

Course Specification

Advanced Pharmaceutical Organic Chemistry (Ph. D students)

Programme(s) on which the course is given: Pharamaceutical Sciences, Postgraduate

Major or Minor element of programme: Major

Department offering the course: Pharmaceutical Organic Chemistry

Faculty: Faculty of pharmacy Academic year / Level: 2009-2010

Date of specification approval: 12-6-2010

A-Basic Information

Title: Advanced Pharmaceutical Organic Chemistry Code:

Credit Hours: Lecture: 20 hours

Tutorial: 0 hours Practicals: 0 hours Total: 20 hours

B-Professional Information 1- Overall Aims of Course

- a) Deeper understanding of different aspects of organic chemistry including reactivity, reaction mechanisms, functional group transformations, optimization of reaction conditions and recent advances in these fields.
- b) Broad overview of carbon-carbon bond forming reactions, total synthesis and recent techniques in separation and purification of organic compounds.
- c) Make students able to design appropriate synthetic plans for total synthesis of natural products.

2- Intended Learning Outcomes of Course (ILOs)

a- Knowledge and Understanding:

- al- Students will obtain a clear understanding of methods which are used in drug synthesis, think systematically in solving problems and make decisions in subjects involving chemical reactions.
- a2- Select appropriate chemical reactions that could be used for total synthesis of organic pharmaceutical molecules.
- a3- Understand the chemistry of chiral molecules, reagents and protecting groups manipulation. Gain the ability to deal with total synthesis of new chiral molecules and natural products.

b-Intellectual Skills

b1- Analyze and evaluate the chemical information from different resources then integrate and apply it for drug synthesis .

b2- Deal with research problems depending on the recent information.

c- Professional and practical Skills

- c1- Design an appropriate synthetic pathways for total synthesis of pharmaceutical organic compounds and natural products.
- c2- Analysis, separation and confirmation of optical purity organic compounds.
- c3- Correlation of the chemical structure and optical purity of organic compounds and their biological activities

d- General and Transferable Skills

- d1 -Manipulate chemical in formation
- d2- Use chemical information for solving given problems in design of new drugs.
- d3- Present of the research results to the scientific community, in form of reports, website,etc

3- Contents

Topic	No. of hours	Lecture	Tutorial / Practical
-Asymmetric synthesis of organic molecules -Total synthesis of organic compounds -Protecting group manipulationsOrganic reagents in organic synthesis.	35	20	
total		20	

4- Teaching and Learning Methods

4.1 Lectures

5- Student Assessment Methods

5.1 Written examination to assess theoretical know ledges.

Assessment Schedule

Assessment 1 Written final exam.

Weighting of Assessments

Final-Term Examination 100%

6- List of References

- 6.1- Essential Books (Text Books): Asymmetric synthesis, Comprehensive Organic Synthesis, Protecting groups.
- 6.2- Online chemical resources and internet chemical and pharmaceutical web sites.
- 6.3-Recommended Books: Jerry March, Advanced Organic Chemistry.
- 6.4- Periodicals, Journal of organic chemistry and Tetrahedron letter
- 7- Facilities Required for Teaching and Learning; all the necessary equipments are available

Course Coordinator: Dr. Hajjaj Hassan Mohamed Head of Department: Dr. Mostafa A. Hussein **University of Assiut**

Course Title : Advanced Pharmaceutical Organic Chemistry

Faculty of Pharmacy

Course Code.

Department: Pharm. Org. Chem.

Matrix of the Intended Learning Outcomes (ILOs) of the Course

Торіс	Week	Knowledge and Understanding	Intellectual Skills	Professional and Piratical Skills	General and Transferable Skills
- Asymmetric synthesis of organic molecules	1 st	a1, a2, a3	b1, b2	c1, c2,c3	d1, d2, d3
-Total synthesis of organic compounds	2 nd	a1, a2, a3	b1, b2	c1, c2	d1, d2
-Protecting group manipulations.	3 th	a1, a2, a3	b1, b2	c1, c2	
-Organic reagents in organic synthesis	4 th - 5 th	a1, a2, a3	b1, b2	c1, c2	d1, d2

Course Coordinator: Dr. Hajjaj Hassan Mohamed Head of Department: Dr. Mostafa A. Hussein

Date: 16/10/2010

Pharm. Organic Chem. Department Course Specification

Recent Trends in Studying Structure-Activity Relationship (Ph. D students)

Programme(s) on which the course is given: Pharamaceutical Sciences, Postgraduate

Major or Minor element of programme: Major

Department offering the course: Pharmaceutical Organic Chemistry

Faculty: Faculty of pharmacy Academic year / Level: 2009-2010

Date of specification approval: 12-6-2010

A-Basic Information

Title: Recent trends in studying structure-activity relationship Code:

Credit Hours: Lecture: 20 hours

Tutorial: 0 hours Practicals: 0 hours Total: 20 hours

B-Professional Information

1- Overall Aims of Course

- 1a. To provide students with deeper knowledge and practical examples of some of the many methods and techniques that can be used in drug design
- 1b. The sense of structural modifications for optimization of drug stability, bioavailability and duration of action, and for drug targeting.
- 1c. Students will also develop a clear understanding of the importance of SAR studies and their impact on drug desin/invention.

2- Intended Learning Outcomes of Course (ILOs)

a- Knowledge and Understanding:

- al- To provide students with concepts of drug design and what physicochemical properties of a molecules are important in therapeutic action
- a2- To provide students with deeper knowledge of theortical and empirical methods which are used in drug design
- a3- To introduce students to basic concepts of computer aided-drug design, homology modeling and docking studies

b-Intellectual Skills

Improve the ability to combine data from different methods and techniques to overcome certain problems in therapeutic agents.

c- Professional and practical Skills

Application of the gained knowledge for structural modification to the practical part of the study.

d- General and Transferable Skills

Present of the research results to the scientific community, in form of reports, research paper,etc

3- Contents

Topic	No. of hours	Lecture	Tutorial / Practical
-SAR			- No.
-QSAR		20	1.7%
-Lead optimization and			19.
computer-			4.17
aided drug design			
-Combinatorial chemistry and		100	1 1
microwave chemistry			
- Model examples			
total		20	

4- Teaching and Learning Methods

4.1 Lectures

5- Student Assessment Methods

5.1 Written examination to assess theoretical know ledges.

Assessment Schedule

Assessment 1 Written final exam.

Weighting of Assessments

Final-Term Examination 100%

6- List of References

- 6.1- Essential books (Text Books): Principles of medicinal chemistry, drug design, computer-aided drug design and computational medicinal chemistry
- 6.2- Online chemical resources and internet medicinal chemistry and pharmaceutical web sites.
- 6.3-Recommended Books: Burger's in medicinal chemistry
- 6.4- Periodicals, Journal of medicinal chemistry and bioorganic medicinal chemistryorganic chemistry and Tetrahedron letter

7- Facilities Required for Teaching and Learning; all the necessary equipments are available

Course Coordinator: Dr. Hajjaj Hassan Mohamed Head of Department: Dr. Mostafa A. Hussein **University of Assiut**

Course Title: Recent Trends in Studying

Structure-Activity Relationship

Faculty of Pharmacy

Course Code.

Department: Pharm. Org. Chem.

Matrix of the Intended Learning Outcomes (ILOs) of the Course

Торіс	Week	Knowledge and Understanding	Intellectual Skills	Professional and Piratical Skills	General and Transferable Skills
-SAR -QSAR	1 st	a1, a2	b1	c1	d1
-Lead optimization and computer-aided drug design	2 nd	a1, a2, a3	b1	c1	d1
-Combinatorial chemistry and microwave chemistry	3 th	a1, a2	b1	c1	d1
- Model examples	4 th - 5 th	a1, a2, a3	b1	c1	d1

Course Coordinator: Dr. Hajjaj Hassan Mohamed Head of Department: Dr. Mostafa A. Hussein

Date: 16/10/2010

Course Specification

Nuclear Magnetic Resonance Techniques (Ph. D students)

Programme(s) on which the course is given: Pharamaceutical Sciences, Postgraduate

Major or Minor element of programme: Major

Department offering the course: Pharmaceutical Organic Chemistry

Faculty: Faculty of pharmacy Academic year / Level: 2009-2010

Date of specification approval: 12-6-2010

A-Basic Information

Title: Nuclear magnetic resonance techniques Code:

Credit Hours: Lecture: 20 hours

Tutorial: 0 hours Practicals: 0 hours Total: 20 hours

B-Professional Information

1- Overall Aims of Course

- a) The acquisition of efficient skills to identify the structure of organic molecules through NMR techniques.
- b) To prepare student with a sound understanding of the fundamental principles of dynamic NMR and its application for studying the structure-affinity relationship and drug design
- 2- Intended Learning Outcomes of Course (ILOs)
- a- Knowledge and Understanding:
- al- Think systematically in solving problems and make decisions in subjects of structure elucidation.
- a2- Obtain the basis of the current applications of NMR in drug design.

b-Intellectual Skills

b1- Improve the ability to combine data from different NMR techniques to elucidate the structure of quite complicated compounds.

c- Professional and practical Skills

c1-Application of the gained knowledge for structural elucidation of model compounds including pharmaceutical organic compounds and natural products.

d- General and Transferable Skills

d1- Present of the research results to the scientific community, in form of reports, research paper,etc

3- Contents

Topic	No. of hours	Lecture	Tutorial / Practical
- ¹ H NMR, ¹³ C NMR and 2D tehniques Dynamic NMR spectroscopy		20	
Total		20	

4- Teaching and Learning Methods

4.1 Lectures

5- Student Assessment Methods

5.1 Written examination to assess theoretical know ledges.

Assessment Schedule

Assessment 1 Written final exam.

Weighting of Assessments

Final-Term Examination 100%

6- List of References

- 6.1- Essential books (Text Books): Structure elucidation by NMR, 13C NMR spectroscopy and organic structure determination using 2D NMR.
- 6.2- Online chemical resources and internet chemical and pharmaceutical web sites.
 - 6.3-Recommended Books: A. M. Silverstein, G. C. Morrill. Spectroscopic identification of organic compounds, John wiely, 2007 Jerry March, Advanced Organic Chemistry.
 - 6.4- Periodicals, Journal of organic chemistry and Tetrahedron letter

7- Facilities Required for Teaching and Learning; all the necessary equipments are available

Course Coordinator: Dr. Hajjaj Hassan Mohamed

Head of Department: Dr. Mostafa A. Hussein

Date: 16/10/2010

University of Assiut

Course Title: Nuclear Magnetic Resonance

Techniques

Faculty of Pharmacy

Course Code.

Department: Pharm. Org. Chem.

Matrix of the Intended Learning Outcomes (ILOs) of the Course

Торіс	Week	Knowledge and Understanding	Intellectual Skills	Professional and Piratical Skills	General and Transferable Skills
-¹H NMR, ¹³C NMR and 2D tehniques	1 st	a1	b1	c1	d1
- Dynamic NMR spectroscopy	2 nd	a2	b1	c1	d1

Course Coordinator: Dr. Hajjaj Hassan Mohamed Head of Department: Dr. Mostafa A. Hussein

