ex-
cessive noise exposure at home, school, work, and other settings can disrupt concurrent
activities and performance and may also have long-term effects on human health and
development [8].

Developing effective traffic-control strategies to reduce the impact of road traffic on the
community requires comprehensive and accurate road-traffic state data, while evaluating
the noise pollution caused by road traffic is crucial to assess the environmental quality of
urban areas and the well-being of their residents [1]. Accurate measurement and analysis
of noise events can inform the development of effective noise-reduction strategies, such
as noise barriers, traffic-management techniques, and regulation of vehicle emissions [1].
These efforts can lead to a variety of benefits, including improved quality of life for residents,
reduced stress and health problems, and a more sustainable urban environment.

Urban noise levels have been classified according to traffic composition for environ-
mental noise assessment [9]. Using expert systems and artificial intelligence (AI), the study
demonstrated the potential of AI applications in assessing noise-pollution problems and
gathering information for more informed action against urban traffic noise. According
to Botteldooren et al. [10], instead of finding an accurate and precise prediction, noise-
prediction models should identify a fuzzy set of possibilities. To calculate predictions more
specific for small groups of individuals, a few typical rules were derived from empirical
knowledge. The novel noise-effect-modeling approach was tested in practice and used as
an advisor for noise-nuisance management and to test hypotheses such as noise sensitivity
and urbanization in social science.

Several studies have used an artificial neural network to estimate noise levels based
on road-traffic inputs. Fallah-Shorshani et al. [11] evaluated the performance of common
traffic-noise models in Long Beach, California. The authors assessed the accuracy of the sta-
tistical land-use regression model, the extreme gradient-boosting machine-learning model
(XGB), and a commercial noise model (CadnaA) by comparing their predictions to actual
noise data. Their results indicated that XGB and CadnaA were the top-performing models,
providing the most accurate traffic-noise estimates. The optimization of these models, along-
side the validation against recorded data, highlights their potential as reliable approaches
for traffic-noise prediction and management. According to Adulaimi et al. [12], random
forests (RF) outperformed land-use regression (LUR) in noise estimation. Yin et al. [13]
conducted a comparative analysis of various machine-learning algorithms for estimating
noise, including linear regression and XGB. Based on their findings, they concluded that
XGB outperformed the other algorithms in terms of precision. This underscores the poten-
tial of XGB as a reliable approach to noise estimation, particularly in contexts where high
precision is critical.

Nourani, Gökçekuş, and Umar [14] conducted a study to improve the accuracy of
predicting vehicular-traffic noise in Nicosia, North Cyprus, using artificial intelligence.
By classifying the number of vehicles, the AI models performed better, with up to 29%
improvement, by identifying the most relevant input parameters. The nonlinear ANFIS
ensemble performed the best, with improvements of 11%, 19%, 21%, and 31% for the
ANFIS, FFNN, SVR, and MLR models, respectively. The study proposed a method for
predicting noise pollution in urban areas by combining feature selection and machine-
learning regression techniques, resulting in an R2 of 0.94 and a MAE of 1.14 to 1.16 dBA by
using WFS for feature selection and either SMO or GPR for regression.

Givargis and Karimi [15] proposed a neural-network model to forecast the hourly
noise levels on roads in Tehran that are located within four meters of the edge. Data were
collected from 50 sample sites near five roads in Tehran, selected from the UK calculation
of road-traffic-noise method. A non-parametric test was used to assess the effectiveness
of the model after splitting the data into a training set, a testing set, and a validation set.
The results revealed that the neural-network approach was statistically valid for predicting
traffic noise in Tehran. Xu et al. In [16] developed a novel deep-learning framework for
estimating road-traffic state using graph embedding (GE) for detector selection and GAN
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for traffic-data generation. The comparison of the GE-GAN model with other models (KNN,
BP, Deeptrend2.0, BGCP, and LSTM) demonstrated that the GE-GAN model outperformed
the other models.

The current study explores the impact of various factors such as speed limits, presence
of heavy vehicles, time of day, type of landscape barriers, road materials, and distance from
the road to the receiver point on traffic noise in various urban configurations. By leveraging
the power of machine learning, the study aims to predict the effect of traffic-noise pollution
on a public park in the city of Buraydah.

To achieve this goal, a unique dataset was generated specifically for the study to
predict the impact of traffic noise on the park. The study compared the results of three
machine-learning algorithms for their accuracy in predicting traffic noise: fine tree, sup-
port vector machines (SVM), and Gaussian process regression (GPR). The models were
optimized by fine-tuning various parameters to determine the optimal algorithm for traffic-
noise prediction.

The main contributions of this study are:

• The dataset generated in this study was specifically designed to predict noise-pollution
levels in public parks. The researchers collected data on various landscape configura-
tions within the parks, such as the presence of trees, water bodies, and built structures.
These data were then used to predict the levels of noise pollution in the parks. The
generated dataset is a valuable resource for future studies as it provides a compre-
hensive and diverse representation of public-park landscapes and the associated
noise-pollution levels;

• The hyperparameters in a machine-learning model are parameters that are set before
training the model. They influence the learning process and can greatly affect the
model’s performance. In this study, the researchers investigated different hyperpa-
rameter options to optimize the prediction models for noise pollution in public parks.
This means that they tried various combinations of hyperparameters to determine
which set of parameters produced the best results. By exploring different hyperpa-
rameter options, the researchers aimed to improve the accuracy of the noise-pollution
predictions and to identify the optimal set of hyperparameters for this problem;

• Optimized and non-optimized regression models for predicting noise pollution in
public parks. Regression is a type of machine-learning algorithm that is used to predict
numerical values. The non-optimized regression models were developed without ad-
justing the hyperparameters, while the optimized regression models were developed
by adjusting the hyperparameters using the findings from the different hyperparame-
ter options explored earlier in the study. The comparison of the performance of the
optimized and non-optimized regression models provided valuable insights into the
impact of hyperparameter tuning on the accuracy of the noise-pollution predictions.

The rest of this paper is structured in the following manner. In Section 2, the experi-
mental work and the process of generating the dataset are explained in detail. Section 3
presents the experimental results and conducts a comparison of the performance of the
regression models. In Section 4, the main findings are discussed, and Section 5 provides a
conclusion to the paper.

2. Method

The purpose of this section is to outline the method used to collect the data and set
the configurations needed to train and test the prediction models. This will involve the
generation of the dataset, as well as the fine-tuning of the model parameters, to ensure the
models are equipped with the information they need to accurately predict traffic noise.

2.1. Experimental Setup

For this study, the experimental work was carried out utilizing the deep-learning
toolbox available in MATLAB R2020a. All experiments were performed on a computer
system equipped with a GPU (NVIDIA GeForce RTX 2060 8 GB). The usage of a GPU allows
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for accelerated computations and efficient training of deep-learning models, enabling faster
experimentation and analysis. The traffic-noise prediction model proposed in this study is
based on the adaptations of existing simulation models used in previous research such as
that presented by De Can et al. [17] and De Coensel et al. [2,18]. The road traffic is modeled
in a microscopic manner, taking into account each individual vehicle’s movements. This
approach allows for a full-scale simulation of road traffic, taking into consideration various
factors such as the road network, properties of the vehicle fleet, landscape configuration,
and aggregated traffic-demand data. The simulation provides a continuous stream of
data on the position, speed, and acceleration of each vehicle, offering a comprehensive
representation of road traffic.

2.2. Dataset Description

During this case study, simulations were conducted in order to examine the impact
of accounting for realistic power distributions for vehicle noise on estimates of measures
that characterize sound events. To achieve this goal, receiver points are set up along a con-
ventional straight road which is considered a usual configuration in the city. A simulation
network containing a single road segment with a length of 1300 m was constructed using
the IMMI traffic-simulation software [19].

Several factors were taken into account when simulating the road traffic, including
distance from the street to the receiver points, time of day (day and night), presence of
landscape barriers (such as trees and walls), road-finishing surfaces, number of vehicles
per hour, speed limit, and the ratio of heavy vehicles (as shown in Table 1). These factors
were included as features in the study to accurately reflect the real-life traffic conditions.

Table 1. Features observed in this study.

Features Values Number of
Observations

Target
Variable

Distance 15, 30, 45, 60, 75, 90 (m)

6480 Noise

Time Day, Night

Landscape None, Tree, Wall

Road surface Asphaltic concrete,
Uneven surface

Vehicles/h 10, 20, 40, 50, 100, 200,
400, 500, 1000, 2000

Speed limit 60, 80, 100, 120, 140 (km/h)

Percentage of
heavy vehicles 5, 10, 20 (%)

For this study, the data must be statistically significant. Therefore, 18 receiver points
were installed along three different roads to represent all the design features. A series of
6480 scenarios were generated by varying the above-mentioned variables, as shown in
Figure 1a–c. ISO 9613-2 models are used to calculate vehicle-noise-emissions spectra for all
simulation scenarios.
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Figure 1. An illustration of the abstracted road layout and features values for the case study sim-
ulations: (a) receiver points without any barriers, (b) receiver points with trees (landscape), and
(c) receiver points with walls (landscape).

Following that, the level of noise was measured by a PCE-322A (the device is from PCE
Instruments U.K. Ltd., Southampton, UK, calibrated by Anaum International Electronics
LLC, Abu Dhabi, United Arab Emirates, and compatible with standard IEC61672-1 CLASS2)
at various distances away from the edge of the road, specifically at 15 m, 30 m, 45 m, 60 m,
75 m, and 90 m. The noise levels are also measured at a height of 1.5 m from the ground,
at receiver points located along the perpendicular bisector of the simulated road segment.
These measurements are taken to provide a comprehensive understanding of the noise
levels and their distribution in the area surrounding the road.

2.3. The Regression Models

As discussed previously, the aim of this study is to forecast the noise-pollution levels
caused by road traffic by taking into account various predictors, such as the distance from
the road to the receiver points, the time of day, the type of landscape barriers, the material
of the road surface, the number of vehicles per hour, the speed limit, and the percentage of
heavy vehicles. To accomplish this goal, the study employs and compares the results of
three different regression models: fine tree, support vector machine (SVM), and Gaussian
process regression (GPR).

In order to improve the performance of the models, optimization is utilized to optimize
certain hyperparameters of each model. The goal of optimizing the regression models
is to discover the optimal combination of hyperparameters. This involves minimizing
a specific function called the objective function. Bayesian optimization is a technique
that models the relationship between hyperparameters and the objective function using
probabilistic models. It starts by selecting a set of hyperparameters and their corresponding
objective function values. The algorithm uses an acquisition function to determine the next
hyperparameter combination to evaluate. This iterative process continues, refining the
surrogate model and selecting new hyperparameter combinations based on the acquisition
function, until the optimal combination is found [20]. The optimized models and the
corresponding hyperparameters are summarized in Table 2 and are discussed in detail in
this section.



Sustainability 2023, 15, 10020 6 of 18

Table 2. The different hyperparameter options of the regression models.

Model Type Hyper-
Parameter

Without
Optimization

With Optimization
(Range of

Parameters’ Values)

Fine tree Minimum leaf size 4 1–3240

SVM

Kernel function Linear Gaussian, Linear, Quadratic, Cubic

Kernel scale Automatic 0.001–1000

Box constraint Automatic 0.001–1000

Epsilon Automatic 0.012042–1204.2254

Standardize data True True, False

GPR

Basis function Constant Constant, Zero, Linear

Kernel function Rational Quadratic

Nonisotropic Rational Quadratic

Isotropic Rational Quadratic

Nonisotropic Squared Exponential

Isotropic Squared Exponential

Nonisotropic Matérn 5/2

Isotropic Matérn 5/2

Nonisotropic Matérn 3/2

Isotropic Matérn 3/2

Nonisotropic Exponential

Isotropic Exponential

Kernel scale Automatic 1.99–1990

Sigma Automatic 0.0001–113.9076

Standardize True True, False

a. Fine Trees

Regression trees are known for their ease of interpretation, speed in fitting and pre-
dicting, and low memory requirements. In this study, the fine tree model is chosen to
avoid overfitting, which can occur when the model is too complex and contains too many
branches and leaves. The fine tree model is smaller in size and contains a greater number of
small leaves, with a leaf size of 4, which provides a balance between accuracy and flexibility
in the response function. Overly complex trees tend to overfit the data and produce low
validation accuracy.

To control the size of the tree, the only hyperparameter that needs to be adjusted in this
model is the minimum leaf size. In order to calculate the leaf node response, a minimum
number of training samples must be provided at each leaf node so that this parameter can
be set accordingly. The larger the minimum leaf size, the smaller the tree, which can reduce
the risk of overfitting. On the other hand, a smaller minimum leaf size leads to a more
complex tree, which may result in overfitting and lower validation accuracy.

b. Support Vector Machines

Support vector machine (SVM) analysis is a popular machine-learning tool for clas-
sification and regression, first identified by Vapnik [21]. SVM regression is considered a
nonparametric technique because it relies on kernel functions. There are five hyperparame-
ter options, as explained below.

• Kernel function. The SVM’s training involves applying a nonlinear transformation to
the data, and the choice of this transformation is determined by the kernel function.
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Four kernel options were optimized: Gaussian kernel, linear kernel, quadratic kernel,
and cubic kernel;

• Box-constraint mode. Models regulate observations with large residuals according
to the box-constraint parameter. The model becomes more flexible with a higher
box-constraint value, while it becomes more rigid with a lower value, and is less prone
to overfitting. The choice of box constraint is a trade-off between model flexibility and
simplicity, and the optimal value depends on the specific dataset and learning task;

• Epsilon mode. The epsilon (ε) value is a parameter that determines the minimum
prediction error that will be considered non-zero in the epsilon mode. Any estimation
errors that are smaller than the ε value will be neglected and considered zero. By
setting a smaller epsilon value, the model becomes more flexible, as it can more
accurately capture smaller deviations from the predicted values. However, a smaller
epsilon value can also lead to overfitting, as the model may start to fit the noise in the
data instead of the underlying trend;

• Kernel scale mode. A more flexible model is achieved with a smaller kernel scale, as it
allows the kernel to capture more intricate relationships between predictor variables.
A smoother model, on the other hand, is obtained with a larger kernel scale, which
determines the distance between predictor variables where the kernel varies significantly;

• Standardized data. Predictor variables can be transformed using standardization, a
technique that ensures they have a mean of 0 and a standard deviation of 1. Conse-
quently, the dependence on arbitrary scales in the predictors is removed, and, generally,
performance is improved. The effect of each variable is not distorted by differences in
their scales, and all variables are given equal importance in the model. Standardization
can also be useful when variables have different units or magnitudes.

c. Gaussian Process Regression Models

GPR models are nonparametric kernel-based probabilistic models. There are five
hyperparameter options, as explained below.

• Basis function. Gaussian process regression models are characterized by their prior
mean function based on the form of the basis function. It can take one of three options:
zero, constant, and linear;

• Kernel function. The kernel function is responsible for measuring the correlation
between the response and predictor values based on the distance between them. There
are five kernel function options available: rational quadratic, squared exponential,
Matérn 5/2, Matérn 3/2, and exponential. For three of these functions, the isotropic
kernel can be used, where all predictors have the same correlation-length scale. Alter-
natively, a nonisotropic kernel can be used, where each predictor variable has its own
unique correlation-length scale. A nonisotropic kernel can improve the accuracy of a
model, but the fitting process can be slower as a result;

• Sigma mode. The term “sigma mode” pertains to the standard deviation of the
observation noise in a model. The app typically tries to optimize this parameter
by beginning with a particular value. To use a fixed value instead, the user can
uncheck the “optimize numeric parameters” option in the advanced settings. The
app chooses the initial value of the standard deviation of the observation noise using
a heuristic procedure when sigma mode is set to automatic. This occurs in the non-
optimized model;

• Kernel scale and standardize data. Same as in the SVM.

It is valuable to mention that when a hyperparameter is set to automatic, as it is the
case in the non-optimized models, the heuristic procedure is then used to select its value.

2.4. Model Evaluation

This study seeks to assess the accuracy of the proposed noise-pollution prediction
models through the use of validation techniques. Cross-validation is employed to prevent
overfitting and to estimate the models’ performance on new data. The five-fold cross-
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validation method is used, where the data are divided into five subsets and the model is
trained and tested on each of the five subsets. The average of the test errors is then used to
calculate the overall error of the model.

To measure the performance of the models, three performance metrics are used: mean
square error (MSE), root mean square error (RMSE), and the coefficient of determination
(R2). These metrics provide a comprehensive evaluation of the models’ accuracy and
help in determining the best model among the three models: fine tree, SVM, and GPR.
Furthermore, these three measures have been widely utilized in related studies, enabling
us to compare our results with state-of-the-art research.

The MSE is the mean squared difference between actual and estimated variables and
as calculated as follows:

MSE =

(
1
n

)
×

n

∑
i=1

[pi − yi]
2 (1)

RMSE is another measure that is used when there is a large difference between actual
and estimated variables and is calculated as follows:

RMSE =

√(
1
n

)
×

n

∑
i=1

[pi − yi]
2 (2)

R2 quantifies the percentage of variation in the dependent variable that can be ex-
plained by the independent variables used in the model. The following equation shows
how R2 is computed:

R2 = 1 − SSE
SST

= 1 − ∑n
i=1(yi − pi)

2

∑n
i=1(yi − y)2 (3)

where yi identifies the actual value for sample i, pi identifies the estimated value for sample
i, y indicates the mean of the estimated values, n is the sample size, SST indicates the total
sum of the square, and SSE indicates the residual sum of squares.

3. Results and Analysis

The results of the models’ predictions for noise pollution are summarized in Table 3,
which includes the evaluation of the mean square error (MSE), root mean square error
(RMSE), and coefficient of determination (R2) for the different models. The models were
tested before and after optimization, taking into account the prediction speed, training
time, and the three afore-mentioned evaluation metrics.

Table 3. Prediction results of the regression models for noise pollution.

Model
Type RMSE R2 MSE

Prediction Speed
(obs/s) *

Training Time

Sec Min

Non-optimizable
models

Model 1 Fine tree 1.59 0.98 2.52 130,000 3.15 0.05

Model 2 SVM 3.84 0.89 14.78 53,000 7.19 0.12

Model 3 GPR 1.41 0.98 1.98 8100 429.11 7.15

Optimizable
models

Model 4 Fine tree 1.57 0.98 2.48 420,000 21.20 0.35

Model 5 SVM 1.65 0.98 2.74 260,000 1206.60 20.11

Model 6 GPR 0.19 1.00 0.04 4100 8373.70 139.56

* The prediction speed is measured by the number of observations processed per second.

The comparison between the non-optimized and optimized models in terms of predic-
tion accuracy is shown in the table. The non-optimized GPR model was found to be the
best performer among the non-optimized models, with an RMSE of 1.41, R2 of 0.98, and
MSE of 1.98. However, this model took the longest time to train, almost seven times longer
than that of the other two models. The optimized version of the GPR model displayed even
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better performance, achieving an RMSE of 0.19, R2 of 1.00, and MSE of 0.04. Although the
training time of the optimized GPR model was the longest among all models, it was still
worth the effort due to its exceptional performance. The training time of the optimized
GPR model was approximately 140 min.

Table 4 presents the results of the hyperparameter tuning process for the optimized
regression models. The table shows the best hyperparameter values that were found to
give the highest accuracy in predictions.

Table 4. Best values of the hyperparameters for the regression models.

Model
Type

Hyper-
Parameter

With Optimization

Range Optimal Value

Fine tree Minimum leaf size 1–3240 3

SVM

Kernel function Gaussian, Linear, Quadratic, Cubic Gaussian

Kernel scale 0.001–1000 78.5289

Box constraint 0.001–1000 588.2126

Epsilon 0.012042–1204.2254 1.9145

Standardize data True, False False

GPR

Basis function Constant, Zero, Linear Zero

Kernel function

Nonisotropic Rational Quadratic

Nonisotropic Matérn 3/2

Isotropic Rational Quadratic

Nonisotropic Squared Exponential

Isotropic Squared Exponential

Nonisotropic Matérn 5/2

Isotropic Matérn 5/2

Nonisotropic Matérn 3/2

Isotropic Matérn 3/2

Nonisotropic Exponential

Isotropic Exponential

Kernel scale 1.99–1990 43.0096

Sigma 0.0001–113.9076 0.42787

Standardize True, False False

The fine tree model’s optimal leaf size was found to be 3, which was the best for this
model. The SVM model was optimized with a Gaussian kernel function, and the best
values for the kernel scale, box constraint, and epsilon were found to be 78.5289, 588.2126,
and 1.9145, respectively. On the other hand, the GPR model displayed the best results with
a nonisotropic Matérn 3/2 kernel function, and the optimal values for the kernel scale and
sigma were 43.0096 and 0.42787, respectively. These values were crucial in ensuring the
highest accuracy in the prediction of noise pollution.

The noise prediction results of non-optimized and optimized regression models are
additionally demonstrated through several of plots. The response plot (Figure 2) displays
the predicted response for the validation observations and helps to assess the models’
ability to predict the noise pollution. As shown in Figure 2, the optimized GPR model
(model 6) exhibited the highest level of accuracy, as evidenced by the close agreement
between the predicted response values and the true values. Throughout the entire dataset,
there was a significant overlap between the true and predicted samples, indicating the
optimized GPR model’s high accuracy in predicting noise pollution.
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On the other hand, the residual plot (Figure 3) shows the difference between the esti-
mated and actual responses, which is an important measure of the model’s performance. By
observing the residuals, one can determine whether or not the model is making consistent
predictions. As shown in Figure 3, the optimizable GPR (model 6) performed the best
among all models, as indicated by the residuals being scattered symmetrically around 0.
In contrast, the non-optimized SVM model (model 2) performed the worst, with residuals
not displaying a clear pattern and their size changing significantly from left to right. The
non-optimized fine tree model (model 1) and the optimized fine tree model (model 4) also
displayed poor performance, with residuals not showing a clear pattern.



Sustainability 2023, 15, 10020 11 of 18
Sustainability 2023, 15, x FOR PEER REVIEW 11 of 17 
 

 

Figure 3. Residuals’ plots of the non-optimized and optimized regression models. 

Lastly, the predicted versus actual response plot (Figure 4) compares the predicted 
response with the actual response and allows one to see how well the models fit the data. 
These plots provide a comprehensive evaluation of the model’s performances and are cru-
cial in understanding the results of the study. As seen in Figure 4, the optimized GPR 
model (model 6) shows the best linear fit, with the points closely intersecting the diagonal 
line. This implies that the model has trained effectively, with the points scattered roughly 
symmetrically around the line. Other models, except model 2, also demonstrate good re-
gression in predicting the noise variable.  

Figure 3. Residuals’ plots of the non-optimized and optimized regression models.

Lastly, the predicted versus actual response plot (Figure 4) compares the predicted
response with the actual response and allows one to see how well the models fit the data.
These plots provide a comprehensive evaluation of the model’s performances and are
crucial in understanding the results of the study. As seen in Figure 4, the optimized GPR
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model (model 6) shows the best linear fit, with the points closely intersecting the diagonal
line. This implies that the model has trained effectively, with the points scattered roughly
symmetrically around the line. Other models, except model 2, also demonstrate good
regression in predicting the noise variable.
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4. Discussion of Major Findings

Given the results outlined in the preceding section, we can conclude the following:
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1. Optimizing regression models improves noise-pollution prediction accuracy: In the
study, optimization was performed on three regression models: regression trees,
support vector machines, and Gaussian process regression. The objective was to
determine the optimal values of hyper parameters for each model that would enhance
their prediction performance. The optimization process significantly improved the ac-
curacy of the noise-pollution predictions. This was confirmed by the improvement in
performance measures such as MSE, RMSE, and R2. The optimization process allowed
the models to better capture the underlying relationships between the predictors and
the response, resulting in more accurate predictions of noise-pollution levels;

2. Optimized Gaussian process regression (GPR) model emerges as best performer: The
results of the optimization process showed that the optimized GPR model emerged as
the best performer among the three regression models. The optimized GPR model
demonstrated the highest level of accuracy in terms of the performance measures,
MSE, RMSE, and R2. It was able to effectively capture the relationships between
the predictors and the response, resulting in highly accurate predictions of noise-
pollution levels. The optimized GPR model outperformed the other models and
emerged as the best model for predicting noise pollution. Despite being slower in
terms of computation speed compared to the other models, its superior prediction
accuracy makes it an ideal choice for use in addressing the problem of noise pollution;

3. The optimization of the Gaussian process regression (GPR) model was performed
by determining the optimal values of the hyperparameters. The hyperparameters
are parameters that control the shape of the regression function and, therefore, have
a significant impact on the accuracy of the predictions. The optimization process
involved searching for the optimal values of these parameters that would lead to
the best performance of the model. The optimal values of the hyperparameters were
found to be: a basis function of zero, a nonisotropic Matérn 3/2 kernel function, a
kernel scale of 43.0096, and a sigma parameter of 0.42787. These values were crucial
in ensuring the optimal performance of the GPR model for noise-pollution prediction.
The GPR model with these hyperparameters delivered highly accurate predictions,
outperforming other regression models. The optimization process improved the
accuracy of the noise-pollution predictions and allowed for the creation of an effective
solution for mitigating the impact of noise pollution in open area nearby main roads.

To further evaluate the effectiveness of the optimized Gaussian process regression
(GPR) model, we presented box plots of the predictors and the response in Figure 5. The
figure indicates that the model was able to achieve very accurate predictions of the noise
variable for all given predictors. This suggests that the optimized GPR model is highly
effective in predicting noise pollution and is capable of accurately capturing the relationship
between the predictors and the response.

The features were further investigated using the best-performing model to assess
their importance in predicting noise pollution. Figure 6 illustrates the results of predictor-
importance analysis. The landscape emerges as the most influential predictor, followed
closely by the number of vehicles per hour. The distance to the noise source also holds a
certain level of significance. In contrast, the time of day, day and night classification, and
the percentage of heavy vehicles are considered the least important predictors.
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A final note on evaluating the best-performing model is that the performance of the
best-performing model, the optimized Gaussian process regression (GPR), was compared
to the results of previous studies. Table 5 provides a summary of the performance measures
for the noise variables in these studies. To ensure a fair comparison, the prediction models
used in these studies were also included. The results revealed that the model with the
highest performance outperformed the state-of-the-art models in terms of the performance
measures. The RMSE and MSE are metrics used to evaluate the performance of a regression
model by quantifying the error rate. A lower value for these measures indicates a better
model fit. In this case, the optimized GPR model outperforms the state-of-the-art models as
evidenced by the RMSE value of 0.04 and MSE value of 0.19. These values indicate that the
error-rate measures are at their lowest, further reinforcing the superiority of the proposed
model over existing models.

Table 5. The best-performing models in contrast to prior research.

Reference Prediction
Model MSE RMSE R2

[1] Deep-Learning Media Filter
Preprocessing (DLM8L) 7.7 - 0.85

[22] Artificial Neural Networks (ANN) - 1.91 0.33
[11] eXtreme Gradient Boosting (XGB) 0.65 - -
[23] Fuzzy Deep-Learning (FDCN) - 0.30 -

[24]
Spatio-Temporal Convolutional

Network
(LA-ResNet)

- 4.5 -

[25] Gaussian Process Regression (GPR) 0.21 0.36 0.58

This study
Optimizable Gaussian Process

Regression (GPR)—The
best-performed model

0.19 0.04 1.00
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On the other hand, the coefficient of determination (R2) represents the proportion of
the dependent variable’s variation that can be predicted from the independent variable(s).
The value of 1 signifies a perfect fit of the regression predictions to the data. The optimized
GPR model achieves an R2 value of 1, which is the highest among the existing models.
This further emphasizes the superiority of the model over the state-of-the-art models. This
demonstrates the effectiveness of the optimized GPR model in predicting noise pollution,
and highlights its superiority over the other models.

5. Conclusions

The increase in transportation activities has led to a rise in noise-pollution levels
and safety concerns, particularly caused by traffic roads. To address this issue, this study
aimed to estimate noise pollution caused by road traffic using various regression models
(regression trees, support vector machines, and Gaussian process regression). To improve
the accuracy of these models, the authors applied optimization techniques to the models
and determined the optimal values of the hyperparameters using performance measures
such as MSE, RMSE, and R2. The results showed that optimization significantly improved
the performance of the models, with the optimized Gaussian process regression (GPR)
model being the most accurate, delivering predictions with MSE of 0.19, RMSE of 0.04, and
R2 of 1. Although the optimized GPR model was slower than the other models, it was
still deemed the best performer due to its high accuracy. This study provides important
insights into reducing noise pollution caused by road traffic and highlights the importance
of hyperparameter optimization in improving prediction accuracy. The three key outcomes
of the study were: (1) the optimization of regression models resulted in a significant
improvement in noise-pollution prediction accuracy, (2) the optimized GPR model emerged
as the best performer, delivering highly accurate predictions, and (3) the optimal values of
the hyperparameters that were used to optimize the GPR model were found to be: a basis
function of zero, a nonisotropic Matérn 3/2 kernel function, a kernel scale of 43.0096, and a
sigma parameter of 0.42787, which were crucial in ensuring the optimal performance of the
GPR model for noise-pollution prediction. These outcomes can serve as a guide for future
experiments in the domain of noise pollution and similar fields.
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Abbreviations

GPR Gaussian process regression
MAE Mean absolute error
ML Machine learning
MSE Mean square error
R2 R squared—coefficient of determination
RMSE Root means square error
SVM Support vector machine
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