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Abstract: Table detection in document images is a challenging problem due to diverse
layouts, irregular structures, and embedded graphical elements. In this study, we present
HTTD (Hierarchical Transformer for Table Detection), a cutting-edge model that combines
a Swin-L Transformer backbone with advanced Transformer-based mechanisms to achieve
superior performance. HTTD addresses three key challenges: handling diverse document
layouts, including historical and modern structures; improving computational efficiency
and training convergence; and demonstrating adaptability to non-standard tasks like
medical imaging and receipt key detection. Evaluated on benchmark datasets, HTTD
achieves state-of-the-art results, with precision rates of 96.98% on ICDAR-2019 cTDaR,
96.43% on TNCR, and 93.14% on TabRecSet. These results validate its effectiveness and
efficiency, paving the way for advanced document analysis and data digitization tasks.

Keywords: table detection; vision transformer; document processing; multiscale feature
extraction; deformable attention; document image analysis

MSC: 68T07

1. Introduction

Tables serve as a fundamental method for organizing and visualizing multidimen-
sional relationships within data, making them indispensable across domains such as
business, science, and government. While digital tables facilitate efficient data analysis
and processing, the persistence of paper-based tables in scenarios requiring reliability
and security, such as handwritten signatures, poses significant challenges. Converting
table images or scanned documents into machine-readable formats requires preserving the
semantic relationships and structural integrity of the original data. However, this task is
complicated by the diversity in table layouts, varying element sizes, changing background
colors, fonts, and borders [1,2].

In recent years, the task of detecting and analyzing tabular data in digital documents
has garnered substantial interest within the computer vision and document analysis com-
munities. Tables are a ubiquitous method of data presentation, widely used across diverse
fields such as academia, business, and healthcare due to their efficiency in organizing
and displaying information. Automatically detecting and extracting tables from digital
documents not only aids in data digitization but also facilitates the downstream tasks of
data analysis and machine learning model training [3-5].
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Deep learning, a pivotal component of machine learning, is increasingly applied across
various industries. In computer vision, it excels at tasks such as object detection, image
classification, video analysis, and software engineering [6,7]. In Natural Language Process-
ing (NLP), deep learning contributes to question answering and sentence similarity [8,9],
as well as recognizing handwritten text in multiple languages [10,11]. The finance sector
leverages deep learning for fraud detection, trading, and risk management. In gaming, it
enhances decision-making, customer segmentation [12,13], and personalized recommenda-
tions. These examples underscore the expanding role of deep learning across diverse fields,
highlighting its vast potential for future advancements [14].

Traditional approaches to table detection primarily relied on handcrafted features
and heuristic methods that exploited the geometric and textual cues present in tables.
While effective to a degree, these methods often struggled with the diversity of table
formats and complex layouts seen in real-world documents. The advent of deep learning
has significantly transformed this landscape, offering robust alternatives that leverage
convolutional neural networks (CNNs) to capture spatial hierarchies and features directly
from data. However, despite their effectiveness, CNN-based methods are predominantly
local in their receptive fields and may not adequately capture the long-range dependencies
crucial for recognizing tables, which are inherently structured and spatially diverse objects.

Transformers in Images [15-19] have recently demonstrated remarkable success in
natural image understanding tasks, including classification, detection, and segmentation.
Whether pre-trained in a supervised manner on ImageNet or through self-supervised learn-
ing, these models have achieved performance that is comparable to and often surpasses,
that of CNN-based pre-trained models with a similar number of parameters.

The advent of Vision Transformers (ViTs) has transformed image processing by lever-
aging the self-attention mechanism to model global relationships within an image, making
them highly effective for tasks like table detection. Unlike convolution-based methods, ViTs
process images as sequences of tokens (patches), enabling them to dynamically focus on
relevant regions while capturing complex layouts and structures. Their scalability, ability
to generalize across diverse data, and superior performance over CNNs in object detection
make ViTs particularly suited for detecting tables embedded in graphical elements or with
irregular layouts, where traditional approaches often struggle.

In contrast to traditional object detection algorithms, DETR [20] introduces a trans-
formative approach using Transformer-based architecture. By eliminating the need for
handcrafted components, DETR matches the performance of well-optimized classical de-
tectors. DETR treats object detection as a set prediction problem, utilizing bipartite graph
matching for label assignment and learnable queries to identify objects.

Although DETR introduces an innovative approach to object detection, it encounters
challenges such as slow training convergence and ambiguous query interpretability. To over-
come these limitations, several enhancements have been proposed, including deformable
attention mechanisms [21] and the decoupling of positional and content information [22].
Recent developments, such as DN-DETR [23] and DAB-DETR [24], further advance the
framework by redefining queries as dynamic anchor boxes and incorporating denois-
ing techniques to improve the stability of bipartite matching. These advancements have
markedly improved DETR-like models, making them competitive with classical detectors
in both training efficiency and inference performance.

Building on these advances, Hierarchical Transformer for Table Detection (HTTD)
introduces a transformative approach to table detection by combining a hierarchical vision
backbone with advanced Transformer-based mechanisms. Our model comprises a back-
bone, a multilayer Transformer encoder, a multilayer Transformer decoder, and multiple
prediction heads. Similar to DAB-DETR, the decoder queries are formulated as dynamic
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anchor boxes and refined iteratively across decoder layers. Following DN-DETR, ground-
truth (GT) labels and boxes with added noise are introduced into the Transformer decoder
layers during training to stabilize bipartite matching. Additionally, deformable attention is
incorporated for computational efficiency. We use three methods to enhance performance.
Contrastive denoising improves one-to-one matching by adding both positive and negative
samples derived from the same ground truth simultaneously. By applying different noise
levels to the same ground-truth box, the box with smaller noise is labeled positive, while the
other is negative. This contrastive approach helps the model avoid duplicate predictions for
the same target. Mixed query selection bridges DETR-like models and classical two-stage
models by optimizing query initialization. Initial anchor boxes are selected as positional
queries from the encoder outputs while the content queries remain learnable, allowing the
first decoder layer to focus on spatial priors. The look-forward-twice scheme leverages re-
fined box information from later layers for optimizing adjacent earlier layers. This method
updates parameters using gradients informed by later-layer refinements, ensuring more
robust optimization.

Although significant progress has been made in table detection, several key challenges
remain in the field: (1) Traditional methods often struggle with the vast diversity in table
formats, particularly in complex documents such as legal texts or scientific papers. This
limitation reduces their applicability across varied document types. (2) Existing approaches
frequently fail to handle complex table structures or degraded document images, leading
to inaccuracies in detection and recognition. This is particularly problematic for historical
or scanned documents with quality issues. (3) Many current models do not fully utilize the
combination of visual and textual cues present in documents, which is crucial for precise
table detection and structure recognition.

To address these gaps, this paper introduces the Hierarchical Transformer for Ta-
ble Detection (HTTD), which incorporates several innovative features: (1) HITD lever-
ages a hierarchical vision backbone to capture features at multiple scales, enabling ro-
bust handling of diverse table layouts, ranging from simple to highly complex structures.
(2) Techniques such as contrastive denoising and the look-forward-twice scheme enhance
detection accuracy and stabilize the model during training, particularly in challenging
scenarios involving complex or degraded tables. (3) By incorporating both visual and
textual information through Transformer-based mechanisms, HTTD improves the detection
and recognition of tables, even in documents with intricate layouts or varying quality.

By addressing these limitations, HTTD offers a robust and generalizable solution
capable of handling diverse and real-world document scenarios, thereby advancing the
state of the art in table detection. The contributions of this paper include the following:

* Proposing a novel Transformer-based architecture, HTTD, to address table de-
tection challenges in both historical and modern documents with diverse and
irregular layouts.

¢ Introducing innovative techniques such as contrastive denoising, mixed query selec-
tion, and look-forward-twice refinement, which enhance detection accuracy, improve
training speed, and stabilize the model during convergence.

¢ Demonstrating the generalizability of HTTD through experiments on non-standard
table types and other detection tasks, such as breast cancer detection and receipt key
detection, highlighting its potential for diverse applications.

¢  Providing comprehensive experimental results, including ablation studies and com-
parisons with state-of-the-art methods, to validate the effectiveness and efficiency of
the HTTD model.

The remainder of this paper is structured as follows. Section 2 reviews related work,
discussing heuristic, machine learning-based, and deep learning-based approaches to table
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detection, highlighting their limitations, and situating our proposed HTTD model within
state-of-the-art research. Section 3 describes the HTTD methodology, detailing its architec-
ture, the use of Swin Transformers for hierarchical feature extraction, and innovations like
contrastive denoising, mixed query selection, and look-forward-twice refinement. Section 4
outlines the experimental setup, datasets, and evaluation metrics, presenting quantitative
results and ablation studies to validate the contributions of HTTD. Section 5 discusses
the findings, providing qualitative examples, addressing the challenges of irregular table
layouts, and highlighting HTTD’s strengths and limitations. Finally, Section 6 concludes
this paper by summarizing key contributions and proposing future research directions, in-
cluding table structure recognition and semi-supervised learning for broader applicability.

2. Related Work

Table detection has been a subject of research for an extensive period. Researchers
have employed various approaches, which can be broadly categorized into heuristic-based
methods, machine learning-based methods, and deep learning-based methods.

With the emergence of deep learning (DL), advanced object detection algorithms,
and the availability of publicly accessible datasets, the development of fully data-driven
approaches has significantly increased. A Gilani et al. [25] were among the first to propose a
DL-based approach for table detection using Faster R-CNN [26]. In their method, document
images are initially pre-processed before being passed through a Region Proposal Network
(RPN) for table detection followed by a fully connected neural network for classification.
Their approach demonstrates high precision across a variety of document images, including
documents, research papers, and periodicals, accommodating diverse layouts. Then D
Prasad et al. [5] presented an innovative method for automatic table detection in document
images, tackling the dual challenges of table detection and table structure recognition. This
method employs a unified convolutional neural network (CNN) model to deliver a com-
prehensive deep learning-based end-to-end solution for both tasks. The proposed model,
CascadeTabNet, utilizes a Cascade mask Region-based CNN High-Resolution Network
(Cascade mask R-CNN HRNet) to concurrently identify table regions and recognize the
structural cells within those tables.

After that, A. Samari et al. [27] developed an innovative approach for detecting tables
in digitized historical prints, addressing challenges posed by varied table characteristics
and their visual similarity to other elements. The study introduced the NAS dataset,
enhancing the diversity of evaluation. The method employed the Gabor filter for dataset
preparation and Faster-RCNN for detection, effectively overcoming the limitations of
labeled data through weakly supervised bounding box extraction and pseudo-labeling,
thereby improving model generalization. Furthermore, M Agarwal et al. [28] introduced
the Composite Deformable Cascade Network (CDeC-Net), an advanced deep learning
framework for detecting tables in document images. This network enhances Mask R-CNN
by incorporating a dual backbone structure with deformable convolutional layers, allowing
for effective handling of tables across various scales and improving detection accuracy at
higher Intersection over Union (IoU) thresholds. The model was rigorously evaluated on
multiple benchmark datasets. Furthermore, X Zheng et al. [29] introduced the Global Table
Extractor (GTE), a method for jointly detecting tables and recognizing cell structures that
can be implemented on any object detection model. To enhance their table network using
cell placement predictions, the authors developed GTE-Table, which introduces a new
penalty based on the inherent cell confinement limitations of tables. Additionally, a novel
hierarchical cell identification network, GTE-Cell, leverages table styles. To efficiently and
cost-effectively build a large corpus of training and test data, the authors devised a method
to automatically classify table and cell structures in existing texts.
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In 2022, D.D. Nguyen [30] introduced TableSegNet, a fully convolutional network
designed to simultaneously separate and detect tables with a streamlined architecture.
TableSegNet utilizes a shallower path to pinpoint table locations at high resolution and a
deeper path to detect table regions at low resolution, subsequently dividing these regions
into individual tables. Throughout the feature extraction process, TableSegNet employs
convolutional blocks with large kernel sizes and incorporates an additional table-border
class in the main output to enhance detection and separation capabilities. Furthermore,
J Lietal. [31] proposed DiT, a self-supervised pre-trained Document Image Transformer
model designed for Document Al tasks such as classification, layout analysis, table de-
tection, and OCR text detection. By using large-scale unlabeled document images and
a Masked Image Modeling (MIM) strategy, DiT eliminates the need for human-labeled
data and achieves state-of-the-art results across multiple benchmarks. The model signif-
icantly improves performance in key tasks and provides a strong, adaptable backbone
for various Document Al applications, addressing the lack of large-scale labeled datasets
in the field. Furthermore, M. Haloi et al. [32] addressed the limitations of existing table
detection benchmarks by introducing a comprehensive, large-scale dataset comprising over
seven thousand samples with diverse table structures from various sources. The study
employed convolutional neural network-based methods, demonstrating their superiority
over traditional computer vision techniques in detecting table structures within documents.
This dataset serves as a valuable resource for advancing the development of efficient deep
learning methods for document layout understanding and tabular data processing.

In 2023, Q Ren et al. [33] proposed a table detection method based on YOLOVS5, incor-
porating deformable convolutional networks (DCNs), a new residual module (ResDCN),
a Global Attention Mechanism (GAM), and Adaptive Spatial Feature Fusion (ASFF) to
improve detection accuracy for complex tables with diverse layouts. Evaluated on the
TNCR and ICDAR-2017POD datasets, the model showed significant improvements, par-
ticularly on TNCR, where it excelled in detecting challenging wireless tables with a 2%
increase in Fl-score. On ICDAR-2017POD, it achieved an Fl-score of 96.7% and a 98%
recall rate, demonstrating robust performance across various table formats. In addition,
T. Shehzadi et al. [34] introduced a novel semi-supervised table detection method that
employs the deformable Transformer, a sophisticated deep learning technique. Unlike
traditional deep learning approaches that require substantial amounts of labeled data, this
method significantly minimizes the need for labeled samples. By utilizing the deformable
Transformer, the proposed method achieves remarkable results across various datasets,
including PubLayNet, DocBank, ICADR-19, and TableBank. It outperforms both fully
supervised and previous semi-supervised methods, demonstrating superior performance
with a limited amount of labeled data.

Y Ni et al. [35] proposed a Transformer-based model for table detection in docu-
ment images, addressing the challenge of detecting small or irregularly shaped tables.
By fine-tuning a pre-trained Transformer and integrating a Dual-branch Dilated Context
Convolutional (DCC) module, their approach enhances feature extraction and prediction
accuracy for tables of varying sizes and shapes. Additionally, multilevel residual convolu-
tional layers are employed for improved multiscale feature fusion. Evaluated on public
datasets, their model achieved advanced performance in table detection, demonstrating
robustness and precision in various document layouts.

3. Methodology

In our HTTD model, we structure detection queries into two components: a positional
component, represented as a 4D anchor box (x,y,w,h), and a content component that
remains learnable. The positional component includes the center coordinates (x,y) and
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dimensions (w, 1) of an anchor box, enabling dynamic refinement of anchor boxes layer by
layer within the decoder.

To address the slow training convergence typical in Transformer-based detection mod-
els, we introduce a denoising training technique. This approach involves feeding ground-
truth labels and boxes with controlled noise into the Transformer decoder. The model is
then trained to reconstruct the original ground-truth boxes, which stabilizes training and
accelerates convergence. Specifically, we add noise (Ax, Ay, Aw, Ah) to each ground-truth
box, constrained within a small range relative to the box’s dimensions, ensuring the noisy
anchor remains close to the original box. An auxiliary loss term, based on this denoising
process, further enhances the stability and speed of model training.

We also incorporate a deformable attention mechanism, which introduces reference
points to focus attention on key sampling locations surrounding each reference. This
targeted approach to attention allows the model to prioritize relevant regions within each
image. Additionally, we implement query selection, where we directly use encoder features
and reference boxes to initialize decoder queries. To further refine bounding box predictions,
we employ an iterative refinement strategy with a unique “look-forward-twice” technique,
which updates gradient paths effectively between layers.

By combining these elements—deformable attention, denoising anchor boxes, and it-
erative query refinement—our model provides a robust approach for table detection. Each
component is designed to enhance detection accuracy, accelerate convergence, and maintain
stable training, making our model well suited for high-precision table localization tasks.

Model Overview

Our HTTD model is a Transformer-based architecture for table detection, consist-
ing of a backbone, a multilayer Transformer encoder, a multilayer Transformer decoder,
and prediction heads. Given an input image, we first extract multiscale features using
backbones like ResNet [36] or a Swin Transformer [18]. These features, along with posi-
tional embeddings, are passed into the Transformer encoder. After enhancing the features
through the encoder layers, we initialize anchor boxes as positional queries for the de-
coder while leaving content queries learnable. This initialization process allows for the
iterative refinement of bounding box predictions as the decoder updates queries layer
by layer using deformable attention [21]. The final outputs are refined anchor boxes and
classification scores.

Contrastive denoising (CDN): This technique is added to stabilize training and
improve detection accuracy by differentiating between high-quality anchors (positive
examples) and less relevant anchors (negative examples). Positive queries are generated
with minimal noise, constrained within an inner region close to the ground-truth (GT) box,
and are trained to reconstruct the GT box. Negative queries are sampled from an outer
region with larger noise, specifically designed to predict “no object”. By explicitly teaching
the model to reject anchors farther from GT boxes, CDN prevents confusion caused by
multiple anchors near a single GT box and reduces duplicate predictions.

In the HTTD model, CDN plays a crucial role in handling diverse table layouts by
ensuring precise localization of table boundaries. For each GT box, CDN generates one
positive and one negative query, forming balanced training pairs that guide the model to
focus on high-quality anchors while suppressing irrelevant ones. This approach enhances
the model’s ability to distinguish between valid and background regions, significantly im-
proving detection performance in complex document layouts. Moreover, the reconstruction
loss (L1 and GloU for box regression, focal loss for classification) ensures robust predictions,
making CDN effective for both simple and densely populated layouts, as shown in Figure 1.
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examples. The inner square represents the region near the ground-truth (GT) box, where anchors
are classified as positive examples. Anchors in the region between the inner and outer squares are
classified as negative examples.

Effectiveness metric: To assess anchor quality, we use Average Top-K Distance (ATD(k)),
which measures the average distance of the k farthest anchors from matched ground-
truth boxes. For a validation set with N ground-truth boxes b; = (x;, y;, w;, h;), and their
corresponding anchors a;, the ATD(k) is given by

1
ATD(k) = % Y {topK({llbo — aoll1, Iby — a1, -, lbn—1 — an—1ll1}. k) } @

where ||b; — a;]|; represents the L1 distance between each ground-truth box b; and anchor
a;. This approach is particularly effective for small object detection, providing a consistent
improvement in average precision on such targets.

Mixed query selection: In traditional Transformer-based detection models, decoder
queries are typically static embeddings without input from specific encoder features. Our
approach enhances decoder queries by introducing a mixed query selection strategy. In this
approach, we initialize positional queries for the decoder using the positional information
of the top-K features from the encoder, allowing the model to select contextually relevant
anchors dynamically. Unlike conventional methods that initialize both positional and
content queries, we retain the content queries as learnable parameters, allowing the model
to pool more comprehensive content features from the encoder layers.

By incorporating encoder-selected features solely for positional queries, we avoid
potential ambiguity in content queries caused by preliminary content features that may
include multiple objects or partial object views. This mixed query selection provides
a refined initialization for the positional component of decoder queries, enhancing the
model’s localization capabilities in complex scenes.

Look forward twice: We also add a look-forward-twice strategy for iterative box refine-
ment, designed to improve both the accuracy and stability of box predictions. In typical
refinement processes, gradient backpropagation is blocked between layers to stabilize
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training. Our look-forward-twice method, however, updates the parameters of layer i
based on losses from both layer i and layer (i 4 1), allowing improved box information
from a later layer to influence earlier layers.

In this scheme, each box prediction at layer 7 incorporates both its initial box from the
preceding layer and an additional refinement step based on the subsequent layer’s output.

(pred)

Specifically, given an input box b;_ at the i-th layer, the final prediction b, is defined

as follows:
Ab; = Layer;(b;_1), b; = Update(b;_1, Ab;),

_ / (pred) _ / @)
b; = Detach(b;), b; = Update(b;_,, Ab;),

where b} is the undetached version of b;. The function Update(-, ) refines the box prediction
by applying the predicted offset Ab;. This iterative refinement helps achieve more precise
localization by leveraging information across adjacent layers.

This is detailed in our HTTD model architecture shown in Figure 2, illustrating the
application of advanced deep learning techniques for enhanced model precision. To clarify
the methodology, we present a pseudo-code in Algorithm 1, which outlines the sequential
steps involved in iteratively refining bounding boxes across layers. The algorithm high-
lights the core components, including the computation of deltas, intermediate updates,
and the look-forward mechanism that incorporates feedback from subsequent layers for
improved optimization.
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Figure 2. The architecture of the proposed model for table detection
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Algorithm 1 Look-forward-twice refinement strategy.

Input:

Initial bounding box predictions: Binit = {bo, b1,...,bn}
Encoder features: Fepcoder

Number of refinement layers: L

Prediction function: Predict(box, features)

Update function: Update(box, A)

Output: Final refined bounding boxes: Biefined

1: Initialize: Bcyrrent < Binit
2: fori=1to L do
3: Compute deltas using the current layer:

AB; < Predict(Bcurrent, Fencoder)
4 Update bounding boxes with layer-specific deltas:
Bintermediate <~ Update(Bcurrent, AB;)

5: if i < L then
: Look-forward mechanism: Incorporate feedback from the next layer:

ABpext < PrediCt(Bintermediate/ F, encoder)

Bcurrent <= Update(Bintermediater ABneXt)
else
Final refinement:
Bcurrent — Bintermediate
9: end if
10: end for
11: Output: Brefined < Bcurrent

4. Experiment Result
4.1. Dataset

We try our HTTD model on different datasets such as the ICDAR2019 c¢TDaR dataset,
as detailed by Gao [37], which is a specialized resource designed for table detection
(Track A) and recognition (Track B). It categorizes data into historical and modern di-
visions. The modern segment includes a variety of formats such as scientific articles, forms,
and financial records, while the historical segment comprises images from handwritten
ledgers and ancient texts. The dataset consists of 1600 training images and 839 testing
images. Track A focuses on images containing tables, whereas Track B is divided into two
subtracks for table structure recognition, with or without prior knowledge. Examples of
the dataset are shown in Figure 3.

Furthermore, The TNCR dataset, introduced by Abdallah [38], is a newly curated
collection of table images of varying quality sourced from freely accessible websites. This
dataset is designed for recognizing and classifying tables in scanned document images
across five distinct categories. It includes approximately 6621 images featuring 9428
captioned tables. Utilizing advanced deep learning methodologies for table detection,
the research established substantial baselines. Notably, the integration of Deformable DETR
with a ResNet-50 Backbone Network achieved the highest performance metrics on the
TNCR dataset, with an accuracy of 86.7%, a recall of 89.6%, and an Fl-score of 88.1%.
Examples of the dataset are shown in Figure 4.
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Figure 3. Examples of images in ICDAR 2019 ¢TDaR dataset.
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Figure 4. Examples of images in TNCR dataset.

Furthermore, TabRecSet, introduced by F Yang (2023) [39], investigates table recog-
nition (TR) within the domain of pattern recognition, encompassing table detection (TD),
table structure recognition (TSR), and table content recognition (TCR). The study introduces
the Table Recognition Set (TabRecSet), a groundbreaking dataset that uniquely includes
both English and Chinese languages, tailored to support comprehensive end-to-end TR
research. TabRecSet consists of 38.1K tables, with 20.4K in English and 17.7K in Chinese,
presented in various formats such as tables with complete and incomplete borders, with
regular and irregular shapes, and sourced from scanned images, camera-captured im-
ages, documents, Excel sheets, educational materials, and financial invoices. Additionally,
the study introduces TableMe, an innovative annotation tool designed to enhance anno-
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tation efficiency and quality through features that promote visualization and interactive
engagement. Examples of the dataset are shown in Figure 5.
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Figure 5. Examples of images in TabRecSet.

4.2. Experiment Setup

In this study, we organized our dataset into two subsets, 90% for training and 10% for
validation, facilitating extensive training. During fine-tuning, we augmented image sizes by
1.5 times their original dimensions to improve feature detection. The model’s training was
optimized with an initial learning rate of 1 x 10~* using the AdamW [40,41] optimizer and
the same rate for weight decay. We employed L1 and Generalized Intersection over Union
(GIOU) [42] losses for box regression and focal loss (with & = 0.25, v = 2) for classification,
aiming to enhance bounding box precision and classification accuracy. Model performance
was evaluated using the average precision (AP) metric across various Intersection over
Union (IoU) thresholds and object scales, providing insights into its accuracy and capability
to handle different object sizes. The implementation was conducted on a dual NVIDIA
GeForce RTX 4090 with 32 GB memory, using PyTorch 2.4.1. Training was completed
in approximately 5 h, outperforming CNN-based models like Cascade Mask R-CNN,
which typically require 8-10 h under similar conditions. This efficiency is attributed to the
optimized Swin-L backbone and advanced techniques such as contrastive denoising and
look-forward-twice refinement. For inference, HTTD achieves an average processing speed
of 25 images per second, exceeding the performance of Faster R-CNN (18 images/second).
The use of deformable attention focuses computations on relevant regions, reducing latency
without compromising accuracy.

4.3. Results

Our sophisticated model for advanced table detection, HTTD, was extensively evalu-
ated using a meticulously curated dataset. Comparative analyses reveal that this model
surpasses current state-of-the-art methods in terms of performance.

Table 1 compares our model with other models like HRNets Cascade Mask R-CNN,
HRNets Mask R-CNN, HRNets HTC, HRNets Faster R-CNN, HRNets Cascade R-CNN,
Mask R-CNN ResNeXt-101, and YOLOvVS5 + ResDCN GAM + ASFF. Our model significantly
outperforms others, especially at higher IoU thresholds, which is crucial for accurate table
detection in TNCR.

For instance, at an IoU threshold of 60%, our model scores 0.987 in precision, sur-
passing the HRNets Cascade Mask R-CNN model (0.884). At an IoU threshold of 80%,
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our model scores 0.961 in precision, demonstrating its superior ability to pinpoint table
locations accurately. This high performance across various IoU thresholds highlights our
model’s effectiveness in detecting both small and complex tables, making it valuable for
efficient data processing.

Table 1. Table detection for TNCR (with the best values highlighted in bold).

Approach Method Metric

IoU
10% 20% 30% 40% 50% 60% 70% 80% 90% 95% AVg

Precision 0.888 0.887 0.887 0.886 0.885 0.884 0.872 0.858 0.828 0.732  0.810

Abdallah [3] HRNets Cascade Mask R-CNN Recall 0970 0970 0970 0967 0.967 0965 0955 0942 0918 0.836 0.903

Fl-score 0927 0926 0926 0924 0924 0922 0911 0898 0870 0.780 0.903

Precision 0.859  0.857 0.857 0.857 0.852 0.848 0.833 0816 0764 0.585 0.816

Abdallah [3] HRNets - Mask R-CNN Recall 0971 0969 0969 0969 0965 0960 0947 0934 0889 0744 0934

Fl-score 0911 0909 0909 0909 0904 0900 088 0.871 0.821 0.654 0.871

Precision 0.885 0.885 0.883 0.882 0.881 0875 0.862 0.849 0808 0.691 0.788

Abdallah [3] HRNets - HTC Recall 0987 0987 0984 0984 0982 0976 0966 0954 0915 0.816 0.901

Fl-score 0933 0933 0930 0930 0928 0922 0911 0898 0.858 0.748  0.840

Precision 0.867 0.865 0.863 0.859 0.853 0845 0.827 0806 0.750 0.556 0.711

Abdallah [3] HRNets - Faster R-CNN Recall 0972 0970 0968 0964 0959 0952 0940 0915 0869 0711 0.842

Fl-score 0916 0914 0912 0908 0902 0895 0.879 0857 0805 0.624 0.770

Precision 0.893 0.891 0891 0.891 0.88 0880 0.871 0854 0831 0705 0.799

Abdallah [3] HRNets - Cascade R-CNN Recall 0967 0965 0965 0964 0.961 0956 0948 0.935 0914 0811 0.889

Fl-score 0928 0926 0926 0926 0923 0916 0.907 0892 0870 0.754 0.841

Precision 0.778 0.777 0774 0769 0759 0749 0713 0.651 0477 0407 0434

Abdallah [3]  Mask R-CNN - ResNeXt-101 Recall 0975 0974 0968 0964 0.952 0941 0913 0.856 0.725 0.695 0.626

Fl-score 0.865 0.864 0860 0855 0.844 0.834 0800 0739 0575 0513 0.512

Precision 0.884 0.884 0880 0.879 0876 0871 0.856 0.833 0.780 0.581  0.733

Abdallah [3]  Faster R-CNN - ResNeXt-101 Recall 0972 0970 0969 0967 0965 0961  0.950 931 0.884 0.724  0.848

Fl-score 0925 0925 0922 0920 0918 0913 0900 0.879 0.828 0.644 0.786

Precision - - - - - 0.953 - 0.949 - - 0.951
QRen [33] Yoé%’\i : ig;?FCN Recall - - - - - 0915 - 0913 - - 0914

Fl-score . - - - - 0.934 - 0.931 - - 09325

Precision 0.997 0997 0997 0996 0996 0987 0985 0961 0.891 0747 0.9554
Our model HTTD Recall ~ 1.000 1.000 1.000 1.000 1.000 0996 0994 0981 0933 0.830 0.9734

Fl-score 0.9985 0.9985 0.9985 0.9980 0.9980 0.9915 0.9895 0.9709 0.9115 0.7863 0.9643

Table 2 compares our model which achieves an average precision of 0.9314, while the
CDeC-Net model by F Yang has an average precision of 0.928. This indicates that our model
performs slightly better in terms of average precision for table detection in TabRecSet.

Table 2. Table detection for TabRecSet (with the best values highlighted in bold).

IoU
Approach Method Metric
10% 20% 30% 40% 50% 60% 70% 80% 90% 95% AVg
Precision - - - - - - - - - - 0.928
FYang [39] CDeC-Net  Recall - - - - - - - - - - -
Fl1-score - - - - - - - - - - -

Our Model HTTD

Precision 0.969 0967 0.965 0961 0953 0.948 0940 0.921 0.874 0.816 0.9314
Recall 0999 0.999 0998 0.997 0996 0994 0.992 0981 0.947 0.899 0.9802
Fl-score 0.9838 0.9827 0.9812 0.9787 0.9740 0.9705 0.9653 0.9501 0.9090 0.8555 0.9554

Table 3 extends the analysis to compare our model with other models like Cascade
mask R-CNN HRNet, Cascade mask R-CNN, object detection networks, fully convolutional
network, Vanilla Transformer architecture, Faster R-CNN, and Pre-trained Transformer +
DCC, using various backbones. Notably, our model with a Swin-L backbone significantly
outperforms other models, particularly at higher IoU thresholds, which is critical for
accurate and reliable table detection. For example, at an IoU threshold of 60%, our model
scores 0.972 in precision, surpassing the Cascade mask R-CNN model (97.7%), object
detection networks (96.0%), and fully convolutional network (91.0%). We performed t-tests
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to assess the statistical significance of our model comparisons, with p-values indicating
significant differences.

Table 3. Table detection with ICDAR-2019 cTDaR Modern dataset (with the best values highlighted

in bold).
IoU
Approach Method Metric
10% 20% 30% 40% 50% 60% 70% 80% 90% 95% Avg
Precision - - - - - - - - - - -
D Prasad [5] CascadeTabNet Recall - - - - - - - - - - -
Fl-score - - - - - 94.3 93.4 92.5 90.1 - 0.901
Cascade mask Precision  98.7 - 98.0 - 97.7 - 97.1 - 93.4 - -
M Agarwal [28] R-CNN Recall 94.6 - 93.9 - 93.6 - 93.0 - 89.5 - -
Fl-score  96.6 - 95.9 - 95.6 - 95.0 - 91.5 - -
. . Precision - - - - - - 96.0 - 90.0 - -
X Zheng [29] Ob]ﬁ‘;‘iitrf:"“ Recall - - - - . - 95.0 - 89.0 - -
F1-score - - - - - - 94.0 - 94.0 - -
. Precision - - - - - - - - - - -
DD Nguyen [30] Fully Iclgnmvgillitlonal Recall - - - - - - - - - - -
Fl-score - - 92.8 - 91.7 - 91.0 - 87.4 - -
Precision - - 98.4 - 98.2 - 97.7 - 95.0 - -
C Ma [43] Faster R-CNN Recall - - 94.0 - 93.9 - 93.3 - 90.8 - -
Fl-score - - 96.1 - 96.0 - 95.4 - 92.9 - -
Precision - - - - - - - - - - -
JLi[31] Dit Recall - - - - - - - - - - -
Fl-score - - - - - 95.7 95.0 944 914 - 93.9
. Precision - - - - - - - - - -
Y Ni [35] Pre-tralrle?DlgaCr;sformer Recall ) ] ] ] ] ] ) ] ] ] ]
F1 - - - - - 97.3 97.1 96.4 92.2 - 95.5
Precision  0.981 0.981 0.980 0.980 0.972 0.972 0.966 0.950 0.932 0.882  0.9596
Our model HTTD Recall 0993 0993 0993 0993 0990 0.990 0.987 0.977 0.963 0.924 0.9803

Fl-score 0.9870 0.9870 0.9865 0.9865 0.9809 0.9809 0.9764 0.9633 0.9472 0.9025 0.9698

When we look at how well different models perform at an IoU threshold of 80%, it is
clear that our model is doing something right. It manages to score 0.950 in precision, while
most other models do not even get on the scoreboard. This tells us that our model is getting
better at spotting and pinpointing the location of tables. Our model shows impressive
results at higher IoU thresholds. For instance, at an IoU of 60%, our model scores 0.972
in precision. This score tells us that our model is good at pinpointing the exact location
of tables, which is super important for detecting them accurately. This is a big step up
from the next best model, Faster R-CNN, which only scores 97.7% at the same IoU level.
Furthermore, even when the IoU thresholds get tougher, like 80%, our model still scores
0.950, showing its precision.

4.4. Statistical Analysis of Performance Differences

To ensure that the observed differences between the HTTD model and other methods
are statistically significant, paired t-tests were conducted on precision, recall, and F1-score
results across various IoU thresholds. The significance level was set to « = 0.05.

The results of the paired t-tests comparing HTTD with other models (e.g., HRNets
Cascade Mask R-CNN, Mask R-CNN ResNeXt-101, YOLOv5 + ResDCN GAM + ASFF) are
summarized in Table 4. Across all IoU thresholds, HTTD exhibited statistically significant
improvements in precision, recall, and F1-score (p < 0.05).
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Table 4. Paired t-tests results for HTTD vs. other methods.

Metric IoU Threshold HTTD Mean Comparison Model Model Mean  p-Value Significance

Precision 60% 0.985 HRNets Cascade Mask R-CNN 0.882 1.52 x 1075 Yes

Precision 80% 0.960 YOLOV5 + ResDCN GAM + ASFF 0.945 2.56 x 10~° Yes

Fl-score 80% 0.9704 Mask R-CNN ResNeXt-101 0.734 2.02 x 1077 Yes

Recall 90% 0.930 HRNets Faster R-CNN 0.881 240 x 1075 Yes

5. Ablation Study

To comprehensively evaluate the HTTD model, we performed two sets of ablation
studies. The first focuses on the contribution of individual components to the performance
of table detection on the ICDAR-2019 cTDaR Modern dataset. The second examines
the generalizability of the methodology to other detection tasks, including receipt item
detection and cancer region detection.

5.1. Ablative Analysis of Model Features

To assess the contributions of individual components in the HTTD model, we con-
ducted an ablation study on the ICDAR-2019 ¢cTDaR Modern dataset. This study focuses
on evaluating the model’s performance in terms of precision, recall, and F1-score across
various IoU thresholds. The impact of each key feature—contrastive denoising, mixed
query selection, look-forward-twice refinement, and the Swin-L backbone—is analyzed.
The contrastive denoising (CDN) stabilizes training and enhances the model’s ability to
focus on high-quality anchors, reducing redundant predictions and improving overall
detection accuracy. Adding CDN to the baseline model resulted in a precision increase
from 0.885 to 0.921 (+3.6%), a recall increase from 0.910 to 0.944 (+3.4%), and an F1-score
increase from 0.897 to 0.932 (+3.5%). These improvements highlight CDN'’s effectiveness
in handling complex table layouts. Mixed query selection (MQS) refines the initialization
of positional queries, leveraging spatial priors to enhance localization performance. In-
corporating MQS further improved the model’s precision to 0.938 (+1.7%), recall to 0.955
(+1.1%), and F1-score to 0.944 (+1.2%). These gains illustrate MQS’s ability to optimize the
model’s focus on contextually relevant anchors. The look-forward-twice (LFT) refinement
enhances bounding box predictions by leveraging gradient updates across consecutive
layers. Adding LFT increased precision to 0.950 (+1.2%), recall to 0.969 (+1.4%), and F1-
score to 0.959 (+1.5%), demonstrating its value in improving localization accuracy at higher
IoU thresholds.

Replacing the baseline backbone with Swin-L provided significant improvements due
to its ability to capture multiscale features and global context. This final addition raised
precision to 0.960 (+1.0%), recall to 0.977 (+0.8%), and F1-score to 0.963 (+0.4%), achiev-
ing the highest overall performance. The full HTTD model, combining all components,
achieved the highest performance on the ICDAR-2019 cTDaR Modern dataset, with an
average F1-score of 0.9633, precision of 0.950, and recall of 0.977. These results confirm the
complementary contributions of the individual components.

Table 5 provides a comparison of precision, recall, and F1-score for the full model
(with all components) and when specific components are removed. Results are reported at
80% IoU.
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Table 5. Ablation study results on ICDAR-2019 cTDaR Modern dataset (IoU = 80%).
Configuration Precision Recall F1-Score
Original model 0.885 0.910 0.897
Add contrastive denoising (CDN)  0.921 (+3.6%) 0.944 (+3.4%) 0.932 (+3.5%)
Add mixed query selection (MQS)  0.938 (+1.7%) 0.955 (+1.1%) 0.944 (+1.2%)
Add look forward twice (LFT) 0.950 (+1.2%) 0.969 (+1.4%) 0.959 (+1.5%)
With Swin-L backbone (full model) 0.960 (+1.0%) 0.977 (+0.8%) 0.963 (+0.4%)
Full HTTD model 0.950 0.977 0.9633

5.2. Experimental Results Across Diverse Detection Domains

To evaluate the versatility and generalization potential of the HTTD model, we con-
ducted an additional ablation study on a different detection tasks (breast cancer detection
and receipt key detection).

5.2.1. Datasets and Experiment Setup

For the breast cancer detection task, we used a dataset comprising 12,476 anno-
tated mammographic images [44]. These images were meticulously labeled following
BI-RADS standards and underwent expert-led data cleaning and region-of-interest (ROI)
extraction. The dataset was split into training (90%; 11,228 images) and validation
(10%; 1248 images) sets.

The CORU dataset [4], consisting of 20,000 annotated receipts in Arabic and English,
was utilized for the receipt key detection task. It focused on detecting critical entities such
as merchant names, dates, receipt numbers, items, and total prices. The dataset was divided
into training (90%; 18,000 receipts) and validation (10%; 2000 receipts) sets.

To enhance model performance, images were resized and augmented during training,
with their dimensions increased by 1.5 times. The training process utilized the AdamW
optimizer [40,41] with an initial learning rate of 1 x 10~* and a weight decay of 1 x 1074,
Loss functions included L1 and Generalized Intersection over Union (GloU) [42] for box
regression, as well as focal loss (parameters: « = 0.25, = 2) for classification. This
configuration aimed to refine bounding box predictions and boost classification accuracy.
The localization performances of various models at different Intersection over Union (IoU)
thresholds are shown in Tables 6 and 7.

5.2.2. Breast Cancer Detection Result

The HTTD model demonstrated remarkable performance in detecting regions of inter-
est in mammographic images. The integration of hierarchical feature extraction, contrastive
denoising, and mixed query selection contributed to its superior results. As shown in
Table 6, our approach outperformed conventional methods, achieving an average local-
ization accuracy of 56.38% across varying IoU thresholds. Notably, the use of the Swin-L
backbone enabled the model to maintain high precision and recall even at stricter loU
thresholds, underscoring its robustness in complex medical imaging scenarios.
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Table 6. Performance comparison of different models for breast cancer detection (BCD) across
IoU thresholds(with the best values highlighted in bold).

10U
20 30 40 50 60 70 80 Avg
Resnet50 24.00 18.00 1066 9.00 639 379 118 023 941

Model Backbone

HAS VGG-16 302 255 1543 1028 5.65 5.01 282 057 12.68
Resnet50  65.30 5829 46.68 3791 29.85 21.09 947 165 33.15

CAM VGG-16 6140 5497 4075 29.62 21.09 11.84 473 142 2823
Resnet50 39.67 31.56 2511 1943 1255 853 4.02 094 1798

ACOL VGG-16 3678 3046 20.68 1334 10.04 6.18 213 056 1540
Resnet50 3520 2887 21.72 1425 945 540 123 0.0 1427

SPG VGG-16 5236 4858 29.89 20.00 9.69 315 0.84 0.0 20.56
Resnet50 72.10 68.72 5545 4431 33.64 24.64 1445 568 39.62

ADL VGG-16 4840 43.60 24.17 1208 592 213 094 0.0 17.78

Our approach ~ Swin-L 786 632 624 611 595 564 463 22.6 56.38

5.2.3. Receipt Key Detection Result

For the receipt key detection task, the HTTD model outperformed existing meth-
ods, including ACOL, HAS, SPG, and DINO, as detailed in Table 7. By leveraging its
Transformer-based architecture, the model achieved an average IoU of 36.5%, significantly
surpassing other approaches, particularly at higher IoU thresholds. This highlights its
ability to accurately localize and classify key components within multilingual receipts, even
in noisy and cluttered layouts.

Table 7. Performance(with the best values highlighted in bold). comparison of different methods for
receipt key detection across IoU thresholds.

IoU
10 20 30 40 50 60 70 80 90

ResNet50 394 2749 719 272 101 048 032 021 0.00 0.00
VGG16 0.00 0.00 000 0.0 000 0.00 0.00 000 0.00 0.00

ResNetS0 7.14 4326 1684 655 272 117 059 021 0.11 0.00
VGG16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00

SPG ResNet50 6.53 4214 13.00 506 266 133 064 027 011 0.05
ResNet50 6.32 41.61 1337 501 197 0.69 037 0.16 0.05 0.00

Method Backbone Avg

ACOL

HAS

Cutmix VGG16 554 3847 1145 325 128 059 027 011 000 0.00
ADL ResNet50 657 3974 1513 634 256 117 048 0.16 011 005
VGG16 697 4752 1534 469 160 037 016 005 000 0.00
CAM ResNet50 6.17 41.08 1193 448 224 107 059 021 005 0.05
VGG16 586 4523 1012 224 064 016 011 005 000 0.00
DING Swin 322 454 446 433 419 399 359 275 106 07

ResNet50 319 459 450 436 419 394 352 256 102 05
Our approach  Swin-L 365 500 496 478 465 441 398 316 143 1.2

5.3. Case Study

To provide a comprehensive analysis of the model’s performance, we include qualita-
tive examples showcasing both successful detections and failure cases. Figure 6 illustrates
four examples: two successful cases (a and b), where the HTTD model accurately detected
tables in clean and well-structured documents, and two failure cases (c and d), where the
model struggled due to noisy or partially cropped input data.
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In the failure cases, while the model successfully identified the presence of tables, it
was unable to accurately delineate the boundaries due to significant noise, text occlusion,
or incomplete information in the document. These results highlight the challenges faced
by HTTD in handling degraded or incomplete inputs, emphasizing the need for further
advancements in robust feature extraction under adverse conditions.
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Figure 6. Qualitative results of our model: (a,b) Successful detections in clean and moderately

complex layouts; (¢,d) Failures due to noisy and cropped inputs.

6. Conclusions and Future Work

This study introduces HTTD, a Hierarchical Transformer designed to address the key
challenges of table detection in diverse document layouts, including historical and modern
documents. By improving computational efficiency, enhancing training speed, and gen-
eralizing to non-standard tasks such as breast cancer detection and receipt key detection,
HTTD demonstrates its versatility and adaptability. Our innovations, including contrastive
denoising and mixed query selection, establish a new standard for table detection and
open pathways for broader applications in document analysis. Future work will focus on
extending HTTD's capabilities to include semi-supervised learning and content recognition
for even greater generalization.

In future work, we aim to explore hybrid architectures that further integrate CNN-
based local feature extraction with Transformer-based global context modeling. Addition-
ally, leveraging semi-supervised and unsupervised learning methods could unlock the
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potential of unlabeled data, enhancing the model’s generalization across diverse document
types. Finally, expanding HTTD’s scope to include table structure recognition and content
extraction will position it as a comprehensive solution for document processing tasks.
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